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SUMMARY: In the paper On asymptotic solutions of Friedmann equations
(Mijajlović et al. 2012), the theory of regularly varying functions in the sense of
Karamata is applied in an asymptotic analysis of solutions of Friedmann equations.
As is well known, solutions of these equations are used to represent cosmological
parameters. Therefore, according to the theory of regularly varying functions all

cosmological parameters depend on a function ε(t) such that limt→∞ ε(t) = 0 and
which appears in their integral representation. In this paper we derive a differen-

tial equation for the parameter ε(t), discuss its solutions and give some physical
interpretations.
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1. INTRODUCTION

By cosmological parameters are usually meant
some global physical quantities linked to the Uni-
verse. A good review of such approach for the ΛCDM
model can be found, for example, in Lahav and Lid-
dle (2014). Here we shall adopt a somewhat formal-
istic definition of cosmological parameters. By them
we shall mean first of all solutions of Fiedmann equa-
tions, then any functions derived from these solutions

and parameters by which the basic cosmological pa-
rameters can be expressed. While examples of the
first two types of cosmological parameters are widely
known, this is not the case for the third type. In our
paper (Mijajlović et al. 2012) we exhibited such a pa-
rameter for the expanding universe with the cosmo-
logical constant Λ. This parameter is a continuous
function ε(t) having the limit 0 at infinity1 and which
appears in the Karamata representation of regularly
varying functions (see Karamata 1930).

1Greek letters ε, ξ ζ, η and τ in this paper will be exclusively reserved for the names of continuous functions which have the
limit 0 at infinity, e.g. limt→∞ ε(t) = 0. Therefore, any mention or use of a function with this name assumes the mentioned
property. We shall often write shortly ε, η and so on instead of ε(t), η(t), etc.
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The scale factor a(t), the energy density ρ(t),
and material pressure in the universe p(t) are usually
taken as fundamental or basic cosmological param-
eters. These parameters are solutions of the Fried-
man equations (see Friedman 1924). We remind the
reader that the Friedman equations are derived from
the Einstein field equations. The Friedman equations
are the following three ordinary differential equa-
tions:

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
, Friedman equation,

ä

a
= −4πG

3

(
ρ +

3p

c2

)
, Acceleration equation,

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0, Fluid equation.

Let us mention that these three equations are not
independent. For example, the fluid equation can
be inferred from the other two equations. Therefore,
for solving this system of essentially of two equa-
tions and three unknowns some additional condition
is needed. Usually the equation of state p = wρc2 is
assumed. Here we shall discuss also some other con-
ditions that are set to the unknowns a(t), p(t) and
ρ(t).

In our paper (Mijajlović et al. 2012), we ap-
plied the theory of regularly varying functions in
asymptotic analysis of solutions of Friedman equa-
tions for cosmological parameters of the expanding
universe. We proved that under certain but broad
condition relating the acceleration equation, some of
these parameters, including the acceleration param-
eter a(t) and the Hubble parameter H(t), are regu-
larly varying functions. This is an integral limit con-
dition which is a part of the Howard-Marić theorem,
stated at the end of this section. One consequence
is that, according to the representation theory for
regularly varying functions, all these parameters de-
pend on a function ε(t) which is ”hidden” in the in-
tegral representation of regularly varying functions.
We shall see that the parameters a(t), ρ(t) and H(t)
uniformly depend only on ε(t), while the parameters
p(t) and q(t), besides ε(t), depend explicitly on terms
ε̇(t) and ε̇(t)t as well. While ε(t) → 0 as t →∞, this
is not necessary so for ε̇(t), or ε̇(t)t which may lead to
various evolutions of cosmological parameters. Here
we shall derive a differential equation for ε(t) and dis-
cuss its possible solutions. This differential equation
was announced in Mijajlović and Pejović (2015).

For better understanding we shall review
briefly some basic concepts related to regular vari-
ation. Even though the modern theory of regular
variations deals mainly with measurable functions,
we shall assume here that all appearing functions
are continuous in their domains and have a suffi-
cient number of derivatives, at least a continuous
second derivative. This assumption is clearly pur-
suant with the physical meaning of cosmological pa-
rameters. From the physical point of view, it means

that events such as Big Crunch, or Big Rip are not
included in our analysis. That is, in finite time t,
a(t) 6= 0 and a(t) does not become infinite. We are
particularly concerned with the properties of regu-
larly varying solutions of the second order differential
equation

ÿ + f(t)y = 0, (1)

assuming that f(t) is continuous on some time inter-
val [α,∞]. Note that the acceleration equation has
the form Eq. (1) if we take y(t) for a(t) and:

f(t) =
4πG

3

(
ρ(t) +

3p(t)
c2

)
. (2)

This fact makes the acceleration equation central in
our consideration. The reason is that the asymptotic
analysis of solutions of Friedman equations reduces
mainly to an analysis of solutions of the acceleration
equation.

The notion of a regular variation is a form of
a power law distribution. A weaker form of regu-
lar variation is described by the following power law
relationship between quantities2 F and t:

F (t) = tr(α + o(1)), α, r ∈ R. (3)

Therefore, the simplest form of the power law is given
by the equation y = αtk. Definition Eq. (3) of the
power law can naturally be extended by use of the
notion of a slowly varying function introduced by J.
Karamata.

A real positive continuous function L(t) de-
fined for x > x0 which satisfies:

L(λt)
L(t)

→ 1 as t →∞, λ > 0, (4)

is called a slowly varying function. A quantity F(t)
is said to satisfy the generalized power law if:

F (t) = trL(t) , (5)

where L(t) is a slowly varying function and r is a real
constant, so called the index of function F (t). Hence,
F (t) is a regularly varying function if and only if
F (t) satisfies the generalized power law. Examples
of slowly varying functions include ln(x) and iterated
logarithmic functions ln(. . . ln(x) . . .). In the rest of
the paper the regularly varying functions will be ab-
breviated by RV functions, while the term ”slowly
varying” will be denoted by SV.

The following representation, according to Jo-
van Karamata, of RV and SV functions is of the great
importance. It says that a function L is SV if and
only if there are measurable3 functions h(x), a func-
tion ε(t) and b ∈ R so that:

L(x) = h(x)e
∫ x

b
ε(t)

t dt, x ≥ b, (6)

2In the following, R will denote the set of real numbers.

3For our purpose it is safe to assume h(x) be continuous.
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and h(x) → h0 as x →∞, h0 is a positive constant.
For further properties of RV functions, one may see
Bigham et al. (1987).

Solutions L of differential equations that we
are working with represent mechanical phenomena.
Hence, as already mentioned, we may assume that L
is a twice differentiable function. The function ε(t)
is not uniquely determined and due to the represen-
tation Eq. (6) where it is ”covered” by the integral
sign, we shall often call it a hidden parameter. Fur-
ther, it is assumed that L(t) is normalized, i.e. that
h(x) is a constant function. The class of normalized
SV functions is denoted by N . In Mijajlović et al.
(2012) it was proved in a sequence of representation
theorems that the fundamental cosmological param-
eters for the expanding universe depend essentially
on the hidden parameter ε(t). As the Friedman equa-
tions are invariant under translation transformation,
this is also true for the expanding universe with the
cosmological parameter Λ.

In our study of Friedman equations we used
several results on RV solutions of the Eq. (1). There
are various conditions for f(t) that ensure that RV
solutions of ÿ + f(t)y = 0 to exist. We particu-
larly used the following result, according to Howard
and Marić (see Marić 2000) and (Kusano and Marić
2010):

Theorem Let −∞ < Γ < 1/4, and let α1 <
α2 be two roots of the equation:

x2 − x + Γ = 0. (7)

Further, let Li, i=1,2 denote two normalized SV
functions. Then there are two linearly independent
RV solutions of ÿ + f(t)y = 0 of the form:

yi(t) = tαiLi(t), i = 1, 2, (8)

if and only if lim
x→∞

x

∫ ∞

x

f(t)dt = Γ. Moreover:

L2(t) ∼ 1
(1− 2α1)L1(t)

.

The limit of the integral in the above theorem is
central in our analysis and, in general, it is not
easy to compute. However, it is easy to see that

lim
t→∞

t2f(t) = Γ implies lim
x→∞

x

∫ ∞

x

f(t)dt = Γ. Hence:

lim
t→∞

t2f(t) = Γ (9)

gives a useful sufficient condition for the existence
of RV solutions of the equation ÿ + f(t)y = 0 as
described in the previous theorem.

2. RV COSMOLOGICAL PARAMETERS

We already noted that the acceleration equa-
tion obviously has the form Eq. (1). Hence, under
appropriate assumptions, we can apply the analysis
of the previous section, in particular the Howard-
Marić theorem. For this reason, we shall write from
now on the acceleration equation in the form:

ä +
µ(t)
t2

a = 0, (10)

where:

µ(t) =
4πG

3
t2

(
ρ(t) +

3p(t)
c2

)
. (11)

Then, the integral limit in the Howard-Marić theo-
rem for the Eq. (10) looks like:

M(µ) = lim
x→∞

x

∫ ∞

x

µ(t)
t2

dt. (12)

Functions for which this integral limit converges de-
fine the so called Marić class of functions M. It is
easy to see that M is a functional defined on M.
Also, according to the discussion following this the-
orem, we have:

if lim
t→∞

µ(t) = Γ then M(µ) = Γ. (13)

We note that the opposite of Eq. (13) does not hold.
It is easy to find a function µ(t) such that M(µ) ex-
ists and is finite, but limt→∞ µ(t) does not exist4.

In Mijajlović et al. (2012) Theorems 3.2 and
3.3, RV solutions of Friedman equations are found
and in accordance with that, the cosmological pa-
rameters for Friedman non-oscillatory universe are
determined. In fact, assuming that the integral limit
M(µ) is convergent, say M(µ) = Γ, the following is
proven:

- if Γ < 1/4 then the universe is non-oscillatory.
- The converse is almost true, namely, if the universe
is non-oscillatory then Γ ≤ 1/4.
- If Γ < 1/4 and in some special cases for Γ = 1/4,
the acceleration parameter a(t), a solution of Fried-
man equations, is an RV function.

Assume that α is a root of the polynomial x2−x+Γ.
Therefore:

Γ = α(1− α) . (14)

Then the cosmological parameters are represented as
follows:

scale factor a(t): a(t) = tαL(t), α 6= 0 and L is an SV
function. In other words, a(t) is a regularly varying
function of index α.

4Example from Mijajlović et al. (2012): µ(t) =
1

8
− 3t2 cos(t3).
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Hubble parameter H(t):

H(t) =
α

t
+

ε

t
. (15)

Deceleration parameter q(t):

q(t) =
µ(t)
α2

(1 + η) =
1− α

α
− tε̇

α2
(1 + η) + τ. (16)

Assuming the scale factor a(t) satisfies the
generalized power law we can introduce a new and
useful constant w. It will appear that w is in
fact the equation of state parameter. So, assume
a(t) = tαL(t), L ∈ N and α 6= 0. We define w by:

w ≡ wα =
2
3α

− 1. (17)

Then the cosmological parameters can be put in a
more standard form:

α =
2

3(1 + w)
, a(t) = a0L(t)t

2
3(1+w)

H(t) ∼ 2
3(1 + w)t

, M(q) =
1 + 3w

2

.

(18)
Formulas for the exponent α and the Hubble parame-
ter H(t) are widely found in the literature. Formulas
for a(t) and q(t) are also reduced to the standard for-
mulas found in the literature if L(t) and q(t) are con-
stant at infinity, or if the equation of state p = wρc2

is assumed, or limt→∞ tε̇(t) = 0. We note that we
did not assume any of these assumptions in deriva-
tion of Eq. (18). In fact, we found asymptotics for
solutions of Friedman equations only by assuming
M(µ) = Γ < 1/4, and in certain cases for Γ = 1/4.
As far as we know, it is widely assumed (implicitly)
that the limit limt→∞ µ(t) exists and is finite, what
is a much stronger assumption than that the integral
limit M(µ) is convergent.

For the universe having flat curvature, one can
infer the following weak form of the equation of state
which gives a relation between pressure and density
parameters.

There are functions ξ and ζ such that p = ŵρc2,
where ŵ(t) = w − tξ̇ + ζ.

Therefore, if tξ̇ → 0 as t →∞, then ŵ(t) ≈ w, which
leads to p = wρc2 the standard equation of state and
classical asymptotics for cosmological parameters. In
Mijajlović et al. (2012), Proposition 3.4, we found:

M(µ) = Γ =
2
9
· 1 + 3w

(1 + w)2
. (19)

This allows us to give short derivations of asymp-
totics for cosmological parameters if the equation of
state is assumed. We illustrate the method for the
Hubble parameter H(t). The acceleration equation
is reduced to:

ä +
Γ

t2
a = 0, (20)

and also we have the well known equation for the
Hubble parameter:

Ḣ + H2 +
µ

t2
= 0. (21)

By substitution y(t) = H(−t) this equation is re-
duced to the Riccati equation:

ẏ = y2 +
Γ

t2
. (22)

This equation has the general solution (see Polyanin
and Zaitsev 2003 case 1.2.2-13)

y =
λ

t
− t2λ

(
t2λ+1

2λ + 1
+ C

)−1

∼ −λ + 1
t

(23)

where λ is a root of x2 + x + Γ = 0 and t → ∞.
Therefore:

H(t) = y(−t) ∼ λ + 1
t

=
α

t
, (24)

where α is a root of x2 − x + Γ = 0. Solving this
quadratic equation in α for Γ given by Eq. (19) (or
by Eqs. (17) and (19)) we immediately infer the for-
mula for H(t) in Eq. (18). In a similar manner, we
may infer the asymptotics for other cosmological pa-
rameters. However, if the equation of state is not as-
sumed, then for the solving of the Eq. (10) in general
case for the non-oscillatory universe, i.e. with the
condition M(µ) be convergent (and M(µ) < 1/4), we
need a much more subtle technique such as the the-
ory of regular variations and Tauberian theory (see
Korevar 2004), as shown in Mijajlović et al. (2012).

At this point we make a small historical digres-
sion. Professor John Barrow in a letter from October
2013 addressed our attention to his paper (Barrow
1998) where he established possible asymptotes for
polynomial pressure and density behaviors. To find
these asymptotics, Barrow applied some general the-
orems of Hardy and Fowler, which give the asymp-
totic behavior of all ultimately monotonic solutions
of the first- and second-order polynomial differen-
tial equations, to the Einstein equations describing
expanding universes. This theorem says that any
rational function H(x, y, y′) is ultimately monotonic
along a solution y(x) of an algebraic differential equa-
tion of the form f(x, y, y′) ≡ ∑

Axmyny′p = 0. It
is interesting that the asymptotics described by the
Hardy theorem was also used by Chandrasekhar in
the study of gravitational equilibrium of a gaseous
configuration in stars in which the pressure and the
density are related by a form of the equation of
state (see Chandrasekhar 1938). The Hardy theo-
rem comes from his theory Orders of infinity which
preceded and influenced the Karamata theory of reg-
ular variation.

We see that the deceleration parameter q(t),
equation of state, and pressure p(t) contain not only
the ”hidden” parameter ε(t), but ε̇(t) and tε̇(t) as
well. While ε(t) → 0 as t → ∞, functions ε̇(t) and
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tε̇(t) may not have this property. In fact, they can
be unbounded and oscillatory as well. This means
that q(t) and p(t) can be unbounded and oscilla-
tory as well. It seems that this fact is overlooked
in classical cosmology, mainly due to the absence of
”microscopic” analysis which gives us the theory of
regularly varying functions. Therefore, it is of an
interest to describe the hidden parameter ε in more
details.

3. DIFFERENTIAL EQUATION FOR ε

Let a(t) be a solution of the acceleration Eq.
(10). Suppose that the integral limit M(µ) is con-
vergent and that M(µ) = Γ < 1/4. According to the
previous section, these assumptions ensure that the
acceleration parameter a(t) is a normalized RV func-
tion. Finally, assume that ε is a ”hidden” parameter
in the representation Eq. (6) of a(t). Under these
conditions we shall prove that the function ε(t) is a
solution of the following general Riccati differential
equation:

tε̇ = (1− 2α)ε− ε2 + α(1− α)− µ(t), (25)

where α is a root of the polynomial x2 − x + Γ. To
prove this, first note that a(t) = tαL(t) and

L(x) = c0e
∫ x

b
ε(t)

t dt, x ≥ b,

for some constants c0 and b > 0. Then we have
L̇ =

ε

t
L, where from we find:

L̈ = (ε2 + ε̇t− ε)Lt−2. (26)

After a short derivation directly from a(t) = tαL(t)
we find:

ä = L̈tα + 2αL̇tα−1 + α(α− 1)Ltα−2. (27)

Substituting L̇ and L̈ in this identity, we find

ä = (ε2 + ε̇t− ε + 2αε + α(α− 1))Ltα−2. (28)

Substituting so obtained ä and a in the acceleration
Eq. (10) and canceling appropriate terms we obtain
the differential equation Eq. (25).

We note that by Eq. (14) there is another
form of the Eq. (25):

tε̇ = (1− 2α)ε− ε2 + Γ− µ(t). (29)

We also remark the striking similarity of the
Eq. (25) to Emden’s differential equation, well
known to play a fundamental role in the study of
the internal structure of the stars, see for example
Hopf (1931).

We continue now to discuss properties of so-
lutions of the Eq. (25). Functions having the limit
0 at infinity are mapped by the functional M into 0.

Hence M(ε) = 0 and M(ε2) = 0. Also M(µ) = Γ
and M(Γ) = Γ. We have now to distinguish between
two cases:

a. There exists limt→∞ µ(t).
b. limt→∞ µ(t) does not exist but, of course, the
integral limit M(µ) does exist.

In the former case, tε̇(t) tends to 0 as t →∞. Hence,
applying functional M on the Eq. (29), we obtain:

M(tε̇) = 0. (30)

Actually, this formula is valid for any continuously
differentiable function which tends to zero as t →∞
and this can be proved by partial integration.

By remark Eq. (13), which in fact holds for
arbitrary continuous functions, we infer the following
result:

if lim
t→∞

tε̇(t) exists, then lim
t→∞

tε̇(t) = 0. (31)

In particular, if limt→∞ µ(t) = Γ = α(1 − α), then
tε̇ has the limit 0 at infinity, hence ε̇ and tε̇ can be
neglected in representation of cosmological parame-
ters. In this case, let us call it the tame case, q(t)
and the state equation reduce to their standard form
in classical cosmology:

q(t) =
1 + 3w

2
, p(t) = wρ(t)c2.

The later, non-tame and particularly interesting case
is when limt→∞ µ(t) does not exist but anyhow
M(µ) = Γ = α(1 − α). Then the ”hidden” parame-
ter ε, in fact its derivative ε̇, might have a strong in-
fluence in asymptotical behavior of parameters q(t),
p(t) and the equation of state. In this case one can
show, for example, that the function ξ(t) = tε̇(t) os-
cillates infinitely many times, i.e. it intersects the
time-axes infinitely many times. This property of
ξ would induce variations of deceleration parameter
q(t) around the value:

1− α

α
=

1 + 3w

2
(32)

see Eqs. (16) and (18), and also of the energy pres-
sure p(t), see the weak form of the equation of state.

If ζ = (1 − 2α)ε − ε2, then Eq. (29) may be
written as:

tε̇ = ζ + Γ− µ(t) . (33)

The function ζ(t) has the limit 0 at infinity, where-
from we have the following relation:

tε̇ ∼ Γ− µ(t) , (34)

which is particularly interesting when limt→∞ tε̇(t)
does not exist. From the relation Eq. (34) we see
once again that if we assume t → ∞ then tε̇(t) → 0
if and only if µ(t) → Γ.

We also observe that under the substitution
η = (ε + α)/t the Eq. (25) is reduced to:

η̇ + η2 +
µ

t2
= 0. (35)
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Note that this the same differential equation Eq. (21)
whose solution is the Hubble parameter H(t). There-
fore, H(t) ∼ η(t), pursuant to the asymptotics of
H(t) we found in Eq. (24).

4. DISCUSSION

We shall discuss briefly some possible physi-
cal explanations or models assuming the non-tame
case. The explanation is proposed taking into ac-
count properties of the ”hidden” parameter ε(t).

1. Dark matter and dark energy are in the
equilibrium but fluctuations of this state produce
variation of ŵ(t), q(t) and p(t).

2. Variations of q(t) and p(t) are consequences
of the extremely rapid expansion of the Universe
which appeared in the inflationary epoch (about
10−36 seconds after the Big Bang). We may think of
these variations as an echo effect due to thermaliza-
tion which appeared when the inflation epoch ended
(about 10−32 seconds after the Big Bang).

3. Variations of q(t) and p(t) are consequences
of the existence and influence of the dual universe.
Even though it may sound as a mathematical fic-
tion, we can easily and explicitly find the dual set of
”cosmological parameters” starting from the second
fundamental solution L2(t) in the Howard - Marić
theorem applied to the acceleration equation. To
find the dual set of cosmological parameters we take
the second root β = 1− α of the quadratic equation
x2 − x + Γ = 0 appearing in this theorem. Now we
use β instead of α for the index of the RV solution
a(t) - deceleration parameter and for determination
of other constants and cosmological parameters. For
example, we derived in [Mijajlović at al., 2012] the
following symmetric identity for equation of state pa-
rameters:

wα + wβ + 3wαwβ = 1 (36)

For our universe we have w = wα, while for the dual
universe the corresponding equation of state param-
eter is wβ . In a similar manner one can deduce for-
mulas for other parameters. If one wants to give
any physical meaning to the so obtained dual set of
functions, it is rather natural to interpret them as
cosmological parameters of the dual universe.

We note that any of the proposed explanations
does not exclude the validness of the other two. If
these models, or some of them are valid, then the
variations of cosmological parameters in the non-
tame case may be seen also as the resultant of their
mutual interference.

5. CONCLUSION

This paper is a continuation of the asymptot-
ical analysis of solutions of Friedman equations that
we started in our paper (Mijajlović et al. 2012), us-
ing the theory of regularly varying functions. Here
we discussed the possible importance of properties of
the ε parameter which appears in the representation

of regularly varying functions. Clearly two possibil-
ities are distinguished: the tame case described by
limt→∞ tε̇(t) = 0, and the opposite, when this limit
does not exist. We also found the differential equa-
tion that ε(t) must satisfy and we discussed proper-
ties of solutions to this equation.
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UDK 524.834
Originalni nauqni rad

U radu On asymptotic solutions of Fried-
mann equations (Mijajlović et al. 2012), pri-
menili smo teoriju regularno promenǉivih
funkcija u asimptotskoj analizi rexeǌa
Fridmanovih jednaqina. Kao xto je dobro
poznato, rexeǌa ovih jednaqina reprezen-
tuju kosmoloxke parametre. Dakle, prema
teoriji regularno promenǉivih funkcija, svi

kosmoloxki parametri zavise od funkcije
ε(t) koja se pojavǉuje u ǌihovoj integralnoj
reprezentaciji i za koju va�i limt→∞ ε(t) = 0.
U ovom radu izveli smo diferencijalnu jedna-
qinu za ε(t), diskutovali rexeǌa te jednaqine
i dali neke fiziqke interpretacije.
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