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SUMMARY: The release of the 2MASS Redshift Survey (2MRS) with its 44599
galaxies allows the deduction of their masses in nearly complete sample. A cubic
box with side of 37 Mpc containing 2429 galaxies is extracted and the Newtonian
gravitational field is evaluated both at the center of the box as well as in 101 x 101
x 101 grid points of the box. The obtained results are then discussed in the light of
the shell theorem which states that inside of a sphere the gravitational field is zero.
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1. INTRODUCTION

The determination of the gravitational field in
cosmology varies between the Newton law and vari-
ous types of modifications to this law. The reference
formula is the Newtonian force:

F = −G
mM

r2
, (1)

where G is the gravitational constant, M the first
mass, m the second mass and r the distance between
the two masses. The enormous progress in the obser-
vations of the spatial distribution of galaxies points
toward a cellular structure, i.e. the galaxies are sit-
uated on the surfaces of bubbles, rather than to be
aggregated in a random structures (see Coil 2012).
In the limiting case in which all the galaxies were
situated on the surfaces of spheres, the gravitational
forces should be zero due to the shell theorem or
nearly zero due to the fact that the galaxies are dis-
tributed in a discrete way rather than in a continuous
way. This paper describes in Section 2 two astro-
nomical catalogs which allow to calibrate the size of
the cosmic voids. Section 3 is devoted to the study

of the photometric properties of a nearly spherical
distribution of galaxies and to a careful analysis of
completeness connected with the selected astronom-
ical catalog. Section 4 contains the evaluation of the
Newtonian gravitational field in a box of 37 Mpc in
which the boundary conditions are properly evalu-
ated. Section 5 reports on a comparison between
three ideal structures and a real void as extracted
from a slices oriented catalog.

2. OBSERVATIONS

This section processes the Sloan Digital Sky
Survey Data Release 7 (SDSS DR7), see Abaza-
jian et al. (2009) and the 2MASS Redshift Survey
(2MRS), see Huchra et al. (2012).

2.1. Observed statistics of the voids

The distribution of the effective radii between
the galaxies of SDSS DR7 has been reported in Pan
et al. (2012). This catalog contains 1054 voids and
Table 1 reports their basic statistical parameters.
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Table 1. The statistical parameters of the effective
radii in SDSS DR7.

parameter value
mean 18.23h−1 Mpc
variance 23.32h−2 Mpc2

standard deviation 4.82h−1 Mpc
kurtosis 0.038
skewness 0.51
maximum value 34.12h−1 Mpc
minimum value 9.9h−1 Mpc

2.2. The 2MASS

The 2MASS is a catalog of galaxies which con-
tains observations in the near-infrared J, H and K-
bands (1-2.2 µm) and therefore detects the galax-
ies in the so called ”Zone of Avoidance”, see Jarrett
(2004) and Crook et al. (2007). At the moment of
writing, the 2MRS consists of 44599 galaxies with
redshift in the interval 0 ≤ z ≤ 0.09 (Huchra et al.
2012). The catalog gives the galactic latitude, the
galactic longitude and the expansion velocity; from
these three parameters it is possible to deduce the
Cartesian coordinates, X,Y and Z expressed in Mpc.
Fig. 1 reports on a cut of a given thickness of 2MRS
where ∆ expresses the thickness of the cut and NG
the number of selected galaxies.

Fig. 1. Cut of the 3D spatial distribution of 2MRS
in the X = 0 plane when ∆ = 10 Mpc, the squared
box has a side of 148 Mpc and NG = 1244.

3. PHOTOMETRIC PROPERTIES

This section reviews the photometric maxi-
mum in the framework of the luminosity function for
galaxies and the Malmquist bias which fixes the con-
cept of a complete sample. A model for the luminos-
ity of galaxies is the Schechter function Φ(L; L∗, α, Φ)
where α denotes the slope for low values of L, L∗ is
the characteristic luminosity, and Φ∗ is a normaliza-
tion, see Eq. (55) in Zaninetti (2010b). This function
was suggested by Schechter (1976) and the distribu-
tion in absolute magnitude Φ(M ;M∗, α, Φ) can be

found in Eq. (56) in Zaninetti (2010b) where M∗
is the characteristic magnitude as derived from the
data. The parameters of the Schechter function con-
cerning the 2MRS as well as the bolometric luminos-
ity M¯

KS
can be found in Cole et al. (2001) and are

reported in Table 2.

Table 2. The parameters of the Schechter func-
tion and bolometric magnitude for the 2MRS in the
Ks − band.

parameter 2MRS
M∗ − 5 log10 h [mags] ( -23.44 ± 0.03)
α -0.96 ± 0.05
Φ∗ [h3 Mpc−3] ((1.08± 0.16)10−2)
M¯

KS
3.39

h 0.7

Fig. 2. The galaxies of the 2MRS with 8.48 ≤
m ≤ 10.44 or 1202409 L∗¯

Mpc2 ≤ f ≤ 7267112 L∗¯
Mpc2

organized in frequencies versus heliocentric redshift,
(empty circles); the error bar is given by the square
root of the frequency. The maximum frequency of ob-
served galaxies is at z = 0.015. The full line is the
theoretical curve generated by dN

dΩdzdf (z; zcrit, c, H0).
In this plot, M¯

KS
= 3.39, h = 0.7, M∗=-24.87, α =-

0.98, Φ∗=0.0037, χ2 = 721 and the number of bins
40.

The number of galaxies at a given flux f as a
function of the redshift z, dN

dΩdzdf (z; zcrit, c,H0), are
given by Eq. (1.104) of Padmanabhan (1996) or by
Eq. (6) of Zaninetti (2010b), where dΩ, dz, and df
are the differentials of the solid angle, the red-shift,
and the flux, respectively, zcrit is a parameter, H0
the Hubble constant and c is the velocity of light.
The number of galaxies at a given flux has a maxi-
mum at z = zmax(zcrit, α), see Eq. (8) in Zaninetti
(2010b). Fig. 2 reports on the number of observed
galaxies in the 2MRS catalog at a given apparent
magnitude and the theoretical curve as represented
by dN

dΩdzdf (z; zcrit, c,H0). The merit function χ2 can
be computed as:
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χ2 =
n∑

j=1

(
ntheo(z)− nastr(z)

σnastr(z)
)2 , (2)

where n is the number of data, the two indices theo
and astr stand for theoretical and astronomical, re-
spectively and σnastr(z)

2 is the variance of the astro-
nomical number of data; the obtained value is re-
ported in the caption of Fig. 2.

The total number of galaxies in the 2MRS as
function of z is reported in Fig. 3 as well as the
theoretical curve represented by the numerical inte-
gration of dN

dΩdzdf (z; zcrit, c,H0).

Fig. 3. All the galaxies of the 2MRS with
mks < 11.75 organized in frequencies versus helio-
centric redshift (empty circles); the error bar is given
by the square root of the frequency. The maximum
frequency of all observed galaxies is at z = 0.017.
The full line is the theoretical curve generated by

dN
dΩdzdf (z; zcrit, c, H0). In this plot M¯

KS
= 3.39, h =

0.7, M∗=-23.97, α =-0.96, Φ∗=0.0037, χ2 = 1267
and the number of bins is 30.

The mass of a galaxy can be evaluated once
the mass luminosity ratio R, is given, by:

R = 〈M
L
〉 . (3)

Some values of R are now reported: R ≤ 20 by
Kiang (1961) and Persic and Salucci (1992), R = 20
by Padmanabhan (1996) and R = 5.93 by van der
Marel (1991). The Malmquist bias, (Malmquist
1920, 1922), was originally applied to the stars, and
later on to the galaxies by Behr (1951). The observ-
able absolute magnitude ML(mL; z, H0) as a func-
tion of the limiting apparent magnitude mL, is given
by Eq. (51) in Zaninetti (2010b). The bias pre-
dicts, from a theoretical point of view, an upper limit
for the maximum absolute magnitude which can be
observed in a catalog of galaxies characterized by a
given limiting magnitude and Fig. 4 reports such a
curve as well as the galaxies of the 2MRS.

Fig. 4. The absolute magnitude M of 36464
galaxies belonging to the 2MRS when M¯

KS
=

3.39 and H0 = 70 km s−1 Mpc−1 (green points).
The upper limit theoretical curve as represented by
ML(mL; z,H0) is reported as the red thick line when
mL=11.75.

The limiting magnitude of the 2MRS is
mL=11.75 and therefore the 2MRS is complete for
z ≤ 0.0025. For values of z greater than this value
the observed sample is not complete and we can
introduce the efficiency εs(z; Mmax,Mmin,mL, c, h)
where Mmax and Mmin are the maximum and min-
imum absolute magnitudes of the considered cata-
log and h = H0/100, see Eqs. (51-53) in Zaninetti
(2010b). As an example, when z ≈ 0.017 the sample
covers the 52% of the range in absolute magnitude.

4. THE GRAVITATIONAL FIELD

We now explore a connection with the shell
theorem. Let us consider a spherically symmetric
surface of radius a on which a total mass M is dis-
tributed in a uniform way. The mass per unit area
µ is:

µ =
M

4πa2
. (4)

The force inside the spherical surface is

Γ = 0 , r < a , (5)

see Eq. (11.24) in Alonso and Finn (1992) and, there-
fore, the shell theorem can be formulated: ”A uni-
form shell of matter exerts no gravitational force on a
particle situated inside a shell”. We now compute the
force in the center (x=0, y=0, z=0) of a hemisphere
which resides on the positive z-axis. The vectorial
intensity of the field is:

dΓ = G
dm

a2
, (6)

being

dm = µa2dΩ , (7)
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where dΩ = sin θdθdφ is the solid angle with 0 ≤ φ ≤
2π and 0 ≤ θ ≤ π

2 . The three Cartesian components
of the field in the 3D case are:

Γz =
∫ 2π

0

dφ

∫ 0

π
2

Gµsinθ cosθ dθ ,

Γx =
∫ 2π

0

dφ

∫ 0

π
2

G µsinθ sinθ cosφdθ , (8)

Γy =
∫ 2π

0

dφ

∫ 0

π
2

G µsinθ sinθ sin φdθ .

The integration gives in the 3D case for the three
forces at the center:

Γz =
GM

2a2
,

Γx = Γy = 0 . (9)

We now consider the 2D case of mass concentrated
on a half circle of radius a situated on the positive
y-axis where, now, the mass per unit length µ2D is:

µ2D =
M

πa
. (10)

The 2D vectorial intensity of the field is:

dΓ = G
dm

a2
, (11)

with:
dm = µ2Dadθ , (12)

where 0 ≤ θ ≤ π. The 2D Cartesian gravitational
components of the force at the center (x=0, y=0)
are:

Γy = G
µ2D

a

∫ π

0

sin θdθ ,

Γx = G
µ2D

a

∫ π

0

cos θdθ . (13)

The integration of the 2D case gives:

Γy =
2GM

πa2
,

Γx = 0 . (14)

At the moment of writing the Committee on Data for
Science and Technology (CODATA) recommends:

G = (6.67384± 0.00080)× 10−11 m3

kgs2
, (15)

see Mohr et al. (2008). Before to continue we ex-
press the Newtonian gravitational constant in the
following units: length in Mpc, mass in Mgal which
is 1011M∗¯ and yr8 which are 108 yr

G = 4.4997510−6 Mpc3

Mgalyr82
. (16)

The two formulae (9) in 3D and (14) in 2D represent
a useful reference to test a numerical code and to
fix the range of variability of the gravitational field.
According to our 3D theory, the gravitational field
at the center of the cosmic voids varies between the
minimum value of zero (shell theorem) and a maxi-
mum value:

Γz =
GM

2R
2 = 6.769 10−9N

MpcMgal

yr82
, (17)

where N is the number of galaxies in the spheri-
cal shell surrounding the cosmic void having mass
M = Mgal, and R=18.23 Mpc is the average radius
of the cosmic voids.

We are now ready to process the 2MRS data
and we associate to each galaxy, as reported in Fig.
1, a mass given by Eq. 3. The three components of
the gravitational field are reported in Table 3.

From a careful analysis of Table 3 it is possi-
ble to conclude that the gravitational field is greater
than zero but smaller with respect to the case in
which all the galaxies reside on a half sphere of ra-
dius equal to the averaged radius of the sample. Fig.
5 reports on a slice at the middle of a smaller box.

Fig. 5. Cut-map of the 3D gravitational field of
2MRS when R=6. In order to have periodic bound-
ary conditions the side of the box is 37 Mpc.

Table 3. 3D Gravitational forces expressed in MpcMgal
yr82 at the center of a 3D box of side 37 × 2 Mpc when

R =6 and theoretical 3D formula (9). At z=0.008, the efficiency of the sample is ≈ 70.6 %.

Environment Γx Γy Γz Γ
real structure -9.77 10−6 −1.53 10−5 −3.04 10−6 1.84 10−5

half sphere 0 0 2.55 10−5 2.55 10−5
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The spatial displacement of the 3D grid
Γ(i, j, k) which represents the absolute value of the
gravitational field can be visualized through the iso-
density contours and, as an example, we considered
a 101×101×101 grid. In order to do so, the max-
imum value Γn(i, j, k)max and the minimum value
Γn(i, j, k)min should be extracted from the three-
dimensional grid. A value of this grid can be fixed
by the following equation:

Γn(i, j, k)chosen = Γn(i, j, k)min +
(Γn(i, j, k)max − Γn(i, j, k)min)× coef , (18)

where coef is a parameter comprised between 0 and
1. This iso-surface rendering of the gravitational field
is reported in Fig. 6; the Euler angles characterizing
the point of view of the observer are also reported.

Fig. 6. Iso–surface of the logarithm of the 3D grav-
itational field of 2MRS when R=6 and coef = 0.43.
The orientation of the figure is characterized by the
Euler angles, which are Φ=30◦, Θ=30◦ and Ψ=30◦.

Fig. 7. Decimal logarithmic histogram (step-
diagram) of the values of the gravitational field eval-
uated in 101×101×101 points.

Another interesting quantity to plot is the
statistics of values of already defined spatial grid Γn
which holds 101 × 101 ×101 values of gravitational
field, see Fig. 7.

From this histogram it is possible to conclude
that 90% of the space has a gravitational field within
3.24 10−7 MpcMgal

yr82 ≤ Γn ≤ 3.16 10−5 MpcMgal
yr82 .

5. THE VORONOI SIMULATION

The Poisson Voronoi tessellation (PVT) is a
useful tool to explore the spatial clustering of galax-
ies. The filaments of galaxies visible in the slices-type
catalogs are due to the intersection between a plane
and the PVT network of faces as the first approxi-
mation. An improvement can be obtained by coding
the intersection between the slice of a given open-
ing angle and the PVT network of faces (Zaninetti
2006, 2010a). As an example, Fig. 8 reports both
the CFA2 slice as well as the simulated slice.

Fig. 8. Polar plot of real galaxies (green points)
belonging to the second CFA2 redshift catalog and
the simulated galaxies in the PVT framework (red
points). More details can be found in Zaninetti
(2006).

Fig. 9. Half circle with a=12.25 Mpc (green stars)
and half irregular polygon (red squares). The number
of unit masses, 1 Mgal, is 455.

We now test formula (14) in a discrete envi-
ronment rather than in the continuous case. The
test now calculates the two forces, Γx and Γy, in the
center of the circle and in a 2D irregular Voronoi
polygon generated by PVT which has the same av-
eraged radius of the circle and center occurring in
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the same location of the generating seed. The half
Voronoi polygon and the half circle are displayed in
Fig. 9 and the two forces, Γx and Γy, in Table 4.

Table 4. Gravitational forces expressed in
MpcMgal/yr82 in the comparison between half cir-
cle, 2D formula (14), and half irregular polygon. The
parameters are Mgal=455 and a = 12.25453 Mpc.

Environment Γx Γy

Half circle -theory 0 8.67 10−6

Half circle -numeric −4.16 10−8 8.81 10−6

Half polygon-numeric 1.37 10−6 1.36 10−5

We are now ready to process a real void and
our attention is focused on a CFA2 slice shown in
Fig. 10.

Fig. 10. Polar plot of the real galaxies (green
points) belonging to the second CFA2 redshift catalog.

A real void is extracted and the averaged ra-
dius of the galaxies on the boundary of that void is
computed, see Fig. 11.

Fig. 11. Circle with a= 12.25 Mpc (green
stars) and real void extracted from a CFA2 slice (red
squares). The number of galaxies with unit mass is
101.

The forces in the x and y direction are then
computed and reported in Table 5.

Table 5. Gravitational forces expressed in MpcMgal
yr82

for the comparison between a circle and a real
CFA2 void. The parameters are Mgal=101 and
a = 12.25453 Mpc.

Environment Γx Γy

circle–theory 0 0
half circle–theory 0 1.92 10−6

real void–numeric −1.36 10−7 8.3 10−7

The presence of both a discrete number of
galaxies and a not exactly symmetric displacement of
the galaxies produces gravitational forces that take
a finite value rather than zero. It is interesting to
point out that Γy, due to the galaxies on the bound-
ary of the real void, is smaller than the theoretical
value as given by the half circle which represents a
maximum theoretical value.

6. CONCLUSIONS

The masses of the galaxies can be deduced
starting from the luminosities in the framework of
the mass luminosity ratio R. The spatial distribution
of the masses of the galaxies allows the computation
of the Newtonian gravitational forces acting on the
unit mass. As a reference for the evaluation of the
forces the 2D and 3D shell theorem is analyzed. The
evaluation of forces at the center of the box allows
to conclude that the forces are smaller with respect
to the mass concentrated on a half sphere of radius
equal to the averaged radius of the selected sample
of galaxies, but bigger than zero due to the fact that
the distribution of the galaxies is discrete rather than
continuous. A careful analysis of a cubic box having
sides of 37 Mpc allows to state that 90 % of the space
has gravitational forces around the average value of
2.1 10−5 MpcMgal

yr82 .
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ME�UGALAKTIQKO ǋUTNOVO GRAVITACIONO POǈE
I TEOREMA O SFERNO-SIMETRIQNOJ ǈUSCI
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Originalni nauqni rad

Objavǉivaǌe pregleda neba 2MASS Red-
shift Survey (2MRS) koji sadr�i 44599 galak-
sija, omogu�uje izuqavaǌe masa galaksija u
skoro celokupnom uzorku. Izdvojena je kocka
sa stranicama od 37 Mpc koja sadr�i 2429
galaksija i izraqunato je ǋutnovo gravita-
ciono poǉe, kako u centru kocke, tako i na

mre�i od 101 × 101 × 101 taqaka unutar ǌe.
Dobijeni rezultati su zatim diskutovani u
svetlu teoreme o sferno-simetriqnoj ǉusci
(xupǉoj lopti), koja postulira da je gravi-
taciono poǉe jednako nuli u unutraxǌosti
takve ǉuske.
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