CCD MEASUREMENTS OF DOUBLE AND MULTIPLE STARS AT NAO ROZHEN. IV

Z. Cvetković ${ }^{1}$, R. Pavlovici ${ }^{1}$ and S. Boeva ${ }^{2}$
${ }^{1}$ Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia
E-mail: zorica@aob.rs
${ }^{2}$ Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse Blvd., 1784 Sofia, Bulgaria

(Received: February 8, 2010; Accepted: March 5, 2010)

Abstract

SUMMARY: Using the 2 m telescope of the Bulgarian National Astronomical Observatory at Rozhen observations of 30 double or multiple stars were carried out during two half nights on July 20 and 21, 2009. This is the fourth series of measurements of CCD frames of double and multiple stars obtained at Rozhen. In this paper we present the results for the position angle and separation for 23 double and 5 multiple stars (35 pairs) which could have been measured.

Key words. binaries: visual

INTRODUCTION

The previous three series of observations of double and multiple stars performed by the Belgrade team at the Bulgarian NAO Rozhen with a CCD camera attached to the $2-\mathrm{m}$ telescope took place in the middle of October 2004, at the end of October 2005 and in the middle of December 2006, respectively. The results have been published in Pavlović et al. (2005), Cvetković et al. (2006) and Cvetković et al. (2007).

The fourth series comprising observations of 24 double and 6 multiple stars took place on July 20 and 21 (both times before midnight), 2009. The observing programme contained systems for which either the number of measurements was small (less than 10), or which have not been measured after 2000. The telescope is of the Ritchey-ChretienCoude type with the focal length of 16 m . The frames were obtained by using the CCD camera VersArray:1300B. The chip dimensions are 1300×1300
pixels, the pixel size is 20×20 micrometers. The angle corresponding to one pixel is 0.258 arcsec. For each star pair ten frames were obtained (five frames with each of the two filters B and $V)$.

The observational team at the NAO Rozhen that collected frames for the measurement included: Z. Cvetković and R. Pavlović from Belgrade Astronomical Observatory, and S. Boeva from the Institute of Astronomy of Bulgarian Academy of Sciences.

The position angle and separation were measured for 23 double and 5 multiple stars (35 pairs), whereas in the case of the remaining two, the star images were not visually separated and the measurements could not be carried out. The reasons are the proximity of the components and the limiting capabilities of the CCD camera. For binary WDS $18533+3302=$ POP 192 the separation is small, whereas for multiple WDS $15440+0231=$ A 2230, the components of the pair AB are close to each other and the magnitude difference is high $(\Delta m \approx 6)$ so that we failed to separate them. The other pairs AC, AD and CE have large separations and their

Table 1. CCD Measurements of Double and Multiple Stars

WDS	Disc.	Mult.	Epoch $2009+$	$\theta\left[{ }^{\circ}\right] \quad\left(\sigma_{\theta}\right)$	$\rho\left[{ }^{\prime \prime}\right] \quad\left(\sigma_{\rho}\right)$	n	Auth.	Notes
$16140+3510$	POP 103	0.5532		52.87 (1.12)	3.586 (0.238)	43	Cve	
				52.93 (0.83)	3.665 (0.093)	11	Pal	
$16284+3112$	BRT 255		0.5505	216.92 (0.47)	4.643 (0.090)	71	Cve	N
				216.88 (0.40)	4.465 (0.259)	17	Pal	
$16469+0210$	BAL1925		0.5532	207.44 (3.08)	1.065 (0.149)	17	Cve	N
				206.73 (3.21)	1.293 (0.278)	9	Pal	
$16507+1259$	BRT1284		0.5506	301.88 (0.94)	3.302 (0.167)	46	Cve	N
				302.50 (1.00)	2.886 (0.286)	11	Pal	
$17201+3225$	GCB 28		0.5506	$\begin{aligned} & 230.42 \\ & 230.66 \end{aligned}(1.21)$	$\begin{aligned} & 3.098(0.332) \\ & 2.626(0.419) \end{aligned}$	$\begin{aligned} & 32 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Cve } \\ & \text { Pal } \end{aligned}$	
$17222+3010$	ROE 108		0.5532	$\begin{aligned} & 0.97(0.17) \\ & 0.96(0.16) \end{aligned}$	$\begin{aligned} & 5.885(0.014) \\ & 5.891(0.012) \end{aligned}$	$\begin{aligned} & 46 \\ & 10 \end{aligned}$	Cve	N
							Pal	
$17494+2651$	BRT3322		0.5533	$\begin{aligned} & 165.92(1.25) \\ & 164.78(0.56) \end{aligned}$	$\begin{aligned} & 4.401(0.090) \\ & 4.230(0.135) \end{aligned}$	$\begin{aligned} & 49 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Cve } \\ & \text { Pal } \end{aligned}$	
$18000+2535$	HJ 1310	AB	0.5533	$\begin{aligned} & 42.84(0.15) \\ & 42.90(0.18) \end{aligned}$	$\begin{aligned} & 10.206(0.060) \\ & 10.256(0.039) \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	Cve Pal	
$18000+2535$	HJ 1310	AC	0.5533	$\begin{aligned} & 31.66(0.67) \\ & 31.67(0.50) \end{aligned}$	$\begin{aligned} & 12.929(0.142) \\ & 13.116(0.154) \end{aligned}$	$\begin{aligned} & 29 \\ & 10 \end{aligned}$	Cve Pal	
$18000+2535$	HJ 1310	BC	0.5533	$\begin{aligned} & 356.98 \\ & 358.85 \end{aligned}(1.65)$	$\begin{aligned} & 3.558(0.200) \\ & 3.804(0.216) \end{aligned}$	$\begin{aligned} & 36 \\ & 10 \end{aligned}$	Cve Pal	
$18103+2430$	POU3355		0.5533	150.65 (0.34)	5.903 (0.022)	41	Cve	
				150.66 (0.37)	5.903 (0.029)	10	Pal	
$18258+1952$	BRT2446	AB	0.5533	321.32 (0.29)	3.330 (0.063)	48	Cve	N
				321.34 (0.23)	3.284 (0.103)	13	Pal	
$18258+1952$	BRT2446	AC	0.5533	254.82 (0.21)	8.010 (0.024)	43	Cve	N
				254.85 (0.25)	8.007 (0.027)	13	Pal	
$18267+3211$	ES 2418		0.5534	68.26 (0.29)	5.470 (0.020)	44	Cve	
				68.19 (0.21)	5.479 (0.020)	10	Pal	
$18362+2437$	POU3437		0.5506	$284.22 \text { (1.00) }$	$4.932 \text { (0.056) }$	38	Cve	
				$283.94 \text { (1.06) }$	$4.872(0.144)$	11	Pal	
$18370+2358$	POU3440		0.5507	105.22 (0.90)	6.421 (0.056)	45	Cve	
				105.22 (0.48)	6.424 (0.065)	12	Pal	

Table 1. Continued

Table 1. Continued

WDS	Disc.	Mult.	Epoch $2009+$	$\theta\left[{ }^{\circ}\right] \quad\left(\sigma_{\theta}\right)$	$\rho\left[^{\prime \prime}\right] \quad\left(\sigma_{\rho}\right)$	n	Auth.	Notes
$19511+3443$	OLE 2		0.5535	$309.18(0.44)$	$3.954(0.029)$	49	Cve	
				$309.20(0.36)$	$3.904(0.058)$	10	Pal	
$20210+1028$	J 838		0.5536	$117.34(0.23)$	$6.342(0.022)$	50	Cve	O
				$117.21(0.30)$	$6.344(0.017)$	10	Pal	

Table 2. Notes

WDS	Mult.	Notes
$16284+3112$		since $m_{A}=11.4$ and $m_{B}=11.5$, a quadrant change is possible
$16469+0210$		since $m_{A}=m_{B}=10.8$, a quadrant change is possible
$16507+1259$		since $m_{A}=m_{B}=11.5$, a quadrant change is possible
$17222+3010$		since $m_{A}=m_{B}=10.98$, a quadrant change is possible
$18258+1952$	AB	since $m_{A}=11.1$ and $m_{B}=11.2$, a quadrant change is possible
$18258+1952$	AC	first measurement
18471-0939	AC	pair AB was not visually separated
$18503+1228$		there are only 3 measurements between 1911 and 1955, thus a misidentification is possible
$19466+1024$		since $m_{A}=10.77, m_{B}=11.0$ and components are close, measurements were difficult
$20210+1028$		Residual (O-C) from orbit Ole2002b (Olević 2002): (Cve) $+0.6,+0^{\prime \prime} .185 ; \quad$ (Pal) $+0.5,+0^{\prime \prime} 187$

components are outside the frame. We measured a new pair, WDS $18258+1952=$ BRT 2446 AC. This system seems to be a multiple star rather than a double star.

The frames were measured by using AIP4WIN (version 1.4.21).

A total of 35 pairs was measured; where the orbit had been previously calculated (Olević 2002) for one of them, WDS $20210+1028=\mathrm{J} 838$, and the orbital elements were given in the Sixth Catalog of Orbits of Visual Binary Stars ${ }^{1}$. In this case the measurements are compared to the ephemerides. For
this pair the residuals are small. The apparent orbit for J 838 is presented in Fig. 1. The empty circles denote the micrometric measurements, the interferometric one is denoted by a filled circle, whereas our measurement is denoted by an asterisk.

The results for the position angle and separation are given in Table 1, the notes in Table 2. In Table 1, the individual results of the measurements of position angle and separation for each author are given. The designations used: WDS - identification in the Washington Double Star Catalog ${ }^{2}$; Disc. -double-star name after the discoverer; Mult. - des-

[^0]

Fig. 1. Apparent orbit for WDS $20210+1028=$ J 838; our measurement is designated by an asterisk.
ignation for pair components; Epoch - observational epoch; $\theta\left[{ }^{\circ}\right]\left(\sigma_{\theta}\right)$ - position angle in degrees (error of the position angle) ; $\rho\left[{ }^{\prime \prime}\right]\left(\sigma_{\rho}\right)$ - separation in seconds of arc (error of the separation); n - number of
measurements; Auth. - measurement author's name, Z. Cvetković (Cve) and R. Pavlović (Pal); Notes means that there is a comment (N), or the pair has an orbit (O) in Table 2.

Acknowledgements - The authors are gratefull to Prof. Tanyu Bonev, Dr. Ilian Iliev and to the Bulgarian Academy of Sciences for providing observational time at the 2-m telescope. We also acknowledge the support by UNESCO-ROSTE for the regional collaboration.

This research has been supported by the Ministry of Science and Environmental Protection of the Republic of Serbia (Project No 146004 "Dynamics of Celestial Bodies, Systems and Populations").

REFERENCES

Cvetković, Z., Novaković, B., Strigachev, A. and Popović, G. M.: 2006, Serb. Astron. J., 172, 53.

Cvetković, Z., Pavlović, R., Strigachev, A., Novaković, B. and Popović, G. M.: 2007, Serb. Astron. J., 174, 83.
Olević, D.: 2002, IAU Commission 26 Inf. Circ., 149.

Pavlović, R., Cvetković, Z., Olević, D., Strigachev, A., Popović, G. M. and Novaković, B.: 2005, Serb. Astron. J., 171, 49.

ССD МЕРЕЊА ДВОЈНИХ И ВИШЕСТРУКИХ ЗВЕЗДА НА НАО РОЖЕН. IV

Z. Cvetković ${ }^{1}$, R. Pavlović ${ }^{1}$ and S. Boeva ${ }^{2}$
${ }^{1}$ Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia
E-mail: zorica@aob.rs
${ }^{2}$ Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse Blvd., 1784 Sofia, Bulgaria

У ДК 524.383-13
Стручни чланак

Користећи двометарски телескоп бугарске Националне астрономске опсерваторије на Рожену снимили смо 30 двојних или вишеструких звезда у току две полуноћи 20 . и 21. јула 2009. године. Ово је четврта серија мерења снимака двојних и вишеструких звезда

добијених помоћу CCD камере на Рожену. У чланку дајемо резултате мерења позиционог угла и сепарације за 23 двојне и 5 вишеструких звезда (35 пара) које је било могуће измеритИ.

[^0]: ${ }^{1}$ http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/orb6
 ${ }^{2}$ http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/WDS

