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SUMMARY: The method of variation of parameters still has a great interest
and wide applications in mathematics, physics and astrodynamics. In this paper,
universal functions (the Y’s functions) based on Goodyear’s time transformation
formula were used to establish a variation of parameters method which is useful in
slightly perturbed two-body initial value problem. Moreover due to its universality,
the method avoids the switching among different conic orbits which are commonly
occurring in space missions. The position and velocity vectors are written in terms
of f and g series. The method is developed analytically and computationally. For
the analytical developments, exact literal formulations for the differential system
of variation of the epoch state vector are established. Symbolical series solution
of the universal Kepler’s equation was also established, and the literal analytical
expressions of the coefficients of the series are listed in Horner form for efficient
and stable evaluation. For computational developments of the method, an efficient
algorithm was given using continued fraction theory. Finally, a short note on the
method of solution was given just for the reader guidance.

Key words. celestial mechanics

1. INTRODUCTION

Variation of parameters method is well-known
in the theory of differential equations. It is applied in
celestial mechanics to a system of differential equa-
tions of the sixth order. Euler (1748) was the first to
use the method in studying the mutual perturbations
of Jupiter and Saturn. Lagrange (1808) developed
the work of Euler and performed a series of papers

that posed the method of variation parameters in
its final form. The main results of Lagrange’s study
was the system of planetary equations of orbital el-
ements. In celestial mechanics, Lagrange extended
the method of variation of parameters to the situa-
tion with velocity-dependent forces. (such treatment
can be found, for example, in Brouwer and Clemence
1961, Efroimsky and Goldriech 2003). Efroimsky
and Goldriech (2004) and Efroimsky (2005) imple-
mented the variation of parameters method in terms
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of the orbital elements defined in an accelerated
frame.

For trajectories using low-level thrust, a simu-
lation using variation of parameters is generally quite
efficient. One well-known method is that described in
(Bate et al. 1971), which uses Battin’s universal vari-
ables and employs variation of the epoch state vec-
tor to describe the motion. It could be argued that
the method of variation of parameters still an effec-
tive tool for solving differential equations, is highly
popular among physicists, mathematicians and as-
tronomers (Arakida and Fukushima 2001, Newman
and Efroimsky 2003). Recently (Sharaf and Saad
2014, hereafter Paper I), a new set of universal func-
tions; based on Goodyear’s time transformation for-
mula was developed analytically and computation-
ally for a two body-initial value problem. These Y’s
functions are used here to develop a variation of pa-
rameters method which is useful in a slightly per-
turbed two-body initial value problem. Moreover,
due to its universality, the method avoids the switch-
ing among the different conic orbits which are com-
monly occurring in space missions.

In the present approach, the position and ve-
locity vectors are written in terms of f and g se-
ries. Lagrange coefficients are therefore expressed in
terms of the Y’s universal functions. The advantage
of these functions is that they are convergent for val-
ues of the universal variable χ. Using the Lagrange
coefficients to represent ~r and ~v, we can write the
universal form of Kepler’s equation. In the variation
of parameter method we write the solution using ~r
and ~v as the basis vectors and determine what values
would be ~r0 and ~v0e. Performing some transforma-
tion rules as shown in Subsection 3.1, a new universal
Kepler’s equation is formulated. In the variation of
parameters method ~r replaces ~r0 and is treated as
a constant and we get two equations for ~̇r0 and ~̇v0.
The last two equations could be integrated simul-
taneously with the first equation in Subsection 4.1.
Given χ and α at a certain time t, the universal Y’s
functions could be evaluated by the algorithm given
in Subsection 5.1.1.

The paper is organized as follows. In the next
section, we review the universal Y’s functions and
their relation to the elementary functions in the two-
body initial value problem. In Section 3, variation
of the epoch state vector and transformation rules
are discussed. Section 4 is devoted for the imple-
mentation of the variation of parameters problem.
In Section 5, an efficient algorithm based on a con-
tinued fraction is established for the computational
developments of the present method and evaluation
of Y’s functions. A symbolic series solution of the
universal Kepler’s equation is given in Section 6. Fi-
nally, we show, as a summary, the conclusions of this
research.

2. The UNIVERSAL Y’S FUNCTIONS
AND THE TWO- BODY
INITIAL VALUE PROBLEM

Goodyear’s time transformation formula
(Goodyear 1965) is given by:

dt

dχ
= r, (1)

where χ is to be considered as a new independent
variable - kind of generalized anomaly. In what fol-
lows, we develop some basic relations of these func-
tion due their rule in the analysis. The universal
Yn(χ; α) functions are defined by:

Yn(χ; α) = (χ
√

µ)n
∞∑

k=0

(−1)k (αµχ2)k

(2k + n)!
, (2)

clearly

Yn(χ; 0) =
(χ
√

µ)n

n!
, (3)

α is just the inverse of the semi-major axis a given
as:

α =
1
a

=
2
r
− v2

µ
, (4)

and µ is the gravitational parameter. Eq. (4) is valid
whatever the shape of the orbit is, namely, parabolic,
elliptic or hyperbolic. Other useful properties of the
Y’s functions result directly from Eq. (2):

dYn

dχ
=
√

µYn−1; n > 0, (5)

dY0

dχ
= −α

√
µY1. (6)

In the initial value problem of a two-body system, the
position and velocity vectors ~r and ~v can be written
in terms of the Lagrange coefficients f and g, and
the basis vectors ~r0 and ~v0:

~r = f ~r0 + g ~v0, (7)

~v = ḟ ~r0 + ġ ~v0, (8)

where ~r0 and ~v0 are the initial position and velocity
vectors, respectively. In terms of the Y’s universal
functions, the Lagrange coefficients are:

f = 1− 1
r0

Y2(χ; α), (9)

ḟ = −
√

µ

rr0
Y1(χ;α), (10)

g =
r0√
µ

Y1(χ; α) +
σ0

µ
Y2(χ;α), (11)

ġ = 1− 1
r
Y2(χ; α), (12)

where:

σ =
1√
µ
〈~r,~v〉, (13)
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and ”0” subscripts indicate evaluation at the epoch
time t = t0 (the exception is Y0 where subscript indi-
cates the order of the universal function). Hereafter
〈 ~A, ~B〉 will be used to denote the inner product of two
vectors ~A and ~B. Using the Lagrange coefficients to
represent ~r and ~v, we can write:
√

µσ = σ0Y0(χ; α) + (1− r0α)
√

µY1(χ; α). (14)

The universal form of Kepler’s time equation be-
comes:

∆ =
√

µ(t− t0) = r0Y1(χ; α) +
σ0√
µ

Y2(χ; α)

+Y3(χ; α). (15)

Finally, an important relation for χ is:

µχ = µα(t− t0) + σ
√

µ− σ0. (16)

3. VARIATION OF THE
EPOCH STATE VECTOR

3.1. Transformation Rules

In the variation of parameters method (Bur-
ton and Melton 1992), we write the solution using ~r
and ~v as basis vectors and then determine ~r0 and ~v0.
For the two-body system, to reach ~r and ~v at some
particular time, we write:

~r0 = F~r + G~v, (17)

~v0 = Ḟ~r + Ġ~v, (18)
and perform the transformations rules: χ → −χ,
r → r0, σ → σ0, in the original f and g terms, and
∆ → −∆ =

√
µ(t − t0). The explanation of these

transformation rules is due to the facts that move-
ment from ~r to ~r0 is equivalent to change χ to −χ
and

√
µ(t−t0) to

√
µ(t0−t). It should be noted that

Yn(−χ;α) = (−1)nYn(χ; α), so the first Lagrange co-
efficients become:

F = 1− 1
r
Y2(χ; α), (19)

G =
−r√

µ
Y1(χ; α) +

σ

µ
Y2(χ;α), (20)

while Eq. (14) and the universal Kepler’s Eq. (15)
are transformed, respectively, to:

√
µσ0 = σY0(χ; α)− (1− rα)

√
µY1(χ;α), (21)

∆ =
√

µ(t− t0) = rY1(χ;α)− σ√
µ

Y2(χ; α)

+Y3(χ; α). (22)

Finally, Eq. (16) is transformed to:

µχ = µα(t− t0)− σ0
√

µ + σ. (23)

Yn are now functions of two variables χ and α, Eqs.
(5) and (6) are therefore transformed to:

∂Yn(−χ;α)
∂(−χ)

=
√

µYn−1(−χ; α), (24)

then:

(−1)n ∂Yn(χ; α)
∂(χ)

= −√µ(−1)n−1Yn−1(χ;α), (25)

∂Yn(χ;α)
∂χ

=
√

µYn−1(χ; α), (26)

∂Y0(χ;α)
∂χ

= −α
√

µY1(χ; α), (27)

respectively.

3.2. Perturbed Motion

Having obtained the transformed equations,
we have to consider the situation when a pertur-
bation is introduced; In this case, we have to note
that: (i) α is no longer constant, and so Ḟ and Ġ
must be computed by direct differentiation of F and
G, taking into account the perturbation. (ii) The
Lagrange coefficients are varying from the two-body
form. Therefore, the perturbation causes no instan-
taneous changes in ~r and the acceleration ~̇v results
only from the perturbing forces and does not include
changes due to the two-body reference motion.

4. IMPLEMENTATION OF VARIATION
OF PARAMETERS PROBLEM

Since in the variation of parameters problem
~r replaces ~r0 and is treated constant (Battin 1964,
Bate et al. 1971), consequently:

~̇r0 = Ḟ~r + Ġ~v + G~̇v, (28)

~̇v0 = F̈~r + G̈~v + Ġ~̇v. (29)

These equations are equivalent to the equations Eq.
(6.26) in the book by Battin (1964).
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4.1. Basic Evaluations

In order to evaluate the functions involved in
Eqs. (28)-(29), some basic evaluations are needed
first.
According to the notes mentioned in Subsection 3.2,
we get from Eqs. (4), (13) and (23) that:

dα

dt
= − 2

µ
〈~v, ~̇v〉, (30)

dσ

dt
=

1√
µ
〈~r, ~̇v〉, (31)

dχ

dα
= (t− t0) +

1
µ3/2

〈~r, ~̇v〉 dt

dα
, (32)

dχ

dt
= α +

1
µ3/2

〈~r, ~̇v〉. (33)

From Eq. (2) we can write:

2
∂Yn

∂α
= (χ

√
µ)n+2

∞∑

k=0

(−1)k(αµχ2)k

(n + 2k + 1)!
·

·{ n

n + 2k + 2
− 1} = (χ

√
µ)n+2

∞∑

k=0

(−1)k(αµχ2)k ·

·{ n

(n + 2k + 2)!
− 1

(n + 2k + 1)!
}, (34)

that is:

∂Yn

∂α
=

1
2

[nYn+2 − χ
√

µYn+1] , (35)

dYn

dt
=

(
∂Yn

∂χ

dχ

∂α

dα

dt
+

∂Yn

∂α

dα

dt

)
. (36)

Using Eq. (26), and Eqs. (30)-(35) into the above
equation we deduce that:

dYn

dt
= Qn

1 〈~v, ~̇v〉+ Qn
2 〈~r, ~̇v〉, (37)

where

Qn
1 =





−2
µ

(√
µ(t− t0)Yn−1 − 1

2χ
√

µYn+1

+ 1
2nYn+2

)
; n ≥ 1,

2√
µ

(
(t− t0)α + 1

2χ
)
Y1; n = 0,

(38)

Qn
2 =

{ 1
µYn−1; n ≥ 1
−α

µY1;n = 0.
(39)

Eqs. (30)-(35) and (37)-(39) are what we required to
set up for the present subsection.

4.2. Evaluation of Ḟ , Ġ, F̈ and G̈

Differentiating Eqs. (19), (20) with respect to
t, and then using Eqs. (33)-(35) we get:

Ḟ =
4∑

k=1

CkYk; Ġ =
4∑

k=0

PkYk,

F̈ =
6∑

k=0

TkYk; G̈ =
5∑

k=0

WkYk, (40)

where Ck, Pk, Tk and Wk are given in Appendix.

5. EVALUATION OF THE
Y’S FUNCTIONS

5.1. Gautschi’s Algorithm for Continued
Fraction Evaluation

In fact, continued fraction expansions are gen-
erally far more efficient tools for evaluating the clas-
sical functions than the more familiar infinite power
series. Their convergence is typically faster and more
extensive than in series. Due to the importance of
accurate evaluations and the efficiency of continued
fractions, we purpose to use them as the computa-
tional tools for evaluating the Y’s functions. There
are several methods available for evaluation is con-
tinued fraction. Traditionally, the fraction is either
computed from the bottom up, or the numerator and
denominator of the nth convergent were accumulated
separately with three-term recurrence formulae. The
drawback of the first method is that obviously one
has to decide how far down the fraction he goes to
ensure convergence (i.e. before starting computa-
tions, we have to determine the number of iterations
to ensure convergence). The drawback of the sec-
ond method is that the numerator and denominator
rapidly overflow numerically even though their ra-
tio tends to a well defined limit. Thus, it is clear
that an algorithm that works from top down, while
avoiding numerical difficulties, would be ideal from a
programming standpoint. Gautschi (1967) proposed
a very concise algorithm to evaluate continued frac-
tion from the top down and may be summarized as
follows. If the continued fraction is written as:

Ω =
N1

D1

N2

D2+
N3

D3 + ...
, (41)

then initialize the following parameters

A1 = 1, B1 = N1/D1, Ω1 = N1/D1 (42)

and iterate (k = 1, 2, ...) according to:

Ak+1 =
1

1 + Nk+1
DkDk+1

Ak

, (43)

Bk+1 = (Ak − 1)Bk, Ωk+1 = Ωk + Bk+1. (44)
In the limit, the Ω sequence converges to the value
of the continued fraction.
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5.1.1 Continued Fraction Algorithm for
Evaluating Yj(χ; α); j = 0, 1, ..., 6

We shall consider evaluations of functions
Yj(χ;α); j = 0, 1, ..., 6, because these are the only
functions that appear in the analysis (see Subsection
4.2). Battin(1999) succeeded to express his univer-
sal U’s functions as continued fractions. We follow
his methodology and developed the continued frac-
tions representations of the Y’s universal functions.
Moreover we established the following algorithm for
implementations of these representations on digital
computers.

Computational Algorithm
Input:α, µ, χ
Output: Yj(χ;α); j = 0, 1, 2, ..., 6
Computational Sequences

1− Compute a’s from:

aj = − αµχ2

4(4j2 − 1)
; j = 1, 2, ...; a0 =

1
2
χ
√

µ. (45)

2− Compute u from the continued fraction:

u =
a0

1+
a1

1+
a2

1+
... (46)

by using Gautschi’s algorithm of Subjection 5.1

3− A = 1 + αµ2 , (47)

4− Y0(χ;α) = (1− αu2)/A , (48)

5− Y1(χ; α) = 2u/A , (49)

6− Y2(χ; α) = uY1(χ;α) , (50)

7− q = αu2/A . (51)

8− Compute γj ; j = 1, 2, ... from:

γ0 =
4
3
Y 3

1 (χ; α) , (52)

γn =





− (n + 2)(n + 5)
(2n + 1)(2n + 3)

q;n odd

− n(n− 3)
(2n + 1)(2n + 3)

q;n even
. (53)

9− Compute Y3(2χ; α) from the continued fraction:

Y3(2χ; α) =
γ0

1+
γ1

1+
γ2

1+
... (54)

by using Gautschi’s algorithm of Subsection 5.1

10− Y3(χ; α) =
1
2
Y3(2χ; α)−Y1(χ;α)Y2(χ; α) , (55)

11− Y4(χ; α) =
1
2
Y3(χ; α) {√µχ + Y1(χ; α)}

−1
2
Y 2

2 (χ; α) . (56)

12− Compute βj ; j = 0, 1, 2, ... from

β0 = −16
15

Y 5
1 (χ; α) , (57)

β2n+1 = −2(5 + n)(5 + 2n)
(5 + 4n)(7 + 2n)

q , (58)

β2n = − 2n(2n− 5)
(3 + 4n)(5 + 4n)

q , (59)

13− Compute B from the continued fraction

B =
β0

1+
β1

1+
β2

1+
... (60)

by using Gautschi’s algorithm of Subjection 5.1

14− Y5(2χ; α) =
4
3

{
Y 2

1 (χ;α)Y3(χ; α) + Y 3
1 (χ; α)·

·Y2(χ; α) + χ
√

µY 2
2 (χ; α)

}

+
8
3
χ
√

µY4(χ; α) + B , (61)

15− Y5(χ; α) =
1
2
Y5(2χ; α)− χ

√
µY4(χ; α)

−Y2(χ;α)Y3(χ; α) , (62)

16− Y6(χ;α) =
1
2

(
Y 3

3 (χ;α)− Y2(χ; α)Y4(χ;α)
)

−1
4
µχ3Y4(χ;α) +

√
µχY5(χ;α). (63)

17− End

6. SYMBOLIC SOLUTION OF THE
UNIVERSAL KEPLER’S EQUATION

In what follows we shall established symbolic
solution of the universal Kepler’s equation for two
general epochs ts and t`, so Kepler’s equation be-
comes:
√

µ(t` − ts) = rsY1(χ`,s; αs) +
σs√
µ

Y2(χ`,s; αs)

+Y3(χ`,s; αs), (64)

where √
µ(t` − ts) = ∆`,s. (65)
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Reversing series (64) leads to a solution for χ`,s as:

χ`,s =
N∑

k=1

Lk∆k
`,s, (66)

where the infinite series is truncated to N terms.
The polynomial was arranged in the Horner form.
This is useful for an efficient and stable numerical
evaluation. Assume that χn can be calculated us-
ing only log2 n multiplications for integer n (Knuth
1981). For a polynomial of degree n the Horner
form requires n multiplications and n additions.
The expanded form, however, requires

∑n
i=1 log2 i =

log2 Γ(n + 1) multiplications, which is already more
than twice as expensive as for a polynomial of de-
gree 10. Thus, one advantage of the Horner form
is that the work involved in exponentiation is dis-
tributed across addition and multiplication which re-
sults in savings of some basic arithmetic operations.
Another advantage is that the Horner form is more
stable in numerical evaluations when compared with
the expanded form. The reason for this is that each
sum and product involves quantities which vary on
a more evenly distributed scale. Because of space
limitations, only the first nine coefficients are listed
in Table I of Appendix A (Paper I).

7. OUTLINE OF METHOD
OF SOLUTION

At the end it is worth to mention just the out-
line of the method of solution. Eqs. (28)-(29) could
be integrated simultaneously with Eq. (30). The
position and velocity vectors ~r and ~v are evaluated
from the original Lagrange coefficients Eqs. (17)-
(18). The universal variable χ at a given time, can
be obtained from Eq. (15), either by numerical itera-
tion, or via analytic series as in Section 6. Although
the latter method is frequently used to obtain the
first approximation (Sharaf and Sharaf 1998) for nu-
merical iteration, it could be used to get a highly
accurate value of χ by returning ts to the formula-
tion and periodically resetting the epoch during the
integration (Burton and Melton 1992). This would
allow ∆ to remain small and the series representa-
tion of Eq. (64) with the nine coefficients of Ap-
pendix A (Paper I) are more than sufficient to get
quite accurate values of χ. With the values of χ and
α at a given time, the universal Y function could
be evaluated by the continued fractions algorithm of
Subsection 5.1.1. Full numerical applications of the
formulations of the present paper will constitute a
task to which we shall consider in a separate paper.

In concluding the present paper, a variation
of parameters method is established analytically and

computationally. For analytical developments, exact
formulations for the differential system of variation
of the epoch state vector are established. A symbol-
ical series solution of the universal Kepler’s equation
was also established, and analytical expressions for
the coefficients of the series are listed in the Horner
form for an efficient and stable evaluation. For com-
putational developments of the method, an efficient
algorithm using continued fraction theory was given.
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Appendix A: THE FORMULATIONS OF
Ck, Pk, Tk AND Wk OF EQUATIONS (40)

C1 =
1
rµ

(2∆〈~v, ~̇v〉 − 〈~r, ~̇v〉), C2 = 0,

C3 = − χ

r
√

µ
〈~v, ~̇v〉, C4 =

2
rµ
〈~v, ~̇v〉, (67)

P0 =
r

µ3/2
(2∆〈~v, ~̇v〉 − 〈~r, ~̇v〉),

P1 =
−σ

µ2
(2∆〈~v, ~̇v〉 − 〈~r, ~̇v〉),

P2 = −rχ

µ
〈~v, ~̇v〉, P3 =

(r + σχ)
µ3/2

〈~v, ~̇v〉,

P4 = −2σ

µ2
〈~v, ~̇v〉, (68)

T0 = − 1
rµ2

((2∆〈~v, ~̇v〉)2 + 〈~r, ~̇v〉2),

T1 =
1
rµ

(2∆(〈~v, ~̈v〉+ ~̇v
2
) + 2

√
µ〈~v, ~̇v〉 − 〈~v, ~̈v〉,

T2 = − 4∆χ

rµ3/2
〈~v, ~̇v〉2,

T3 = − 1
rµ2

(
µ3/2χ(〈~v, ~̈v〉+ ~̇v

2
)+

〈~v, ~̇v〉(αµ3/2 + 6∆〈~v, ~̇v〉 − 2〈~r, ~̇v〉)
)

,

T4 =
1
rµ

(2(∆〈~v, ~̈v〉+ ~̇v
2
)− χ2〈~v, ~̇v〉2),

T5 =
5χ

rµ3/2
〈~v, ~̇v〉2, T6 = − 8

rµ2
〈~v, ~̇v〉2, (69)

W0 =
1

µ7/2

(√
µ(2∆(2∆− 1)σ〈~v, ~̇v〉+

+(σ − 2
√

µ− 2∆σ)〈~r, ~̇v〉) +

r(2µ5/2 − 〈~r, ~̈v〉) + 2r∆(〈~v, ~̈v〉+ ~̇v
2
)),

W1 =
1
µ4

(µ(2rα∆(2∆− 1)
√

µ+

r (4∆− 1)µχ− 2σ(2α∆ +
√

µχ))〈~v, ~̇v〉+
µ(−(1 + rα)(−1 + 2∆− 1)

√
µ + 2ασ − rµχ)

·〈~r, ~̇v〉+ σ(〈~r, ~̈v〉 − 2(µ5/2+

+∆(〈~v, ~̈v〉+ ~̇v
2
)))

)
,

W2 =
1
µ3

(−rαµ2 +
√

µ((σχ− 2∆(r + 2σχ))

·〈~v, ~̇v〉+ σχ〈~r, ~̇v〉)− rχ(〈~v, ~̈v〉+ ~̇v
2
)),

W3 =
1

µ7/2
(αµ2σ +

√
µ(−(σ − 2∆σ +

rµ3/2χ2))〈~v, ~̇v〉+ (σ + µχ)〈~r, ~̇v〉) +

(r + σχ)(〈~v, ~̈v〉+ ~̇v
2
)),

W4 =
1
µ4

(µ2χ(3r + %χ)〈~v, ~̇v〉 −

2σ(〈~v, ~̈v〉+ ~̇v
2
)),

W5 = − 3
µ5/2

(r + σχ)〈~v, ~̇v〉. (70)
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Metod varijacije parametara i daǉe
je aktuelan i koristi se u mnogim oblas-
tima matematike, fizike i astrodinamike. U
ovom radu korix�ene su univerzalne (tzv.
Y) funkcije koje se zasnivaju na Gudjerovoj
formuli za transformaciju vremena kako bi
definisali metod varijacije parametara ko-
ristan kod problema poqetnih uslova u blago
poreme�enom sistemu dva tela. Zbog svoje
univerzalnosti, metod ne zahteva prelaske na
razliqite tipove orbita, tj. konusne preseke,
do kojih qesto dolazi kod svemirskih misija.
Vektori polo�aja i brzine napisani su u ob-

liku f i g redova. Metod je razvijen anali-
tiqki i raqunski. U analitiqkom izvo�eǌu
dobijena je taqna formulacija sistema vari-
jacionih jednaqina vektora staǌa za odre�enu
epohu. Dobijeno je i rexeǌe opxte Keplerove
jednaqine u obliku simboliqkog reda, kao
i analitiqki izrazi za koeficijente reda u
Hornerovom obliku, za efikasno i stabilno
izraqunavaǌe. Za potrebe raqunskog razvoja
metoda, dat je efikasan algoritam uz pomo�
teorije veri�nih razlomaka. Na kraju, dat je
i kratak osvrt na metod rexeǌa, kao smernica
zainteresovanom qitaocu.
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