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SUMMARY: We determined Weierstrass canonical form of cosmic time formula in the cases of four-
component and some three-component universe, assuming the ΛCDM model. In all other cases, we
discussed analytical solutions for the cosmic time formula.
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1. INTRODUCTION

Our aim in this paper is to discuss all cases that
consider the existence of analytical form of cosmic
time formula for a multi-component universe obeying
the ΛCDM model. In the cases when the analytical
solution is not available, we will obtain the Weier-
strass canonical form of the appropriate integrals.

Having in mind the physical constraints, we re-
strict here our attention only to smooth functions, i.e.
those having at least the continuous second deriva-
tive. The additional reason for this premise is that
all cosmological parameters that we study here are
the solutions of Friedmann equations (see Friedmann
1924) with the Λ term, a system consisting of the first
and second order differential equations:(
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ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
,

ρ̇+ 3
ȧ
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The first equation in Eq. (1) refers to the Friedmann
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equation, the second one is known as the acceleration
equation, while the last one is the fluid equation. Pa-
rameters appearing in these equations are the scale
expansion factor a(t) in the time variable t, the pres-
sure p(t) of the material in the universe, the energy
density parameter ρ(t) and the universe’s curvature
k. Here we consider only the cases k = 0 (flat uni-
verse) and k < 0 (open universe), wherefrom it fol-
lows that the curvature density parameter, given with
Ωk = −kc2/a2H2, has nonnegative values. Moreover,
all other density parameters, defined as (see Liddle
and Lyth 2000):

ΩΛ(t) =
Λc2

3H(t)2
,

Ω(t) =
8πG

3H(t)2
ρ(t),

Ωm(t) =
8πG

3H(t)2
ρm(t),

Ωr(t) =
8πG

3H(t)2
ρr(t),

(2)

are also nonnegative (see Zyla et al. 2020), where
ΩΛ(t) denotes the cosmological constant density, Ω(t)
is the mass density, while Ωm(t) and Ωr(t) denote the
rest mass density and radiation density, respectively.
Also, they satisfy the identity:

Ωr(t) + Ωm(t) + Ωk(t) + ΩΛ(t) = 1, (3)
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which is the another form of the Friedmann equation.
Those properties of the density parameters were es-
sential for simplifying the obtained solutions of some
integrals in this paper.

Also, some of the density parameters have very
small values (see Aghanim et al. 2019), therefore one
could consider applying some perturbation methods
(for example, see Filobello-Nino et al. 2013) in order
to solve approximately elliptic integrals that we study
in this paper. Some of the cases that we analyze here
are already discussed in literature (see Ryden 2002
and Steiner 2008) but mostly using some approxima-
tions.

The evolution of the universe can be roughly di-
vided into four epochs which are determined by one
dominant component. The first stage in the uni-
verse’s evolution was inflation, which was dominated
by the Λ-like term that drove the exponential expan-
sion of the universe. After the inflation period, ra-
diation prevailed the universe, until the time of the
matter-radiation density equality which occurred at
approximately 50 000 years after the Big Bang. At
that time, the transition period between the radia-
tion dominated and matter dominated universe be-
gan and it lasted until about 400 000 yrs when re-
combination occurred. Afterwards, the universe was
matter-dominated until the time of the matter-dark
energy density equality which occurred at approxi-
mately 109 yrs, when the transition period between
the matter dominated and dark energy dominated
universe began. Currently, our universe is governed
by dark energy, which caused its accelerated expan-
sion which started around 7.7 · 109 yrs.

We note that each case of the elliptic integral we
consider in this paper represents some model of the
universe, i.e. some stage, or middle stage in the uni-
verse’s evolution.

2. PARAMETRIZATIONS OF
FRIEDMANN EQUATIONS

In this section we consider some parametrizations
of Friedmann Eqs. (1). Let t0 denotes some fixed
moment, for example the present time. The value
of a parameter P (t) at t0 we denote by P0, i.e.
P0 = P (t0). We assume that a(t) is normalized at
t0, i.e. a0 = a(t0) = 1. In Mijajlović et al. (2019) the
following parametrization is derived:

Theorem. The first Friedmann equation with
non-zero cosmological constant Λ is equivalent to the
following equation:

ȧ2 +
8πG

3

(ρ0

a3
− ρ
)
a2

= H2
0

(
1 + Ω0

(
1
a − 1

)
+ ΩΛ0(a2 − 1)

)
.

(4)

We remind that the cosmological constant or vacuum
density is ΩΛ = Λc2/3H2. Using the above theorem
and the following form of the Friedmann equation:

Ω + Ωk + ΩΛ = 1, (5)

we obtain the following parametrizations of the Fried-
mann equation:

H2

H2
0

= ΩΛ0 + Ωk0a
−2 + Ω0a

−3 +
8πG

3H2
0

(ρ− ρ0

a3
),(6)

H2

H2
0

= ΩΛ0 + Ωk0a
−2 + Ω0

ρ

ρ0
. (7)

Let ρm denote the sum of dark matter and baryonic
rest mass density and ρr the radiation density. Since
ρm = ρm0a

−3 and ρr = ρr0a
−4, we have:

ρ = ρm + ρr and ρ = ρm0a
−3 + ρr0a

−4. (8)

From Eqs. (6) and (8) we obtain the well known
parametrization of the Friedmann equation:

H2

H2
0

= ΩΛ0 + Ωk0a
−2 + Ωm0a

−3 + Ωr0a
−4. (9)

In Mijajlović and Branković (2020) it is proven
that the form Eq. (9) of the Friedmann equation
is equivalent to the system of the Friedmann Eqs.
(1) assuming the identities in Eq. (8) as well as
p = 1

3c
2ρr. Therefore, the identity in Eq. (9) is

fundamental for analyzing cosmological parameters.
Now let:

S(a) = Ωr0 + Ωm0a+ Ωk0a
2 + ΩΛ0a

4. (10)

By Eq. (9), we have:

H0dt =
a√
S(a)

da. (11)

Integrating the identity in Eq. (11) over the interval
(0, t0) with respect to t and performing the change of
the variable t by x = a(t), as well as having in mind
that a(0) = 0 and a(t0) = 1, we obtain:

I = H(t0)t0 =

∫ 1

0

x√
S(x)

dx

=

∫ 1

0

x√
Ωr0 + Ωm0x+ Ωk0x2 + ΩΛ0x4

dx,

(12)

when the integral on the righthand side exists.
We note that t0 may represent any other moment

τ . Having that in mind, in Mijajlović and Branković
(2020) are introduced new variables x and y by:

x = 1/a(τ) and y = H2
0/H

2
τ , (13)

in order to obtain the following relations between the
cosmological parameters:

a(τ) = 1/x, Hτ = H0/
√
y,

ΩΛτ = ΩΛ0y, Ωkτ = Ωk0x
2y,

Ωmτ = Ωm0x
3y, Ωrτ = Ωr0x

4y,

y =
1

ΩΛ0 + Ωk0x2 + Ωm0x3 + Ωr0x4
.

(14)
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Suppose that H(t0) and Ωi(t0) are known. Then,
for a given value of x, we can compute by Eq. (14)
all parameters at time τ . Furthermore, using Eqs.
(9) and (14), it can be obtained (see Mijajlović and
Branković 2020):

I = H(τ)τ

=

∫ 1

0

s ds√
Ωrτ + Ωmτs+ Ωkτs2 + ΩΛτs4

.
(15)

Notice that for τ = t0 the integral I in Eq. (15)
is the same as the integral in Eq. (12). So, from now
on, we consider the integral I in Eq. (12).

Since the integral I in Eq. (12) is an elliptic inte-
gral, it is not possible in general to find its analytical
solution. In the following we will analyze in which
cases the analytical solution does exist.

2.1. Four-Component Universe

Here we consider that all Ωi0 have positive values,
what corresponds to the flat or hyperbolic universe.
Since we can not neglect any of the Ωi0 parameters,
this stage occurred around the time of domination of
dark energy over radiation, which was at τ ≈ 5 · 108

yrs (see Mijajlović and Branković 2020). Note that
this case formally suites the matter-dominated epoch
since at the evolution timeline, it is approximately in
the middle of this period.

We reduce the integral I in Eq. (12) to the
Weierstrass form by an appropriate substitution
of variables. We follow the methods presented in
D’Ambroise and Williams (2011) and D’Ambroise
(2009).

First we assume that all roots of the polynomial
S(x) = Ωr0 +Ωm0x+Ωk0x

2 +ΩΛ0x
4 are simple. Oth-

erwise, the situation is easier and it does not involve
an elliptic integral since, in that case, it is possible to
find the integral I in a closed form.
We represent S(x) by its Taylor polynomial of the
fourth degree about x0, where x0 is an arbitrary sim-
ple root of the polynomial S(x). The change of vari-
ables z = 1/(x− x0) transforms the integral I into:

∫ − 1
x0

1
(1−x0)

(x0 + 1
z )dz√

S′(x0)z3 + S′′(x0)z2

2 + S′′′(x0)z
6 + S(4)(x0)

24

.

Since x0 is a simple root of the polynomial S(x), it
follows that S′(x0) 6= 0. Having that in mind, we
substitute z = (4s − S′′(x0)/6)/S′(x0) in the previ-
ous equation, wherefrom we obtain the Weierstrass
canonical form of the elliptic integral I:

I =

∫ s2

s1

x0 + S′(x0)/ (4s− S′′(x0)/6)√
4s3 − g2s− g3

ds, (16)

where:

s1 =
S′(x0)

4(1− x0)
+
S′′(x0)

24
, (17)

s2 =
−S′(x0)

4x0
+
S′′(x0)

24
, (18)

S′(x0) = Ωm0 + 2Ωk0x0 + 4ΩΛ0x0
3, (19)

S′′(x0) = 2Ωk0 + 12ΩΛ0x0
2. (20)

Here:

g2 =
Ωk0

2

12
+ ΩΛ0Ωr0, (21)

g3 =
Ωr0Ωk0ΩΛ0

6
− Ωm0

2ΩΛ0

16
− Ωk0

3

216
, (22)

are the Weierstrass invariants of the polynomial S(x).
Since the Weierstrass function ℘(ω) = ℘(ω; g2, g3),
attached to g2 and g3, satisfies

℘′
2

= 4℘3 − g2℘ − g3 (see Prasolov and Solovyev
1997), by substitution s = ℘(ω) in Eq. (16), we infer
(see D’Ambroise and Williams 2011):

I =

∫ ℘−1(s2)

℘−1(s1)

(
x0 +

S′(x0)

4℘(ω)− S′′(x0)/6

)
dω. (23)

2.2. Three-Component Universe

Now we consider the cases when only one of four
Ωi0 is equal to zero. Depending on the obtained
integral, we will determine its Weierstrass canonical
form, or calculate it in analytical form. In all of the
following cases, it is assumed that the universe is
dominated by choosing three of four components:
radiation, matter, curvature and cosmological
constant. Therefore, in this section we have four
cases and some of them are discussed in Ryden
(2002), without entering into details of solving the
appropriate integrals.

Case Ωr0 = 0, Ωm0 > 0, Ωk0 > 0 and ΩΛ0 > 0.
This case corresponds to pressureless and open uni-
verse with the cosmological constant. Since the ra-
diation contribution is neglected, this stage occurred
around the transition time from the matter to dark
energy period, approximately at τ ≈ 1010 yrs. The
integral I in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωm0x+ Ωk0x2 + ΩΛ0x4

dx. (24)

It is obvious that x = 0 is a simple root of the poly-
nomial S(x) = Ωm0x + Ωk0x

2 + ΩΛ0x
4. Since the

integral in Eq. (24) is elliptic, following the method
presented in the previous section we obtain the Weier-
strass canonical form of the elliptic integral I:

I =

∫ s2

s1

S′(0)/ (4s− S′′(0)/6)√
4s3 − g2s− g3

ds, (25)
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where:

s1 =
S′(0)

4
+
S′′(0)

24
and s2 = +∞, (26)

as well as:

S′(0) = Ωm0 and S′′(0) = 2Ωk0. (27)

Here:

g2 =
Ωk0

2

12
, (28)

g3 = −Ωm0
2ΩΛ0

16
− Ωk0

3

216
, (29)

are the Weierstrass invariants of the polynomial
S(x) = Ωm0x+ Ωk0x

2 + ΩΛ0x
4.

Since the Weierstrass function ℘(ω) = ℘(ω; g2, g3),
attached to g2 and g3, satisfies

℘′
2

= 4℘3 − g2℘ − g3, by substitution s = ℘(ω) and
Eq. (27) in Eq. (25) we infer:

I =

∫ ℘−1(s2)

℘−1(s1)

(
Ωm0

4℘(ω)− Ωk0/3

)
dω. (30)

Case Ωm0 = 0, Ωr0 > 0, Ωk0 > 0 and ΩΛ0 > 0.
This case corresponds to the radiation dominated and
open universe with cosmological constant. Since the
matter contribution is neglected, this stage may oc-
curred in the early universe, since in some literature
(see Poulin et al. 2019, Niedermann and Sloth 2019),
it is proposed that the early dark energy may altered
the expansion of the universe at that time. However,
this theory is not concordant with the ΛCDM model,
therefore this case is not possible in the frame of the
standard cosmological model. Nevertheless, we will
consider it for completeness of our paper. The inte-
gral I in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωr0 + Ωk0x2 + ΩΛ0x4

dx. (31)

The integral in Eq. (31) is not elliptic, therefore we
can find its analytical form, which is:

I =
− ln(Ωk0 + 2

√
Ωr0
√

ΩΛ0)

2
√

ΩΛ0

+
ln(Ωk0 + 2ΩΛ0 + 2

√
ΩΛ0

√
Ωr0 + Ωk0 + ΩΛ0)

2
√

ΩΛ0

.

(32)
By Eq. (5) we have Ωr0+Ωk0+ΩΛ0 = 1. Substituting
in Eq. (32), we have:

I =
1

2
√

ΩΛ0

ln

(
Ωk0 + 2ΩΛ0 + 2

√
ΩΛ0

Ωk0 + 2
√

ΩΛ0Ωr0

)
. (33)

Furthermore, taking for example Ωk0 = 1−Ωr0−ΩΛ0

in Eq. (33), we finally obtain:

I =
1

2
√

ΩΛ0

ln

(
1 +
√

ΩΛ0 +
√

Ωr0

1−
√

ΩΛ0 +
√

Ωr0

)
. (34)

Case Ωk0 = 0, Ωr0 > 0, Ωm0 > 0 and ΩΛ0 > 0.
For this model of the universe, in Ryden (2002), the
term Benchmark model is used. This case corre-
sponds to the flat universe with a mixture of matter,
radiation and with the cosmological constant, which,
according to the current probes, most likely corre-
sponds to our universe. Like in the previous section,
this stage occurred in the matter-dominated epoch,
around the time of domination of dark energy over
radiation, which was at τ ≈ 5 · 108 yrs. The integral
I in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωr0 + Ωm0x+ ΩΛ0x4

dx. (35)

Since the integral in Eq. (35) is elliptic, following the
method in the general case, we obtain the Weierstrass
form of the elliptic integral I:

I =

∫ s2

s1

x0 + S′(x0)/ (4s− S′′(x0)/6)√
4s3 − g2s− g3

ds, (36)

where:

s1 =
S′(x0)

4(1− x0)
+
S′′(x0)

24
, (37)

s2 =
−S′(x0)

4x0
+
S′′(x0)

24
, (38)

S′(x0) = Ωm0 + 4ΩΛ0x0
3, (39)

S′′(x0) = 12ΩΛ0x0
2. (40)

Here:

g2 = ΩΛ0Ωr0, (41)

g3 = −Ωm0
2ΩΛ0

16
, (42)

are the Weierstrass invariants of the polynomial
S(x) = Ωr0 + Ωm0x+ ΩΛ0x

4.
Since the Weierstrass function ℘(ω) = ℘(ω; g2, g3),
attached to g2 and g3, satisfies

℘′
2

= 4℘3−g2℘−g3, by substitution s = ℘(ω) in Eq.
(36) we infer:

I =

∫ ℘−1(s2)

℘−1(s1)

(
x0 +

S′(x0)

4℘(ω)− S′′(x0)/6

)
dω. (43)

Case ΩΛ0 = 0, Ωr0 > 0, Ωm0 > 0 and Ωk0 > 0.
This case corresponds to the open universe with mix-
ture of matter and radiation and without the cosmo-
logical constant. Since the cosmological constant con-
tribution is neglected, this stage may occurred in the
radiation-dominated epoch, or the matter-dominated
epoch, or in the transition period between these two
epochs, but definitely before domination of the dark
energy over radiation. The integral I in Eq. (12) has
the following form:

I =

∫ 1

0

x√
Ωr0 + Ωm0x+ Ωk0x2

dx. (44)
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The integral in Eq. (44) is not elliptic, therefore we
can find its closed form, which is:

I =
−2
√

Ωr0
√

Ωk0 + 2
√

Ωk0

√
Ωr0 + Ωm0 + Ωk0

2Ωk0
3/2

+
Ωm0 ln(Ωm0 + 2

√
Ωr0
√

Ωk0)

2Ωk0
3/2

−

Ωm0 ln(Ωm0 + 2Ωk0 + 2
√

Ωk0

√
Ωr0 + Ωm0 + Ωk0)

2Ωk0
3/2

.

(45)
By Eq. (5), we have Ωr0 + Ωm0 + Ωk0 = 1. Substi-
tuting in Eq. (45), we have:

I =
1−
√

Ωr0
Ωk0

+
Ωm0

2Ωk0
3/2

ln

(
Ωm0 + 2

√
Ωr0Ωk0

Ωm0 + 2Ωk0 + 2
√

Ωk0

)
.

(46)

Furthermore, taking for example Ωm0 = 1−Ωk0−Ωr0
in Eq. (46), we finally obtain:

I =
1−
√

Ωr0
Ωk0

+
1− Ωk0 − Ωr0

2Ωk0
3/2

ln

(
1−
√

Ωk0 +
√

Ωr0

1 +
√

Ωk0 +
√

Ωr0

)
.

(47)

2.3. Two-Component Universe

Here we consider that two of four constants Ωi0
are equal to 0. Therefore, we have six following
cases. In all of them, it is assumed that the universe
is dominated by two components - the cosmological
constant and matter, matter and curvature, matter
and radiation, curvature and the cosmological
constant, respectively. Some cases in this section
are also analyzed in Ryden (2002), where solutions
are mostly obtained by some approximations, or
are including a new parameter, while our solutions
are exact and are depending only on the density
parameters.

Case Ωr0 = 0, Ωk0 = 0, Ωm0 > 0 and ΩΛ0 > 0.
This case corresponds to a pressureless and flat uni-
verse with the cosmological constant. Since radiation
contribution is neglected, we can say that this is the
current stage of evolution of our universe. Note that
this period occurred not before the matter-dark en-
ergy transition. The integral I in Eq. (12) has the
following form:

I =

∫ 1

0

x√
Ωm0x+ ΩΛ0x4

dx

=
2

3
√

ΩΛ0

ln

(√
ΩΛ0 +

√
ΩΛ0 + Ωm0√

Ωm0

)
.

(48)

If we take Ωm0 = Ω0, by Eq. (5) (or setting t = t0
in Eq. (9)) we have Ω0 + ΩΛ0 = 1. Therefore, the

first Carroll-Press-Turner formula (see Carroll et al.
1992) is obtained:

I =
2

3

1√
1− Ω0

ln

(
1 +
√

1− Ω0√
Ω0

)
. (49)

Case Ωr0 = 0, ΩΛ0 = 0, Ωm0 > 0 and, Ωk0 > 0.
This case corresponds to a pressureless and open
universe without the cosmological constant. At this
stage, the universe is matter dominated. The integral
I in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωm0x+ Ωk0x2

dx

=
2
√

Ωk0

√
Ωm0 + Ωk0 + Ωm0 ln(Ωm0Ωk0)

2Ωk0
3/2

−Ωm0 ln(Ωk0 +
√

Ωk0

√
Ωm0 + Ωk0)

Ωk0
3/2

.

(50)

If we take Ωm0 = Ω0, by Eq. (5) we have Ω0 + Ωk0 =
1. Therefore, a variant of the second Carroll-Press-
Turner formula (see Carroll et al. 1992) is obtained:

I =
1

1− Ω0
− Ω0

(1− Ω0)3/2
sinh−1

(√
−1 + Ω−1

0

)
=

1

1− Ω0
− Ω0

(1− Ω0)3/2
ln

(
1 +
√

1− Ω0√
Ω0

)
.

(51)

Case ΩΛ0 = 0, Ωk0 = 0, Ωm0 > 0 and Ωr0>0.
This case corresponds to a flat universe with mixture
of matter and radiation and without the cosmological
constant. Since the cosmological constant contribu-
tion is neglected, the situation is similar to the fourth
case in the previous section, i.e. this stage may oc-
curred in the radiation-dominated epoch, or matter-
dominated epoch, but definitely before the domina-
tion of dark energy over radiation. The integral I in
Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωr0 + Ωm0x

dx

=
4Ωr0

3/2

3Ωm0
2 +

2 (Ωm0 − 2Ωr0)
√

Ωm0 + Ωr0

3Ωm0
2 .

(52)

If we take Ωm0 = Ω0, by Eq. (5) we have Ω0 + Ωr0 =
1. Cosequently, we obtain:

I =
4

3Ω0
2

((
1− Ω0

3/2
)
− 1
)

+
2

Ω0
. (53)

Case Ωr0 = 0, Ωm0 = 0, Ωk0 > 0 and ΩΛ0 > 0.
This case corresponds to the open universe with the
cosmological constant. Since contributions of matter
and radiation are neglected, the universe may be in
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this stage in the future. The integral I in Eq. (12)
has the following form:

I =

∫ 1

0

x√
Ωk0x2 + ΩΛ0x4

dx

=
1√
ΩΛ0

ln

(√
ΩΛ0 +

√
Ωk0 + ΩΛ0√

Ωk0

)
.

(54)

By Eq. (5) we have Ωk0 + ΩΛ0 = 1, and we obtain
the expression:

I =
1√

1− Ωk0

ln

(
1 +
√

1− Ωk0√
Ωk0

)
, (55)

which is quite similar to the Carroll-Press-Turner for-
mula (see Carroll et al. 1992) in the first mentioned
case (Ωr0 = 0 and Ωk0 = 0).

Case Ωk0 = 0, Ωm0 = 0, Ωr0 > 0 and ΩΛ0 > 0.
This case corresponds to a radiation dominated and
flat universe with the cosmological constant. Since
the matter contribution is neglected, the situation is
similar to the second case in the previous section, i.e.
this stage may occurred in the early universe, since, in
some literature, it is stated that the early dark energy
may altered the expansion of the universe at that
time (see Poulin et al. 2019, Niedermann and Sloth
2019). However, this theory is not concordant with
the ΛCDM model, therefore, this case is not possible
in the frame of the standard cosmological model, but
we will consider it for the sake of completeness of our
paper. The integral I in Eq. (12) has the following
form:

I =

∫ 1

0

x√
Ωr0 + ΩΛ0x4

dx

=
1

2
√

ΩΛ0

ln

(√
ΩΛ0 +

√
Ωr0 + ΩΛ0√

Ωr0

)
.

(56)

By Eq. (5) we have ΩΛ0 +Ωr0 = 1, and so we obtain:

I =
1

2
√

1− Ωr0
ln

(
1 +
√

1− Ωr0√
Ωr0

)
. (57)

Case ΩΛ0 = 0, Ωm0 = 0, Ωr0 > 0 and Ωk0 > 0.
This case corresponds to a radiation dominated and
open universe without the cosmological constant.
The integral I in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωr0 + Ωk0x2

dx

=

√
Ωr0 + Ωk0 −

√
Ωr0

Ωk0
.

(58)

By Eq. (5) we have Ωr0 + Ωk0 = 1, and so we obtain:

I =
1

1 +
√

Ωr0
. (59)

2.4. Single-Component Universe

Finally, we assume that three of four constants Ωi0
are equal to 0. Therefore, we have four cases, which
are the easiest ones to deal with so far. In all of them,
it is assumed that the universe is dominated only by
one component - the cosmological constant, matter,
curvature and radiation, respectively. The cases in
this section are also analyzed in Ryden (2002), where
the solutions are mostly obtained in terms of the
redshift as well as the equation of state, while our so-
lutions are depending only on the density parameters.

Case Ωr0 = 0, Ωm0 = 0, Ωk0 = 0 and ΩΛ0 > 0.
This case corresponds to the flat universe with the
cosmological constant, which is known as the de Sit-
ter universe. The integral I in Eq. (12) has the fol-
lowing form:

I =

∫ 1

0

x√
ΩΛ0x4

dx = +∞, (60)

wherefrom follows:

I = H0t0 = +∞. (61)

Since H0 is the Hubble constant, we conclude that
t0 = +∞, therefore, this case might happen in the
far future.

Case Ωr0 = 0, Ωk0 = 0, ΩΛ0 = 0 and Ωm0 > 0.
This case corresponds to a matter-dominated, pres-
sureless and flat universe without the cosmological
constant, which is known as the Einstein-de Sitter
universe. The integral I in Eq. (12) has the follow-
ing form:

I =

∫ 1

0

x√
Ωm0x

dx =
2

3
√

Ωm0

, (62)

wherefrom we obtain:

I =
2

3
√

Ωm0

. (63)

Case Ωr0 = 0, Ωm0 = 0, ΩΛ0 = 0 and Ωk0 > 0.
This case corresponds to an open and empty universe
without the cosmological constant, which is known as
the Milne universe (see Ryden 2002). The integral I
in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωk0x2

dx =
1√
Ωk0

, (64)

wherefrom we obtain:

I =
1√
Ωk0

. (65)

It is interesting to consider an ”anti-Milne” universe
with Ωk0 < 0. Since Ωk0 < 0, the function in the
denominator of the integrand function of the integral
I in Eq. (64) is not defined, therefore the integral I
in this case does not exist.
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Table 1: All Weierstrass and analytical forms for different combinations of cosmological parameters.

The analytical solutions do not exist for the first three cases in the Table.

Combination of the cosmological parameters Weierstrass/analytical form of cosmic time formula

Ωr0 > 0, Ωm0 > 0, Ωk0 > 0, ΩΛ0 > 0 I =

∫ ℘−1(s2)

℘−1(s1)

(
x0 +

S′(x0)

4℘(ω)− S′′(x0)/6

)
dω

Ωr0 = 0, Ωm0 > 0, Ωk0 > 0, ΩΛ0 > 0 I =

∫ ℘−1(s2)

℘−1(s1)

(
Ωm0

4℘(ω)− Ωk0/3

)
dω

Ωr0 > 0, Ωm0 > 0, Ωk0 = 0, ΩΛ0 > 0 I =

∫ ℘−1(s2)

℘−1(s1)

(
x0 +

S′(x0)

4℘(ω)− S′′(x0)/6

)
dω

Ωr0 > 0, Ωm0 = 0, Ωk0 > 0, ΩΛ0 > 0 I =
1

2
√

ΩΛ0

ln

(
1 +
√

ΩΛ0 +
√

Ωr0

1−
√

ΩΛ0 +
√

Ωr0

)

Ωr0 > 0, Ωm0 > 0, Ωk0 > 0, ΩΛ0 = 0 I =
1−
√

Ωr0
Ωk0

+
1− Ωk0 − Ωr0

2Ωk0
3/2

ln

(
1−
√

Ωk0 +
√

Ωr0

1 +
√

Ωk0 +
√

Ωr0

)

Ωr0 = 0, Ωm0 > 0, Ωk0 = 0, ΩΛ0 > 0 I =
2

3

1√
1− Ω0

ln

(
1 +
√

1− Ω0√
Ω0

)
, Ω0 = Ωm0

Ωr0 = 0, Ωm0 > 0, Ωk0 > 0, ΩΛ0 = 0 I =
1

1− Ω0
− Ω0

(1− Ω0)3/2
ln

(
1 +
√

1− Ω0√
Ω0

)
, Ω0 = Ωm0

Ωr0 > 0, Ωm0 > 0, Ωk0 = 0, ΩΛ0 = 0 I =
4

3Ω0
2

((
1− Ω0

3/2
)
− 1
)

+
2

Ω0
, Ω0 = Ωm0

Ωr0 = 0, Ωm0 = 0, Ωk0 > 0, ΩΛ0 > 0 I =
1√

1− Ωk0

ln

(
1 +
√

1− Ωk0√
Ωk0

)

Ωr0 > 0, Ωm0 = 0, Ωk0 = 0, ΩΛ0 > 0 I =
1

2
√

1− Ωr0
ln

(
1 +
√

1− Ωr0√
Ωr0

)

Ωr0 > 0, Ωm0 = 0, Ωk0 > 0, ΩΛ0 = 0 I =
1

1 +
√

Ωr0

Ωr0 = 0, Ωm0 = 0, Ωk0 = 0, ΩΛ0 > 0 I = +∞

Ωr0 = 0, Ωm0 > 0, Ωk0 = 0, ΩΛ0 = 0 I =
2

3
√

Ωm0

Ωr0 = 0, Ωm0 = 0, Ωk0 > 0, ΩΛ0 = 0 I =
1√
Ωk0

Ωr0 > 0, Ωm0 = 0, Ωk0 = 0, ΩΛ0 = 0 I =
1

2
√

Ωr0
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Case Ωm0 = 0, Ωk0 = 0, ΩΛ0 = 0 and Ωr0 > 0.
This case corresponds to a radiation dominated and
flat universe without the cosmological constant. The
integral I in Eq. (12) has the following form:

I =

∫ 1

0

x√
Ωr0

dx =
1

2
√

Ωr0
, (66)

wherefrom we obtain:

I =
1

2
√

Ωr0
. (67)

3. CONCLUSION

The Weierstrass canonical form of the cosmic time
formula is obtained in the case of four-component uni-
verse obeying the ΛCDM model, as well as in two
cases for the three-component universe, with Ωr0 = 0
and Ωk0 = 0. In all other cases the analytical solu-
tions of the integral I are obtained. All Weierstrass
forms, as well as all possible cases that concern ana-
lytical solution of the integral I for different combina-
tions of the cosmological parameters are presented in
Table 1. We note that every choice of dominant com-
ponents in the universe has its physical interpreta-
tion, which is concordant with the appropriate stage
in the universe’s evolution. Having that in mind, we
improved the cases that are discussed in various lit-
erature and united them with the new ones that are
presented in this paper in order to obtain all phases
of the universe, from its beginning. Also, we believe
that we found new analytical solutions for the three-
component universe with ΩΛ0 = 0 and for the two
component universe with ΩΛ0 = 0, Ωk0 = 0, which
may correspond to the early stage in the evolution of
the universe.
We believe that this paper is useful not only for im-
proving and summarizing already known results with
two new analytical solutions, but also for observing
evolution of the universe from perspective of theory
of elliptic functions, which turned out to be quite
fruitful when it comes to applications in cosmology.
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KOSMIQKO VREME ZA UNIVERZUM KOJI
SE SASTOJI OD VIXE KOMPONENATA
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Originalni nauqni rad

U sluqaju ΛCDM modela univerzuma ko-
ji se sastoji od qetiri komponente, kao i u
nekoliko sluqajeva univerzuma koji se sastoji
od tri komponente, odredili smo Vajerxtra-

sovu kanonsku formu za formulu koja odre�uje
kosmiqko vreme. U svim drugim sluqajevima,
diskutovana su analitiqka rexeǌa za formu-
lu koja odre�uje kosmiqko vreme.
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