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SUMMARY: For simple electromagnetic models of a rod and a clock, a change
of shape of a rod and of the rate of clock when they are set in uniform motion
is calculated exactly, employing the correct equation of motion of a charged parti-
cle in electromagnetic field and the universal boostability assumption. Thus it is
demonstrated that, for the simple system considered, the length contraction and
clock retardation can be interpreted as dynamical cause-and-effect phenomena, and
not as kinematical effects as usually construed in conventional presentations of Spe-
cial Relativity. It is argued that the perspective relativistic change of an object
(corresponding to observations from two inertial frames), while certainly being an
acausal effect, has a dynamical content in the sense that it is tantamount to an actual
dynamical change of the object in one frame.

Key words. relativistic processes

1. INTRODUCTION

Recently, I attempted to clarify some basic
concepts and results of Einstein’s Special Relativ-
ity theory (Redzi¢ 2008), noting the paramount im-
portance of what I called ‘the universal boostability
assumption’ for construction of the theory. The fun-
damental assumption reads: ‘It is possible to set a
measuring rod or clock in a uniform motion or bring
it back to a permanent rest without changing the
rest length of the rod or the rest rate of the clock,
i.e. it is possible to boost them in such a way that
they remain standards of length and time in their
rest frame, regardless of the constitution of these
objects.” T pointed out that Einstein (1905) used
a stronger assumption in his original foundation of
Special Relativity, namely that the measuring capac-
ity of a measuring rod or clock remains untouched
under arbitrary boosts; I argued that the stronger as-

sumption is unwarranted. Particularly, I analysed in
detail the well-known relation for relativistic length

contraction,
L, =151 —v2/c2, (1)

relating lengths [, and [ of one and the same rod
as measured in two inertial frames S and S’ in stan-
dard configuration (S’ is uniformly moving at speed
v along the common positive z, z’-axes, and the y-
and z-axis of S are parallel to the 3/~ and 2’-axis of
S"), respectively; S’ is the rest frame of the rod, and
S is the lab frame, with respect to which the rod is
in uniform motion along its length at speed v. I re-
called that Einstein (1905) stated that if the rod to
be measured is at rest in S, then, ‘in accordance with
the principle of relativity’, its length as measured in
S, lp, must be equal to I,

lO = l6 ’ (2)
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employing the same measuring rod as in the earlier
measurements. Egs. (1) and (2) imply

l, =lo/1—0v2/c?. (3)

Thus, according to Einstein, a rod initially at rest in
an inertial frame, after a constant velocity v is im-
parted to it in an arbitrary way so that the rod moves
freely and uniformly along its length is contracted
(its length is reduced), all with respect to that frame,
as expressed by Eq. (3). However, I argued, noting
the relevance of rest properties—preserving accelera-
tions, that all one may infer on the basis of Special
Relativity is that, in general, Eq. (1) always applies,
whereas Eq. (2) and thus Eq. (3) do not neces-
sarily apply. While length contraction and clock re-
tardation are generally regarded, starting from Ein-
stein, as purely kinematical results of Special Rel-
ativity, obtained directly from the Lorentz trans-
formations, I pointed out that Eq. (3) (which in-
volves rest length—preserving accelerations), encap-
sulates the actual dynamical change of the rod in

the S frame due to the action of some forces on the
rod in that frame. Moreover, even Eq. (1), which ex-

presses the relativistic perspective change of the rod
(involving measurements from two different frames S
and S” and, clearly, involving no forces acting on the
rod by a mere transition to another inertial frame)
has a natural dynamical content.

In a recent paper (Redzi¢ 2014a), I contin-
ued my attempts to clarify Special Relativity. To
avoid possible terminological and conceptual mud-
dle, I proposed to call the contents of Eqgs. (1) and
(3), the relativistic length reduction and the rela-
tivistic FitzGerald—Lorentz contraction, respectively.
I noted what I consider to be fallacies in the existing
literature devoted to teaching of relativity, particu-
larly the contention that in the perspective change of
an object in Special Relativity (corresponding to ob-
servations from two different inertial frames), there
is no change in the object, it is only the reference
frame that is changed from S to S’. (More pre-
cisely, some authors explain the differences in ob-
servations between two inertial frames as a purely
kinematical effect due to the relativity of simultane-
ity, ‘a consequence of our way of regarding things’
(cf, e.g., Born 1965, Franklin 2010), while other au-
thors (cf, e.g., Feinberg 1975, Miller 2010) argue that
the differences are basically of a dynamical origin,
due to a dynamical change of standards of length
and time when transferring the standards between
the frames S and S’.) On the one hand, the rela-
tivistic perspective change of an object is certainly
an acausal phenomenon (there is no change in the
object in the standard physicists’ sense of the word,
referring to different properties of the object with
time in one frame); on the other hand, as is pointed
out by Redzié¢ (2008, 2014a), there is a dynamical
content of the phenomenon which seems to be some-
what neglected in the literature.

The purpose of the present note is to illustrate
deliberations presented by Redzi¢ (2008, 2014a) with
simple examples, using elementary models of stan-
dards of length and time. Since measuring rods and
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clocks are physical devices and are subject to the
laws of physics in accordance with which they are
constructed, one must employ physical laws whose
validity is well confirmed in an inertial frame (lab-
oratory). The good candidates are Maxwell’s equa-
tions and the Lorentz force expression for the force
acting on a charge ¢* in an electromagnetic field,

F, =¢'E+qvxB, (4)

where v is the instantaneous velocity of the charge,
E is the electric field and B is the magnetic flux den-
sity. This has to be combined with the equation of
motion of charge ¢* in electromagnetic field

d m*v
dt \ \/1—v2/c?

where m* is the charge mass and c is the speed of
light in vacuo; the last equation fits the experimental
facts if the additional independent assumption that
m* is time-independent is introduced (cf, e.g. Redzié¢
et al. 2011). For simple models of a rod and clock,
operating on the basis of Maxwell’s equations and
Eq. (5), it will be shown that when the rod and
the clock are set in uniform motion with respect to
the laboratory frame, they exhibit the FitzGerald—
Lorentz contraction and the Larmor clock retarda-
tion in the lab, assuming rest properties—preserving
accelerations. Thus, for the rod and clock under
consideration, a dynamical content of the effects is
clearly revealed.

Dynamical analyses of length contraction and
clock retardation in the spirit of the present one,
based on electromagnetic laws, have been published
occasionally (Bell 1976, Jefimenko 1996, 1998, Miller
2010). Unfortunately, models proposed in those pa-
pers either cannot be solved analytically (Bell 1976),
or introduce for clocks, tacitly (Miller 2010) or ex-
plicitly (Jefimenko 1996, 1998), a confusing assump-
tion that the velocity of moving clock is much larger
than the maximum velocity occurring in its clock-
work; moreover, the desired conclusion is reached due
to the additional approximation of small oscillations.
Thus they are not very convincing. Another point is
that some authors (Bell 1976, Miller 2010) attempt
a constructive dynamical approach to Special Rela-
tivity, what seems to be an impossible mission, apart
from the fact that Maxwell’s theory cannot account
for the empirical stability of solid matter. Namely,
if one starts from known and conjectured good laws
of physics in any one inertial frame, one can learn
that if a constant velocity is imparted to a rod and
a clock, the moving rod is contracted and the mov-
ing clock runs slower. However, the rod contraction
and clock retardation are the necessary but not suffi-
cient conditions for the Lorentz transformations: to
construct another inertial frame and to derive the
Lorentz transformations, one has to introduce, at one
place or another, Einstein’s two postulates of Special
Relativity aided with the universal boostability as-
sumption. (Rod contraction and clock retardation in
the S frame imply that one clock—two way speed of
light is ¢ also in the S’ frame but this does not suffice

):q”‘E—l—q*va7 (5)
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to ‘spread time over space’ in S’.) Moreover, only on
the basis of Einstein’s principle approach one knows
that candidates for good physical laws in one iner-
tial frame must be (or can be made to be) Lorentz—
covariant. (Note that despite repeated statements in
the literature (Mgller 1972, Feinberg 1975, Rindler
1991), Lorentz—covariance of Maxwell’s equations is
not fulfilled automatically, as pointed out e.g. in
Rosser 1964, Redzi¢ 2014b.). Thus, it appears that
the laws of physics in any one reference frame can-
not ‘account for all physical phenomena, including
observations of moving observers,’ contrary to Bell’s
(1976) claim.!

On the other hand, the standard ‘kinematical’
derivation of rod contraction and clock retardation
(Einstein 1905) conceals the fundamental fact that
rods and clocks in hand must be relativistically valid,
that is, they have to represent physical apparatuses
or devices operating in accordance with the laws of
physics which are (or can be made to be) Lorentz—
covariant. In the standard approach, unexpected
qualities of rods and clocks in motion appear as a
dry consequence of Lorentz transformations, which
are achieved from logically entangled postulates, and
which deal with rods and clocks in abstracto, re-
garded as primitive entities (cf Redzié (2008), p 199).
However, paraphrasing Mgller (1955), one would like
to see—at least in a simple model—that rod contrac-

tion and clock retardation indeed follow from the
structure of a physical system and the dynamical
laws governing it, considered in one frame only (cf
also Redzi¢ 2006). Also, a dynamical content of the
relativistic perspective change in an object, and the
universal boostability assumption, seem to be either
neglected or misrepresented in the literature. Thus
the present note, which aims to complement the stan-
dard principle approach to Special Relativity by pro-
viding simple illustrations of its dynamical contents,
could perhaps be of some interest.

2. DIRECT CALCULATION OF
LENGTH CONTRACTION

Firstly, as a relativistically valid standard of
length I discuss an elementary model of solid body
proposed by Sorensen (1995).

2.1. Rod at rest

Consider four equal charges g of the same sign,
at rest in the S frame (laboratory), placed at the
vertices of a square ABCD of a side a (A is the
bottom left hand vertex, and the vertices B, C' and
D run counterclockwise). Employing the Coulomb
law, one finds that placing a charge of opposite sign,

ge = —q(142+/2)/4, at the centre of the square, the
resultant of the forces acting on each charge is zero.
Thus, the system of the five charges is in the elec-
trostatic equilibrium. From Earnshaw’s theorem, we
know that the equilibrium is unstable (cf, e.g. Tamm
1979). Clearly, some other forces are necessary to
ensure the stability of the system, in addition to the
electromagnetic ones.

One can verify that for five point charges
q,4,49,q and gq., the only static equilibrium shape is
a square and not a rectangle or any other shape, as
Sorensen (1995) pointed out. Note that equilibrium
conditions fix only the shape of the equilibrium con-
figuration and not its size (the side of the square can
be arbitrary). Incidentally, the electrostatic poten-
tial energy of the static configuration is always zero,
regardless of the value of a.

2.2. Rod in uniform motion

Assume now that the considered system has
been accelerated, starting from rest until reaching a
steady velocity vg = vo&, so that all five charges are
uniformly moving in the plane of the initial square
(the zy plane) parallel to the x axis; take that vg
is perpendicular to the sides AD and BC of the
square. Assume also that the acceleration was gen-
tle, in the sense that, after all transient effects have
died out, the system of five uniformly moving charges
is again in a stationary (time-independent) configu-
ration. The question arises, is there such a moving
configuration at all.

Now we have to take into account that at the
location of each charge, in addition to the electric
field, there will also be a magnetic field, since the re-
maining charges are in motion. The E and B fields
of a point charge ¢ moving with constant velocity v
were first obtained by Oliver Heaviside (1888, 1889)
and the B field was rederived by J J Thomson (1889)
(cf Jefimenko (1994) and references therein), long be-
fore the advent of Special Relativity. The electric
field is radial but not spherically symmetrical (con-
trary to the electrostatic field of ¢), and is given by

e = A% 1=/
" Ameg 3 (1 — v2sin0/c2)3/2

(6)

where 7 is the position vector of a field point with
respect to the instantaneous (at the same instant t)
position of ¢, 6 is the angle between r and the veloc-
ity vo, and ¢ = 1/eguo. Recall that throughout the
relativity paper, Einstein (1905) used the same sym-
bol (V) for the speed of light in vacuo and the speed
of electromagnetic waves in vacuo (V = 1/,/€oto),
linking thus Special Relativity with Maxwell’s theory

IMiller (2010) criticizes Bell’s anticipation of the equation of motion Eq. (5) as a limitation of Bell’s (1976) approach. In
his own constructive dynamical attempt to derive Special Relativity, Miller avoided the use of Eq. (5). Instead, he tacitly
postulated that Maxwell’s equations apply not only in the original rest frame of a physical system, but also in its final rest
frame, cf the argument leading to Eq. (6) in Miller (2010). Thus, Miller’s approach is at best a combination of a constructive

dynamical, and the principle approaches.
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(cf Redzié (2008), p 197). The magnetic flux density

is
B(r,t) = eouovo x E(r,t). (7)

Eq. (7) and the Lorentz force expression Eq.
(4) imply that the total electromagnetic force on each
of the five charges of our uniformly moving system
vanishes if and only if the E field vanishes at the lo-
cation of each charge. The symmetry suggests that
the equilibrium configuration we are looking for has
a rectangular shape with ¢. at the centre. Therefore,
we assume that the stationary configuration is a uni-
formly moving rectangle ABC' D, with sides AD and
BC perpendicular to vy. Denote lengths of the sides
AB (parallel to vy) and AD (transverse to vg) by b
and d, respectively. Consider equilibrium conditions
at the vertex A. A simple analysis reveals that the
condition that the F field at A has no component in
the direction perpendicular to the diagonal AC, and
along AC, implies that:

d b
2 21— v3/c?)3/2” ®

and:

LS S

b d(l—vE/c?)3/?

- ks o)
VA2 + 021 — v3d?/c2(d? + b2)]3/2

respectively. Eq. (8) gives

b=d\/1—v¢/c. (10)

It is easy to check that, with this value of b, Eq.
(9) is satisfied identically. As can be seen, Eq.
(10) is the necessary and sufficient condition for the
moving rectangular configuration ABCD to be the
equilibrium one, i.e. the stress free state. Inciden-
tally, Sorensen assumed relation (10) from the out-
set. Thus he did not demonstrate that ‘to be in equi-
librium [...] the five charges must have this rectangu-
lar shape, shortened in the dimension of the direction
of motion by the Lorentz contraction as compared
to the transverse direction,’” contrary to his claim in
Sorensen (1995). Instead, he proved only that Eq.
(10) is a sufficient condition for the moving rectan-
gle to be in equilibrium.

Note that the character of forces governing the
equilibrium is such that equilibrium conditions de-
termine the shape of the configuration and not its
size (d is arbitrary), analogously to the electrostatic
case. Thus, accelerating square of side a until reach-
ing the steady velocity vp, one can arrive at a mov-
ing stationary rectangle with sides a\/1 — v2/c? and
a in the direction of motion and transverse to it, re-
spectively, but also with sides dy/1 —v3/c? and d,
where d # a. Clearly, only in the first case acceler-
ation was rest length—preserving. Namely, according
to Special Relativity, observing the moving rectan-
gles in equilibrium from their rest frame S’, they will
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be squares in equilibrium of sides a and d # a, re-
spectively, since Maxwell’s equations can be made to
be Lorentz—covariant, and, consequently, equation of
motion Eq. (5) with m* = const can be Lorentz—-
covariant too (Redzi¢ et al. 2011). Thus Eq. (1)
always applies, whereas Egs. (2) and (3) do not nec-
essarily apply, as is pointed out by Redzi¢ (2008).
As a historical aside, recall that Lorentz ar-
gued long ago that if to a system Y’ of particles in
the equilibrium configuration at rest relative to the
ether ‘the velocity v = wv& is imparted, it will of
itself change into the system ¥’ which is got from
Y/ by the deformation (/1 —v2/¢2,1,1) (Lorentz et
al. (1952), pp 5-7, 21-23, 27-28, cf also Redzié
(2014a), pp 60-1). However, Lorentz was wrong
here; the change ¥ — X can also be effectuated

by the transformation (I4/1 — v2/c?,1), where [ # 1,
as the present Section 2 reveals. (From vdl/dv = 0,
Lorentz deduced that dl/dv = 0, [ = const, and con-
cluded: ‘The value of the constant must be unity,
because we already know that, for v = 0, [ = 1’
(Lorentz et al. (1952), p 27). But, all one can deduce
from vdl/dv = 0 is that dl/dv = 0 for v # 0! Thus, I
may have arbitrary (constant) value for v # 0.).

3. DIRECT CALCULATION OF
CLOCK RETARDATION

The same equilibrium system of five charges,
providing the standard of length in the preceding
section, will be employed as an exact and yet simple
model of a relativistically valid clock.

3.1. Clock at rest

Let four identical charges ¢ be now fixed at
the vertices of the square ABCD of side a at rest
in the lab frame S. Denote the axis perpendicular
to the plane of the square which passes through its
centre as the z axis; choose the origin at the centre
and the x and y axes parallel to the sides AB and
AD of the square, respectively. Remove the charge
qc from its central equilibrium position to the point
on the positive z axis with z = A and release it with
zero initial velocity to move under the action of the
electrostatic field of the remaining four charges.

The exact equation of motion of the charge ¢,
in the electrostatic field is

d v
m% (ﬁ = ’U2/CQ> =q.F, (11)

where the mass m of ¢. is assumed to be time-
independent, as is pointed out in Introduction; the
time parameter ¢ in the S frame is interpreted in the
standard way employing propagation of light signals
i vacuo as time keeper, assuming that Einstein’s
clock synchronization is a valid procedure (Mgller
1972). Eq. (11) and identity:
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d v o d 1
”'dt<m>zcdt<m>’

imply that:

d 1
2
me*— | ———— ] =q¢.F-v. 13
dt( %1—1;2/02) q (13)
Specifying to our problem, F is the electrostatic field
given by:

KkdqzZz
(22 + a2/2)3/2°
where k = 1/4meg, and v = v, 2, since the motion is

along the z axis. Using Eqgs. (11), (13) and (14) one
obtains?

E(0,0,2) = (14)

dv, _ %
dt m

1 ﬁ 3/2 Kk4qz
c? (224 a?/2)3/2"

Obviously, the charge g. does not perform a simple
harmonic motion. However, noting that g.q < 0, and
also that at t = 0, z = A, v, = 0, a simple analysis
reveals that the solution of Eq. (15), satisfying these
initial conditions, is a periodic function of ¢,

zr = f(t); (16)
subscript R serves as a reminder that the square is
at rest. Incidentally, the conclusion applies for all
values of g, satisfying g.q < 0 and not only for the
one employed in Section 2. Denote the period of
that function by Ty; the period comprises continu-
ous changes of position of the charge g. from z = A
to z = —A and vice versa. Clearly, the square and
the charge may be considered as a simple model of a
clock, and can be used for measuring time in terms
of the number of periods 7. Namely, as Jefimenko
(1996, 1998) pointed out, ‘as a physical entity, time is
defined in terms of specific measurement procedures,
which for the purpose of the present discussion may
be described simply as “observing the rate of the
clocks.”’

(15)

3.2. Clock in uniform motion

Assume now that the same clock is set in uni-
form motion with constant velocity vy = vo& along
the positive x axis, so as to be relativistically valid,
i.e. toserve as an identical standard of time also for a
co-moving inertial observer. From the preceding dis-
cussion it follows that now four identical charges ¢
have to be fixed in their rest length—preserving equi-
librium positions, that is at the vertices of the mov-

ing rectangle ABC'D with sides AB = ay/1 — v3/c?

and AD = a. Remove the charge ¢. co-moving with
the rectangle from its central equilibrium position,
to the co-moving point on the axis of the rectangle
with z = A, and release it with initial velocity vy to
move under the action of the electromagnetic field of
the remaining four charges.

The exact equation of motion of the charge g,
in the field, obtained from Eq. (5) assuming that m
is constant, reads:

>=ch+qcv><B; (17)

d v
me (2
dt <\/1 —v?/c?

obviously, Eq. (13) applies in this case too. Using
Eq. (6), after a somewhat cumbersome but in every
step simple calculation, one finds that the electric
field on the co-moving axis (which is perpendicular to
the plane of the moving rectangle ABC' D and passes
through its centre) is:

_ kdqzZz 1 B
(22 +a2/2)%2 /T —0E/c2

For the magnetic flux density at the same point on
the co-moving axis, using Eq. (7), one finds:

E.2. (18)

Vo
c2

o Kkdqzy 1

2 (22 + a2/2)3/2 W |
19
Using Eqgs. (17), (13), (18) and (19), and tak-
ing into account initial conditions (at the time ¢ = 0,
the charge g, is at the point z = A on the co-moving
axis, and components of its velocity are v, = vy,
vy, = v, = 0), a simple analysis reveals that the
charge ¢, will move forever along the co-moving axis,
i.e. so that v, = vg, vy = 0. Skipping details, we give
the final equation of motion of the charge along the
co-moving axis:

B=-

Ez'g:_

dv, _ e
dt m

rkdqz 1

’U2 3/2
1-— .
(-%) wremre

(20)

2

Now, since v? = v + v2 one has:

and introducing:

* Uz

B dz

Vo, = —F—75 = ="
V1-v¢/c2 dt*

(22)

2The force q.E is always parallel to the instantaneous velocity v of the charge g. so that one can derive Eq. (15) using the
concept of ‘longitudinal’ mass, taking into account that the Lorentz force expression is a pure force (cf Rindler 1991, Redzié¢
et al. 2011). I preferred not to employ here the potentially misleading concepts of ‘transverse’ and ‘longitudinal’ mass, while
they appear occasionally in the literature (Rindler 1991, Jefimenko 1996).
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where:
t* =t/1—0v3/c?, (23)
Eq. (20) can be recast into:
vl _qe vi2 /2 Kk4qz (24)
dt* — m c? (22 +a?/2)3/2"

Eq. (24) for the clock in motion has exactly
the same form as Eq. (15) for the same clock at rest,
the only difference being that variable ¢ in the lat-
ter is replaced by t* = t\/1 —v2/c? in the former.
Since the solution of Eq. (15) is a periodic function
(16) with period Tp, it is clear that the solution of
Eq. (24) satisfying identical initial conditions (z = A
and v, = vl =0, at t = t* = 0) is the same function

of t*:
o = 117 = flty/1 - 3/e2).

where subscript M serves as a reminder that the
clock is in uniform motion; period of the clock in
motion is obviously:

(25)

To

V1I—03/2

Thus, the above model of a clock, however fragile,
provides a simple and yet exact illustration of the
Larmor clock retardation.? For this clock, the retar-
dation appears to be a dynamical, cause—and—effect
phenomenon, as was the case with length contraction
discussed in Section 2.* A more detailed analysis of
clock retardation is given in next Subsection.
Rewrite Eq. (26) in the form:
T,= 10 (27)
V1—02/c?

where now v is the speed of the rectangle in uniform
motion, so as to be analogous to Eq. (3). Since the
rest rate—preserving acceleration is assumed in the
above derivation of Eq. (27), one has that

TO = TL; ’ (28)

where T{ is the period of the moving clock as ob-
served by an inertial co-moving observer. Eqs. (27)
and (28) imply:

Ty = (26)

Ty
V1—wv2/c? ’

which is analogous to Eq. (1). As can be seen, mu-
tatis mutandis, remarks analogous to those for the
uniformly moving rod, presented in the last two para-
graphs of Section 2, apply to the case of the uni-
formly moving clock. Particularly, Eq. (29) always
applies, whereas Eqgs. (28) and (27) need not apply.

Note that the above dynamical derivation of
Eq. (26) applies to the simple clock considered. On
the other hand, in the framework of relativistic kine-
matics, Mgller (1972) argued: ‘In view of the fact
that an arbitrary physical system can be used as a
clock, we see that any physical system which is mov-
ing relative to a system of inertia must have a slower
course of development than the same system at rest’.
Here one has to take into account that, according to
Special Relativity, any physical system must conform
to some Lorentz—covariant dynamical laws, however
complex the system is. Since the exact form of the
laws is generally unknown, ‘an all-inclusive dynamic
(causal) interpretation of time dilation is hardly pos-
sible,” as Jefimenko (1996) pointed out. Fortunately,
the principle approach to Special Relativity predicts
Eq. (26) indirectly, via the Lorentz transformations,
without the need to enter into details of the phe-
nomenon that serves as a clock. Namely, one need
not know the exact laws governing the operation
of a clock; it suffices to know that the laws have
to be Lorentz—covariant. However, one must admit
that any clock retardation hides a complex dynami-
cal process and also involves the universal boostabil-
ity assumption. Finally, note that the above simple
clock model illustrating a dynamical content of Eq.
(26) represents an ideal clock. Namely, a real clock
necessarily involves damping, which is in our case
due to the radiation reaction force. Construction of
Special Relativity requires of course ideal standard

clocks so our simple model may perhaps be to the
point.

3.3. Clock retardation in details

Eq. (15) can obviously be recast into:

c2

dv, lgeq|x4 v? 3/2 z
dz '* m (

(30)

3Note that when the clock (the square + the charge q.) moves along the axis of the square, so that vp = vp2 (‘longitudinal’
clock), in the same way as Jefimenko’s (1996) clock # 1, employed also in Jefimenko (1998), or Miller’s (2010) clock, an ezact
one frame derivation of Eq. (26) appears rather challenging. A ‘longitudinal’ clock, involving a non-uniform clock retardation,

will be discussed elsewhere.

4What is the origin of labelling rod contraction and clock retardation as kinematical effects (i.e., that they can be dealt with
without involving actions, forces, masses)? This appears to be relics of Newton’s absolute space and time concepts, where it
is tacitly assumed that ‘a moving rigid body at the epoch t may in geometrical respects be perfectly represented by the same
body at rest in a definite position’ (Einstein 1905), and analogously for a moving clock. While ‘kinematical’ is fitting in the
context of the Galilean transformation, it masquerades the dynamical contents of the Lorentz transformation.
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Separating variables and integrating, setting v, =0
when z = +.A, and solving for v, yields:

_dz

v, = — = Fef.. V2,

o dt (31)

where:
{.}={1-[1+ (|ch|n4/m02)

(1/V2% +a%/2 =1/ A2 +a2/2)] 7%}, (32)

and — and + sign corresponds to the motion of ¢,
in the direction of decreasing z and increasing z, re-
spectively. Eq. (31) implies that, for the oscillator at
rest, passage of ¢, from z to z+dz lasts time interval:

dt = F(1/c)d=z{..} /2.

Thus, the period Ty of the oscillator at rest is given
by:

(33)

2 A
To = f/ {3724z, (34)
CJ-A
Incidentally, in the case of small oscillations, i.e.
when A < a, from Eq. (34) one obtains that:

Ty ~ i/j{l — 14 (K/2mc?)(A? — 23) 72}V 2dz,

(35)
where K = |qeq|s4/(a?/2)?/%. As can be seen, this
result coincides with the corresponding Mgller’s re-
sult for the period of his “relativistic” oscillator’, Eq.
(60) in Mgller (1955), as it should. Finally, note that
when KA? < mc?, from Eq. (35) one obtains the fa-
miliar expression for the period of a simple harmonic
oscillator, Ty = 2m+/m/K.

Analogously, using Eqs. (22)-(24), for the os-
cillator in uniform motion one finds that passage of
¢e from z to z + dz lasts time interval:

dty = (F)(1/e)dz{..}"Y2,  (36)

1
V1—03/c?

which is 1/4/1 —v3/c? times longer than the corre-
sponding time interval Eq. (33) for the oscillator at
rest. The period of the oscillator in motion is obvi-
ously given by:

Ty (37)

A
:;g/ (.)12dz,
V1—vg/czc ) a

which is Eq. (26). For our specific ‘transverse’ clock,
Eq. (36) embodies clock retardation: any segment
of ‘life’ of a ‘transverse’ clock that is moving with the
velocity vg relative to the S frame lasts longer by the

factor 1/4/1 — v3/c? than the same segment of ‘life’
of the same clock at rest in S.

Recall that in the standard kinematical ap-
proach, clock retardation is deduced either for a point

clock or for a non-point ‘transverse’ clock that in-
volves processes with 2’ = const (such as in our clock
model), without, however, disclosing its dynamical
contents. Namely, from the standard Lorentz trans-
formation:

o =y@—vt), ¥ =y, =z =yt-vx/c?)),
where v = 1/4/1—0v2/c?, it follows that dt =

dt'/\/1 —v?/c? when 2’ = const, whereas dy’ and
dz’ need not vanish. Note that, for ‘longitudinal’
clocks (z’ # const), clock retardation is non-uniform.

For the sake of comparison, we quote here a
related passage from French’s (1968) excellent book
Special Relativity, that illustrates the subtlety of the
problem we are discussing:

‘... the time dilation is an expression of the
definition of simultaneity, on the one hand, and of a
particular type of measurement, on the other. To de-
scribe it by simply saying “Moving clocks run slow”
may be convenient, but is also somewhat glib and
can be misleading. For one thing, this statement sug-
gests, quite contrary to relativistic ideas, that there
is something absolute about motion. And, equally
unfortunately, it suggests that some essential change
occurs in the operation of the clock itself, that the
physical basis of its operation has somehow been
modified, whereas it is a central feature of relativ-
ity theory that just the opposite is true—that the
operation of the clock as described in its own frame
of reference is completely unaffected. We must rec-
ognize that whenever we speak of an object as mov-
ing, that statement has meaning only with respect
to some given frame of reference (usually our own).
As long as this is borne in mind, it is legitimate to
speak of moving clocks or moving meter sticks. But
beware!’

It seems, however, that some of the above
French’s statements can be misleading. Namely, our
clock model reveals that character of forces govern-
ing the operation of the clock when it is in motion
with respect to an inertial frame is different from
character of forces governing its operation when the
same clock is at rest with respect to the same (or
any other) inertial frame!

4. WHERE DO THE PERSPECTIVE
CHANGES COME FROM?

To avoid confusion, begin with a few termino-
logical comments.

By ‘the perspective relativistic change’ of an
object I mean that, according to Special Relativity,
one and the same object (in the sense consisting of
the same ‘atoms’) has distinct properties (say, the
length of a rod or the period of a clock), depending
on whether the properties are being measured in the
rest frame of the object or in the laboratory frame
(with respect to which the object is in a uniform
translatory motion). Note that here we deal with two
different states of motion of an object with respect to
two inertial frames (‘observers’), and two respective
‘configurational states’ of the object. By ‘the actual
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physical change’ of an object in the standard physi-
cists’ sense of the phrase, I mean that properties of
the object become distinctly different under the ac-
tion of certain forces (both external and internal), all
with respect to one and the same inertial frame.

Now comes what is perhaps the key question
of Special Relativity. When a single physical ob-
ject is observed by two different inertial observers
(or when a single observer changes frames), where
do the differences between their observations come
from? Particularly, when an object at rest in S’ and
thus in uniform motion with respect to the lab frame
S is observed from the two frames, why the results
of observations differ? Note that the perspective
change itself has nothing to do with previous history
of the object either in S” or in S, the history may
be unknown to us; moreover, the object need not be
free nor connected. Note also that there seems to be
an overall consensus that we did nothing to the ob-
ject by merely observing it from two different frames
(or by accelerating an observer to another frame).
Thus, there is no cause of the perspective relativistic
change, it is an acausal effect.

Miller (2010) argued that the differences
among observations of different inertial observers ‘are
due to the differences in their respective measuring
instruments [...] these perspective effects ultimately
have a dynamical origin because the properties of
measuring instruments are determined by the forces
that keep them in equilibrium in their respective
frames.” The author explained, following Feinberg
(1975), that ‘when the measuring rods and clocks are
moved between inertial observers, they suffer dynam-
ical changes. When the observers use their dynami-
cally altered rods and clocks to make measurements,
it is not surprising that their results differ and that
they differ by the same factors that are involved in
the dynamical changes.’

While Feinberg and Miller advocate a force
interpretation of the so-called kinematical effects of
Special Relativity, a common thread in their discus-
sions is that ‘there are no dynamical effects in the
physical object being observed’; the differences in
measuring instruments used by different inertial ob-
servers are all that matters. Now, it is certainly true
that nothing at all has happened to the object be-
ing observed by a mere transition to another iner-
tial frame. (‘The body received no impact, pull or
boosts, but is viewed from a system moving relative
to it; [...] there has been no actual change in the
body itself.”) However, I think that Feinberg and
Miller’s interpretation falsifies the spirit of Special
Relativity. While the perspective relativistic change
is an acausal effect, I will argue that there is a dy-
namical explanation of the effect in the sense that
the perspective change is tantamount to an actual
physical change. This seems to be the gist of Special

Relativity.

Firstly, each inertial observer possesses his or
her own set of measuring instruments which are iden-
tical to one another. A measuring rod at rest in the
lab frame S is in all respects identical to a measur-
ing rod of the same construction at rest in the ‘mov-
ing’ frame S’ under identical physical conditions; the
rods embody the same length in their respective rest
frames. That the rods can indeed be of the same
construction is secured by the universal boostability
assumption, as was illustrated in Section 2.° There-
fore, it is somewhat perplexing to account for the
differences between the observations of the S— and
S’—observer in terms of the differences in their re-
spective measuring instruments, as Feinberg (1975)
and Miller (2010) do. A natural explanation appears
to be at hand.

As was noted above, in the perspective rela-
tivistic change we deal with two different states of
motion of an object with respect to two inertial ob-
servers, and two respective ‘configurational states’ of
the object. Specifying to the simple system discussed
in Sections 2 and 3, taking into account that the the-
ory employed (Maxwell’s equations plus the Lorentz
force Eq. (5)) is made to be Lorentz—covariant, it
follows that different observations of the system con-
sidered in the lab frame S and in the rest frame S’ are
due to different states of motion of the system in the
two frames, and thus to its different respective con-
figurations. The differences in configurations are due
to a different electromagnetic field produced by the
moving field-producing charges, and hence to a dif-
ferent force acting on the moving field-experiencing
charges.

On the other hand, if we start from the object
at rest in the lab frame S, which is in the same config-
urational state as it was the object’s rest state in the
‘moving’ frame S’, and accelerate it until reaching
the steady velocity v = v& in a persistent state (thus
being at rest with respect to the ‘moving’ frame) and
if the acceleration was rest properties—preserving, we
reach the same configurational state of the moving
object as measured in the lab, as was found earlier
as a result of the perspective change. Now we deal
with two configurational states of the same object,
which are identical to the ones discussed above in
the context of the perspective change, correspond-
ing to two different states of motion but now with
respect to one inertial frame. In the ‘one frame sce-
nario’, one has two stationary configurational states
with distinct properties of the object due to different
character of forces providing equilibrium in the two
states of motion; this actual physical change has a
clear dynamical origin. Since the ‘two frames situa-
tion’ is perfectly equivalent to the corresponding ‘one
frame situation’ under the assumptions stated, one
must admit that not only the actual physical change

5 According to conventional presentations of Special Relativity, measuring instruments need not be transferred between frames;
instead, they can be constructed in each frame ‘from scratch’, following the same recipe. But it appears that the universal
boostability assumption, or its equivalent, must be introduced at some step of the procedure. At first sight, the universal
boostability assumption has basically the same contents as Born’s (1965) ‘principle of the physical identity of the units of
measure’ (cf also Redzié¢ (2008), footnote 12). However, Born seems to imply that measuring capacity of a rod or clock remains
untouched under arbitrary boosts, which is incorrect, cf Section 2. In the same way, Felnberg’s (1997) ‘universality with respect
to the acceleration regime [of the rod contraction and the clock retardation]’” does not generally hold.
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but also the perspective relativistic change of an ob-
ject has a dynamical content. Clearly, in the system
discussed in Section 2, the change belongs to statics
(equilibrium of forces and momenta).

Basically, all that matters is the state of uni-
form motion of a physical system with respect to
one (arbitrary but fixed) inertial observer, under the
proviso that the (persistent) rest configuration of the
system is conserved. It is irrelevant whether two dif-
ferent states of motion of the system are observed
from two different inertial frames, respectively, or
from one frame only, if in the latter case, the two
states of motion are related by a rest properties—
preserving acceleration. This supremacy of any one
inertial observer appears to be the gist of the princi-
ple of special relativity.°

One last point is worth making. In the simple
system considered, changes of velocity—dependent in-
ternal forces result in a definite change of the system
structure, that is changes of the internal forces in-
duce a persistent structure change. This obviously
cannot be achieved by changing the inertial frames
of the observers. While the perspective relativistic
change itself has nothing to do with previous history
of the object in the inertial frames, clearly, the sys-
tem structure in any one frame is determined by its
previous dynamic history in that frame.

5. SUMMARY

The calculations of rod contraction and clock
retardation presented in this paper provide a dynam-
ical cause—and—effect type interpretation of those so-
called kinematical effects of Special Relativity. A dy-
namical content of the effects is clearly revealed at
least in the case of the simple electromagnetic model
employed, in terms of various character of forces gov-
erning the equilibrium of the rod or the operation of
the clock in the state of motion and in the state of
rest of the system under consideration. By means
of the same model, the importance of the universal
boostability assumption is illustrated. A dynami-
cal content of the perspective relativistic change is
also discussed. It is argued that when a connected
physical object in a persistent state is observed by
observers in different inertial frames, the differences
among their observations can be construed as due
to changes in internal forces which determine the
structure of the object with a change of its velocity,
provided that the velocity change is performed in

a rest properties-preserving way under a combined
action of external and internal forces with respect
to one of the inertial frames. The different inertial
observers have a dynamical explanation of the differ-
ences among their observations in terms of an equiv-
alent dynamical change in the object with respect to
one inertial frame.
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JIMPEKTHO MN3PAYYHABAILE KOHTPARKIINJE
JNYSEKVHE N1 YCIIOPABAIHA YACOBHUKA
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YR 52-334.2
Opuzunasty HayuHL pao

3a jemHOCTaBHE €JEKTPOMATHETHE MOJe-
Jle mTama ¥ YaCOBHUKA, IIPOMEHa O0JuKa
mramna W TPOMEHa XOIa YaCOBHUKA Kana ce
OHU JOBeLy V CTame PaBHOMEPHOT KpeTama
u3pavyHare Cy eraakTHo, ymorpebspaBajyhu ko-
PEKTHY jeQHAUYMHY KpeTama HaeJIeKTPUCAHEe Yec-
TULE Y €JIeKTPOMATrHETHOM [I0JbY W IIPETIOCTABKY
yHuBep3anHe Oycrabunnoctu. Ha Taj mHavwn
je [IOKa3aHO Ja, 3a jJeIHOCTABHU pa3MaTpaHU
CUCTEM, KOHTPAaKIHja MOyKMHE U YCIOPaBame
YACOBHUKA MOTY OUTM WUHTEPUPETUPAHU KAO AU-
HAMUYKN (EHOMEHU Y3POYHO-TIOCIEANYHOT TUIIA,
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a He Ka0 KUHEMATUYKU e(peKTH, KaKo Cce
OHM yobM4YajeHO TyMaue y KOHBEHIIMOHAJIHUM
n3narapuma Croenujaise pejaTuBHOCTH.  Ap-
TYMEHTHCAHO je [Oa TMEePCIEeKTUBHA PEJIATUBUC-
TUYKA NOpOMeHa HeKor objexra (koja oxrosapa
MepemUMa U3 [BAa WHEPIUjalHA CHACTEMA), Mala
HECYMILUMBO MPEACTAB/bA AKAY3aJHU €(EKT, nMa

AVHAMWUYKMA CaJApKaj y CMUCIY HOa je eKeuea-
AEHMHA jeTHOj CTBApHOj MWHAMMWYKO] IPOMEHU
TOT O0jeKTa y jeTHOM WHEPINjaJHOM CUCTEMY.



