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SUMMARY: The aim of this paper is to present results of analytical calculation
of chemical potential of a Lennard Jones (LJ) fluid performed in two ways: by using
the thermodynamical formalism and the formalism of statistical mechanics. The
integration range is divided into two regions. In the small distance region, which
is r ≤ σ in the usual notation, the integration range had to be cut off in order to
avoid the occurence of divergences. In the large distance region, the calculation
is technically simpler. The calculation reported here will be useful in all kinds of
studies concerning phase equilibrium in a LJ fluid. Interesting kinds of such systems
are the giant planets and the icy satellites in various planetary systems, but also
the (so far) hypothetical quark stars.
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1. INTRODUCTION

The aim of this paper is to present a calcu-
lation of chemical potential of a fluid consisting of
neutral atoms or molecules. Interest in such systems
has considerably increased towards the end of the last
century, as a consequence of progress in planetary
science. Until the end of October 2010, according to
data at http://exoplanet.eu, as much as 493 planets
outside the Solar system have been detected. It has
been shown that 423 of them have masses M ≤ 5MJ
where MJ is the mass of Jupiter. The major part
(398) of the stars with planets have masses equal to
or smaller than the solar mass, and 151 planet has
the semi-major axis of the orbit between 1 and 3
astronomical units.

Judging by the experience from our Solar Sys-
tem, it is expectable that this interval of distances
from a star corresponds to temperatures under which
fluids consisting of neutral atoms and molecules can
exist. It is known that giant planets have huge at-
mospheres and dense fluid interiors. Another class

of planetologically interesting systems, in which flu-
ids are important, are the icy satellites in our plan-
etary system. For example, it has been concluded
from data accumulated in the course of the Galileo
mission, that Jovian satellites Europa and possibly
Callisto almost certainly have fluid oceans beneath
their surfaces.

Calculations to be discussed in this paper can
also find applications in theoretical studies of quark
stars. These are (so far hypothetical) phases of ex-
tremely dense matter, expected to occur in interiors
of neutron stars. In a recent study, aiming to con-
strain the parameters of solid quark matter by using
data on the binary pulsar PSRJ1614 − 2230, the
Lennard-Jones model was used to describe the cold
quark matter in quark stars (Lai and Xu 2010). It
was shown there that if the number of quarks in a
quark cluster is Nq < 103 there is enough parameter
space for the existence of quark stars with masses
higher than 2 solar masses.

Modelling theoretically the internal structure
of celestial objects ranging from the icy satellites
and/or giant planets to quark stars, demands the
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a knowledge of chemical potential of the fluid in their
interiors.

A necessary preparatory step in such a study
must be the determination of interparticle interac-
tion potential. Obviously, for a fluid or any other
kind of a system to be in equilibrium, the interparti-
cle potential must be a combination of an attractive
and a repulsive term.

It is known that there exists an attractive force
- called the van der Waals (vdW) force (for exam-
ple Margenau 1939 or Dzyaloshinskii, Lifchitz and
Pitaevskii 1961) between a pair of neutral atoms or
molecules at a mutual distance larger than their re-
spective dimensions. The potential corresponding to
the vdW force is proportional to r−6, where r is the
interparticle distance. As shown by F. London, the
physical origin of the vdW force is the interaction of
instantenous multipoles, while the repulsive contri-
bution is of electrostatic origin.

The vdW forces are anisotropic,which renders
them additionally complicated (Dzyaloshinskii, Lif-
chitz and Pitaevskii 1961). However, their isotropic
part is often approximated by the so called Lennard-
Jones (LJ) potential. All the calculations in what
follows will deal with this particular model poten-
tial. The LJ model potential has the form:

u(r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6

]
. (1)

The symbol ε denotes the depth of the potential well,
while σ is the diameter of the molecular ”hard core”.
Obviously, limr→0u(r) = ∞. It can simply be shown
that limr→σu(r) = 0 and that (∂u(r)/∂r) = 0 for
rmin = 21/6σ. The depth of the potential well is
u(rmin) = −ε.

An example of the LJ potential drawn for the
particular case of CH4, with values of ε and σ from
(Reichl 1988), is represented in Fig. 1. This particu-
lar molecule is interesting in two research fields: the
planetary science, because it is present in the atmo-
spheres of the giant planets, but also in studies of
the interstellar medium. In the figure, the distance
is expressed in units of σ and the potential divided
by the Boltzmann constant kB given in units of K.
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Fig. 1. The LJ potential for methane (CH4).

2. THE METHOD OF CALCULATION OF
THE CHEMICAL POTENTIAL

Chemical potential of a fluid (or any other sys-
tem) can be calculated in two different ways: by us-
ing the general thermodynamical formalism, or by
the general formalism of statistical mechanics.

2.1. The thermodynamical formalism

In this approach the calculation starts from
the definition of the Gibbs potential:

G = U − TS + PV (2)

where all the symbols have their standard meanings.
Using the virial expansion, the pressure can be ex-
pressed as (Landau and Lifchitz 1976):

P ∼= PID(1 +
N

V
B) (3)

where N is the number of particles in the system
and V the volume. The symbol B denotes the sec-
ond virial coefficient, given by:

B =
1
2

∫ ∞

0

(1− exp−u(r)/T )dV (4)

and PID is the pressure of the ideal gas. The symbol
u(r) denotes the interaction potential. Inserting Eq.
(3) into Eq. (2), it follows that

G = U − TS + PV = GID + NPIDB . (5)

Chemical potential is defined as µ =
(∂G/∂N)P,T , which implies that:

µ = (
∂GID

∂N
)P,T + PIDB + NB(

∂PID

∂N
)P,T (6)

or

µ = µID + PIDB + NB(
∂PID

∂N
)P,T . (7)

The equation of state of ideal gas is PIDV = NT
which finally leads to

µ = µID + 2PIDB . (8)

For the particular case of the LJ potential, it can be
shown that the second virial coefficient is given by
(Reichl 1988):

B(T ) = −(b0/2)
∞∑

n=0

1
n!

Γ(
2n− 1

4
)(

ε

T
)

2n+1
4 (9)

where b0 = 2πσ3/3 and Γ denotes the Gamma func-
tion. Inserting Eq. (9) into Eq. (8) it follows that:
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µ = µID − b0pID

∞∑
n=0

1
n!

Γ(
2n− 1

4
)(

ε

T
)

2n+1
4 (10)

which is the result for chemical potential. Limiting
the sum in this expression to terms up to and includ-
ing n = 1, it follows that:

µ ∼= µID + 2pIDb0

[
2.45083− 1.8128(

ε

T
)1/2

]

×(
ε

T
)1/4 . (11)

2.2. The formalism of statistical mechanics

The chemical potential of a fluid is given by
(Hill 1987):

µ

kBT
= ln(ρλ3) +

ρ

kBT

∫ 1

0

dγ

∫ ∞

0

dr

×4πr2u(r)g(r) (12)

where γ denotes the ”coupling parameter” (Hill
1987), ρ is the particle number density , u(r) the
interaction potential and g(r) is the radial distribu-
tion function. The symbol h̄ is the Planck constant
divided by 2π, m is the particle mass and λ is the
thermal wavelength given by

λ = (
2πh̄2

mkBT
)1/2 .

Expression (10) is valid under the condition ρλ3 > 1,
which leads to:

ρ ≥
(

mkBT

2πh̄2

)3/2

. (13)

The radial distribution function is a ”bridge”
relating macroscopic thermodynamic properties with
interparticle interactions in any kind of a substance.
In the theory of liquids, g(r) can be determined from
first principles (Hill 1987) just by assuming a suit-
able form of intermolecular potential (Morsali et al.
2005). In what follows, the result for g(r) obtained
in Morsali et al. (2005) will be used. Changing the
variable from r to x = r/σ, and performing the inte-
gration over γ, it follows that:

µ

kBT
= ln(ρλ3) + 4πσ3 ρ

kBT

∫ ∞

0

dxx2u(x)g(x) .

(14)
The domain of integration can be divided into two
subdomains x ∈ [0, 1] and x ∈ [1,∞]

I = σ3

∫ ∞

0

dxx2u(x)g(x) =

σ3[
∫ 1

0

dxx2u(x)g1(x) +
∫ ∞

1

dxx2u(x)× g2(x)]

= σ3 × [I1 + I2] . (15)

The divergence of the LJ potential which occurs
when x → 0 can be bypassed either by introducing a
suitable change of the range of integration x ∈ [x0, 1]
instead of x ∈ [0, 1] with x0 6= 0, or by changing the
form of the potential in the domain x ∈ [0, 1]. For
x ∈ [0, 1] the function g(r) has the form

g1(x) = s exp[−(mx + n)4] (16)

and for x ∈ [1,∞] the radial distribution function is

g2(x) = 1 +
1
x2

exp[−(ax + b)] sin[(cx + d)] +

1
x2

exp[−(gx + h)] cos[(kx + l)] (17)

where a, b, c, d, g, h, k, l, m, n and s are functions of
pressure, temperature and density given in Morsali
et al. (2005).

The appropriate boundary conditions, that
the radial distribution function should tend to 1 in
the limits of zero density and infinite distance, and
the consequences of these conditions are also dis-
cussed there. As a consequence, the functions b, d, h
and l are functions of density only, n is the function
of temperature only and the other functions depend
on the temperature and density (Morsali et al. 2005).

3. THE CALCULATION

3.1. The case x ∈ [0, 1]

With the change of variables x = r/σ, the LJ
potential gets the form:

u(x) = 4ε[x−12 − x−6] . (18)

Inserting Eqs. (16) and (18) into the expres-
sion for I1 in Eq. (15), it follows that:

I1 = 4sε

∞∑

l=0

(−1l)
(l!)

∫ 1

x=x0

(
1

x10
− 1

x4
)

(mx + n)4ldx . (19)

Performing the integrations, after some alge-
bra, it finally follows that:

I1
∼= 8

9
sε× [1 +

27
5

m4 −
27
10

m8 − 9m12

54
+ .. +

1
2x9

0

− n4

2x9
0

+ ..] . (20)
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3.2. The case x ∈ [1,∞]

In this case, the calculation of chemical po-
tential is more straightforward. Inserting Eqs. (17)
and (18) into the expression for I2 in Eq. (15), and
performing the integration, gives the following ap-
proximate result for the integral I2:

I2
∼= −8ε

9
+ πε cos[d] cosh[b][

a5

120
− a3c2

12

+
ac4

24
− c

5
cos[c] cos[d] + . . .] . (21)

3.3. The chemical potential

According to Eqs. (14) and (15) chemical po-
tential is given by:

µ = kBT ln(ρλ3) + 4πρσ3(I1 + I2) (22)

where the first terms of I1 and I2 are given by Eqs.
(20) and (21).

Inserting Eqs. (20) and (21) into Eq. (22), one
gets a simple analytical approximation for chemical
potential of a LJ fluid.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have obtained an approxi-
mate analytical expression for chemical potential of
a Lennard Jones fluid. Two ways in which such an
expression can be obtained have been presented, and
both of these approaches have been applied.

The approach based on the general thermo-
dynamic formalism gives a result, expressed as Eq.
(10), which is both mathematically and physically
simpler. It contains just two variables which char-
acterize the material under consideration - these are
σ - the diameter of the molecular ”hard core”, and
ε - the depth of the potential well. Note that the
chemical potential obtained in this way for a certain
value of the ratio ε/T reduces to the value µID.

The formalism of statistical mechanics is both
mathematically and physically more complex. The
general conclusion is that the chemical potential de-
pends on thermodynamic parameters of the fluid
through the functions a-s, which are in turn func-
tions of the pressure and/or density and/or temper-
ature (Morsali et al. 2005), but also on the inter-
action parameters. The approximate expression for
chemical potential of a LJ fluid is:

µ ∼= kBT ln(ρλ3) +
32
9

πρεσ3s[1 +
27m4

5

+.. +
1

2x9
0

+ .. +
a3

s
cos[d] cosh[b](

3a2

320
− 3c2

32
)

+..] . (23)

All the symbols in this expression have their stan-
dard meanings, or were introduced in Morsali et al.
(2005). Mathematically, the symbol x0 denotes the
cut off radius of the LJ potential introduced in cal-
culations in order to avoid the occurence of diver-
gences. Physically, this quantity represents the inter-
particle distance at which the pressure ionisation oc-
curs. Qualitatively speaking, the pressure excitation
and/or ionisation occur because electronic energies
change under the influence of the external pressure
field. For details about this process see, for example,
Kothari (1938).

The calculation presented in this paper was
motivated by recent advances in planetary science.
As a consequence of numerous discoveries of giant ex-
oplanets, modellisation of their internal structure has
regained importance. These planets consist mostly
of fluids, and accordingly an obvious need for a the-
oretical ”preparation of the ground” for the modelli-
sation of their interiors has occured. Studies of phase
equilibrium and phase transitions demand an explicit
knowledge of chemical potential. Some preliminary
results in that direction have recently been obtained
(Celebonovic 2009) in the limit of small density and
without taking into account chemical potential. An-
other interesting problem, which becomes accessible
for study with the results obtained in this paper is
the behaviour of chemical potential of a LJ fluid with
changes of its thermodynamical parameters. Some
aspects of both of these problems will be discussed
in a future work.
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Prethodno saopxteǌe

U ovom radu izveden je na dva naqina
analitiqki izraz za hemijski potencijal
Lenard-�onsovog fluida. Izraqunavaǌe je
izvedeno koriste�i termodinamiqki for-
malizam, kao i formalizam statistiqke
mehanike. Oblast integracije je podeǉena na
dve pod-oblasti. Dobijeni rezultati bi�e
korisni u svim istra�ivaǌima vezanim za
ravnote�u faza i fazne prelaze u Lenard-

�onsovom fluidu. Primeri takvih sistema
znaqajnih u astronomiji su velike planete u
naxem planetarnom sistemu, ali i van ǌega,
kao i veliki sateliti za koje se smatra da
sadr�e okeane ispod povrxina. Nova istra�i-
vaǌa pokazuju da bi Lenard-�onsov fluid mo-
gao da ima primenu i u prouqavaǌima zvezda
koje se sastoje od kvarkova.
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