
Serb. Astron. J. } 179 (2009), 49 - 53 UDC 524.6–323.8
DOI: 10.2298/SAJ0979049N Original scientific paper

A NEW KINEMATICAL DEFINITION OF ORBITAL ECCENTRICITY

S. Ninković
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SUMMARY: A new concept of orbital eccentricity is given. The dimensionless
quantities proposed in the present paper to serve as orbital eccentricities have a
kinematical nature. The purpose is to use them in describing the motion for the
case of three-dimensional orbits. A comparison done for nearly planar orbits shows
that the values of the eccentricities proposed here do not differ significantly from
those corresponding to the eccentricities of geometric nature usually applied.

Key words. Galaxy: kinematics and dynamics

1. INTRODUCTION

The notion of orbital eccentricity has been
present in astronomical literature since long ago.
Usually this notion concerns the Keplerian motion
and has a geometric meaning because the orbits of ce-
lestial bodies in the two-body problem or Keplerian
motion are conic sections (e.g. Binney and Tremaine
1987, p. 107). In addition to this geometric meaning,
there is a dynamical meaning since the orbital eccen-
tricity serves as a suitable quantitative dimensionless
measure of deviation from circular motion. The two-
body problem is just a special case of steady state
and spherical symmetry, which is also a special case
of steady state and axial symmetry. Both cases are
well known in stellar dynamics and admit the circular
motion. For this reason, the notion of orbital eccen-
tricity becomes important also in stellar dynamics,
because deviations from the circular motion should
be describable in a suitable way by means of a dimen-

sionless quantity, in the cases where the orbits are not
simple conic sections. The orbits in the case of spher-
ical symmetry are planar and the essential difference,
in comparison to the Keplerian motion, is the general
absence of the line of apsides. If the symmetry is ax-
ial, the orbits are three-dimensional. It is clear that,
unlike the two-body problem where the geometric ec-
centricities of the conic sections are quite sufficient
for the purpose of describing the deviations from the
circular motion, in more general cases of stellar dy-
namics an orbital eccentricity defined geometrically
does not always satisfy the requirements. Therefore,
it is not surprising that several definitions of eccen-
tricity have been offered as will be seen below. Bear-
ing in mind, above all, the three-dimensional (3D)
orbits characteristic for steady state and axial sym-
metry, the present author had another idea of in-
troducing ”new orbital eccentricities” which may be
useful in analysing the motion of stars in systems of
complex structure like galaxies.
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2. CONCEPTS OF ORBITAL
ECCENTRICITY

In the case of steady state and spherical sym-
metry the orbits are planar and the time dependence
is regular (for details: e.g. Ninković and Jovanović
2008). Hence, the maximum and minimum distances
to the system centre are well defined for a bound
orbit. Therefore, it is not surprising that then the
orbital eccentricity eg is most frequently defined as

eg =
ra − rp

ra + rp
, (1)

where ra and rp are the maximum and minimum dis-
tances to the centre (apo- and pericentric distances),
respectively. The advantage of this definition is that,
in the special case of Keplerian motion, the eccentric-
ity eg coincides with the geometric eccentricity of an
ellipse.

The eccentricity definition according to the
formula (1) is, though used most frequently, not
unique. There are also alternative definitions. For
instance, one can introduce radius of the circular or-
bit having the same energy as the orbit under study
A, and the radius of the circular orbit with the same
angular momentum as the orbit under study p. Then
the alternative orbital eccentricity ec will be defined
as (e.g. Kuzmin and Malasidze 1970, p. 195)

ec = (1− p

A
)1/2. (2)

As not difficult to verify, the eccentricity ec defined
in this way is equal to the eccentricity eg (formula
(1)) for the case of the Keplerian motion.

In the same paper Kuzmin and Malasidze
(1970) give another possibility. This time the dis-
tance A, determined in the above way, is used so
that one has the following formula

eJ = (1− J2

A2u2
c(A)

)1/2, (3)

where J is the modulus of the specific (per unit mass)
angular momentum and uc(A) the circular velocity
at the distance A. If the motion is Keplerian, the
two eccentricities, eg and eJ , coincide.

Finally, one can mention the orbital eccentric-
ity ef introduced by Lynden-Bell (1963, formula (2)
therein), also equal to eg for the case of the Keplerian
motion. The formula is

1− e2
f = [1 + | Wr

2πJ
|]−2. (4)

Here Wr is the specific action, or conjugate momen-
tum, as called by Lynden-Bell himself, in r, the in-
stantaneous distance to the centre, and J is the mod-
ulus of the specific angular momentum as defined
above. The specific action is obtained by integrating
over one complete cycle of a given coordinate.

The equality to eg in the case of the Keple-
rian motion clearly indicates that all these alterna-
tive orbital eccentricities are defined to be within the

limits 0 to 1, where the value of 0 means the circu-
lar motion, while the other limiting value, equal to
1, for the majority of spherical potentials different
from that of a point mass usually means zero angu-
lar momentum, i.e. the test particle moves along a
straight line through the centre of the system being
still bound.

In the case of spherically symmetric potentials
different from that of a point mass, for the same orbit
the orbital eccentricities eg, ec, eJ and ef will differ,
but the differences are insignificant (Kutuzov 1985,
1987).

The situation is different with the axial sym-
metry. Firstly, the orbits are no longer planar. Fur-
thermore, the question regarding the isolating inte-
grals for the case of steady state and axial symmetry
has not been clarified yet (e.g. Ninković and Jo-
vanović 2009). The orbits for this case are usually
described by using three elements, very often at least
one of them being dimensionless. This element is
in most cases the orbital eccentricity defined analo-
gously as here in formula (1), but, bearing in mind
that one deals with 3D orbits, the distances are those
to the axis of galactic rotation (Ra and Rp) (e.g.
Ossipkov and Kutuzov 1996, Altmann and de Boer
1999, Dinescu et al. 1999, Nordström et al. 2004,
Vidojević and Ninković 2009). Authors computing
3D orbits often use another dimensionless element, a
sort of ratio of the maximum distance to the galactic
plane and the corresponding distance to the rotation
axis R (e.g. Altmann and de Boer 1999, Dinescu et
al. 1999, Vidojević and Ninković 2009). Vidojević
and Ninković (2009) use two orbital eccentricities:
the planar one which describes the deviation from the
circular motion in the galactic plane and the vertical
one describing such deviation perpendicularly to the
galactic plane.

3. NEW KINDS OF ORBITAL
ECCENTRICITY

The way of defining the planar eccentricity
as used by Vidojević and Ninković (2009), and also
by other authors before, is suitable in the case of
nearly planar orbits, when the test particle remains
all the time sufficiently close to the plane of symme-
try (galactic plane in the case of Milky Way). These
orbits admit a quasi independence of planar motions
resulting in an adiabatic invariant concerning the
motion in the z direction (e.g. Binney and Tremaine
1987, p. 181). For this reason their periodicities
are rather well defined (e.g. Ninković and Jovanović
2009) and, consequently, notions and definitions used
in the more special case of spherical symmetry can
be successfully applied to such orbits. A general 3D
orbit is chaotic; the time dependences of both R and
z become very complicated (e.g. Ninković and Jo-
vanović 2009). As a consequence the extremal values
of these coordinates are no longer clearly defined. For
instance, in the case of a nearly planar orbit, the ex-
trema Ra and Rp repeat periodically, just like in the
case of spherical symmetry, and |z|max shows a weak
dependence on R. In addition, the ratio |z|max(R)/R
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is low then. Therefore, the two eccentricities, as de-
fined in the preceding section, provide a suitable and
satisfactory description of deviation from the circular
motion. In the general case of a 3D orbit, the highest
value of |z| can exceed a corresponding value of R sig-
nificantly (also the correspondence is dubious). One
may conclude that 3D orbits which correspond to
the case of steady state and axial symmetry require
alternative definitions of orbital eccentricity, where
orbital eccentricity is understood as a dimensionless
quantity suitably describing the deviation from a cir-
cular orbit in the plane of symmetry for a 3D orbit.

In the paper by Ninković and Jovanović
(2009), the difficulties concerning the number of in-
dependent isolating integrals for the case of steady
state and axial symmetry were discussed. The au-
thors propose the mean values over time (time inter-
val very long, comparable to the age of a Milky-Way
subsystem) of the velocity squares in R and z to be
used as quasi integrals of motion. With regard to
this, the present author proposes two orbital eccen-
tricities of kinematical nature. For simplicity, they
will be referred to as planar (eR) and perpendicular
(ez). The former one is defined as

eR
2 =

〈Ṙ2〉t
〈V 2〉t , (5)

where 〈Ṙ2〉t is the mean of the radial velocity com-
ponent square over time, whereas 〈V 2〉t is the mean
over time of the modulus of the galactocentric veloc-
ity square. These mean values are, of course, taken
over the same time interval. Since in a general case
of steady state and axial symmetry the periods in
R and z are not clearly defined (e.g. Ninković and
Jovanović 2009), this time interval has to be long
enough, say comparable to the age of the Milky Way.
More precisely, it should be equal to the Hubble time
in the order of magnitude. Such a long time interval
ensures that the means of velocity squares provide a
correct description of an orbit. It is clear that the
defined eccentricity cannot be smaller than 0 and
greater than 1. Note that this is a cylindrical galac-
tocentric reference frame, so that V 2 = Ṙ2+Θ2+ ż2.

Analogously, the perpendicular eccentricity is

ez
2 =

〈ż2〉t
〈V 2〉t . (6)

Thus, the formulae (5) and (6) do not yield the ec-
centricities themselves, but their squares. The rea-
son is that it is desirable to have as close as possible
agreement between the planar eccentricity (5) and
its geometric analogue defined by (1), in which the
quantities Ra and Rp are used. It is clear that such
an agreement is meaningful only for nearly planar or-
bits. Taking advantage of the new definitions of or-
bital eccentricity, it is possible to introduce another
eccentricity, kinematical in its nature, the spatial ec-
centricity which is obtained from these two

es
2 = eR

2 + ez
2. (7)

It is clear that this spatial eccentricity is also lim-
ited to be between 0 and 1. The former possibility

means circular motion in the plane of symmetry, the
latter one that the modulus of the specific-angular-
momentum component Jz is equal to zero (due to
axial symmetry Jz is constant). In this case the orbit
would contain the z- axis. Similarly, eR = 1 would
mean the rectilinear motion through the centre in
the plane of symmetry; ez = 1 would also mean the
rectilinear motion, but along the z axis.

4. DISCUSSION

The main purpose of introducing the eccen-
tricities proposed in the preceding section is to sug-
gest suitable dimensionless quantities describing the
motion of a test particle on a 3D orbit for the case
of steady state and axial symmetry. They are of
kinematical nature. Therefore, no coincidence with
the corresponding geometric eccentricities can be ex-
pected. A comparison between a geometric eccen-
tricity and either of the two defined above ((5) and
(6)) is meaningful only for nearly planar orbits. The
corresponding planar geometric eccentricity, as al-
ready said above, would be defined in analogy with
(1) via the extremal distances to the rotation axis,
Ra and Rp. As for the perpendicular eccentricity,
since the amplitude of the z motion, in a general
case, depends on R, a ratio of the kind |z|max(R)/R
could be used. Implicitely, this would mean that the
ratio |z|max(R)/R is approximately constant; some-
thing that may be reasonable with regard to what is
known about the structure of stellar discs (also Bin-
ney and Tremaine 1987, p. 181, formula (3-173)).
The problem becomes more simple when epicyclic
orbits are studied, because then, due to the very low
planar eccentricity, the dependence |z|max(R) prac-
tically vanishes and the ratio |z|max/Rm, where Rm

is the arithmetic mean between Ra and Rp, appears
as a reasonable choice.

A general comparison is impossible, as all the
eccentricities, defined in any of the ways mentioned
above, depend on the properties of the assumed po-
tential. The exception is only an epicyclic orbit, be-
cause for a test particle always sufficiently close to a
circle in the plane of symmetry, the time dependences
are similar and do not depend much on the potential.
Preliminary comparisons show that the planar and
perpendicular eccentricities, as defined in Section 3,
do not differ much from their geometric analogues
for the case of nearly planar orbits.

The mean squares of velocity components over
time, used to define the two orbital eccentricities in
Section 3, come from quantities known as actions. In
other words these mean squares are obtained by inte-
grations. In this sense the eccentricities eR and ez are
similar to Lynden-Bell’s eccentricity ef , because the
latter is also obtained through actions which have the
property of being adiabatically invariant (e.g. Bin-
ney and Tremaine 1987, p. 178). The case discussed
by Lynden-Bell concerns the way how to calculate or-
bital elements for a planar orbit, but without using
a complex numerical procedure which, at the time
when Lynden-Bell proposed ef (1963), required a
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very long computing time. Now, when use of the
numerical procedures in calculating 3D orbits is com-
mon, such a problem does not exist. In addition, it
is also usual to use the energy integral for the pur-
pose of controlling the accuracy and precision. This
means that all quantities necessary for the calcula-
tion of eR and ez are obtained at each step. After
this, nothing is easier than to calculate the quantities
required in formulae (5) and (6).

It is clear that the eccentricity eR can be used
in the case of a purely planar motion (spherical sym-
metry) as well. In this case, the square of the velocity
magnitude would contain only two components: the
radial (ṙ2) and the tangential (v2

t ) ones obtainable
by dividing the modulus of the specific angular mo-
mentum by the instantaneous distance to the centre
r. In principle, the ratio of the instantaneous ṙ2 to
the square of the corresponding spatial velocity v2

can be used as a measure of the geometric orbital ec-
centricity eg for an arbitrary spherically symmetric
potential (Ninković 1986). Thus, a large fraction of
the radial component in 〈v2〉t indicates a high geo-
metric eccentricity eg.

In the particular case of the point-mass poten-
tial - GM/r (G gravitational constant) - by using
the formula yielding the mean value over time for v2

(e.g. Ninković 1987) and the action in the position
angle in the orbital plane ψ (Lynden-Bell 1963) one
obtains the relation between eg and eR

eR = [1− (1− e2
g)

1/2]1/2. (8)

As easily seen, eR and eg coincide for two ex-
tremal values only, 0 and 1, whereas eg is generally
higher; at low eg the relation eR ≈ 0.71eg holds, and
as eg increases, the ratio eR/eg becomes higher, to
become almost 1 at eg ≈ 0.99.

Another particular case of interest may be
that concerning the potential corresponding to the
constant density within a sphere of finite radius
(equal to c1 − c2r

2, c1 and c2 positive constants).
Using again the same formulae (yielding the mean
value over time for v2 and the action in ψ) one ob-
tains

eR = [
2e2

g

1 + e2
g

]1/2. (9)

As easily seen, eR and eg coincide for two ex-
tremal values only, 0 and 1, whereas eg is generally
lower; at low eg the relation eR ≈ 1.41eg holds, as
eg increases, the ratio eR/eg becomes lower, to be
almost 1 at eg ≈ 0.99. Compared to the previous
case (point mass), one can notice a symmetry.

Since the basic intention in introducing eR and
ez is their use in the description of 3D orbits corre-

sponding to the case of steady state and axial sym-
metry, there is no reason to insist on coinciding of eR
with eg in the case of planar motion for a particular
type of potential, say that of a point mass, as usu-
ally done in the literature. Besides, the point-mass
potential can be hardly usable in describing the sit-
uation in galaxies. The exceptions may be the very
interior, if there is a massive central black hole, and
the far periphery. Nevertheless, there is an alterna-
tive formulation

1− e2
q = [1− 〈ṙ2〉t

〈v2
t 〉t

]2. (10)

This eq eccentricity is always equal to eg for the case
of the point-mass potential.

The most important in the present paper is
to have a sufficiently simple relation which defines
two eccentricities eR and ez and, at the same time,
makes it possible to introduce the additional eccen-
tricity es. The eccentricity es may be useful in the
local kinematical studies of the Milky Way, because
for the thin disc both eR and ez are very low and
the resulting es should also be very low. Reversely,
for the halo both eR and ez are expected to be in
general very high which results in a very high es. In
the case of a thick disc we have an intermediate sit-
uation. Therefore, we may expect to strengthen the
kinematical differences among these three entities by
including es as an additional parameter. Note that
in the conditions of the local Milky-Way kinemat-
ics es = 0 automatically determines the modulus of
Jz, since all the stars of a sample are practically at
the same galactocentric position. The only differ-
ence can be in the sign of Jz. However, in the solar
neighbourhood stars not orbiting the centre of the
Milky Way in the sense of the galactic rotation are
extremely rare.

5. CONCLUSION

The orbital eccentricities proposed above (for-
mulae (5)and (6)) may be useful in describing the or-
bital motion for 3D orbits corresponding to the case
of steady state and axial symmetry. They can be eas-
ily calculated since the quantities for which the mean
over time is obtained are calculated at each step of
the numerical procedure. A suggestion for the future
work is to use them in the statistical studies concern-
ing the motion of stars in the solar neighbourhood.
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Originalni nauqni rad

Izlo�eno je novo shvataǌe putaǌske
ekscentriqnosti. Bezdimenzione veliqine
predlo�ene u ovom radu da poslu�e kao
putaǌske ekscentriqnosti imaju kinematiqku
prirodu. Svrha je da se one koriste za opi-
sivaǌe kretaǌa za sluqaj trodimenzionih or-

bita. Pore�eǌe za skoro ravanske putaǌe
pokazuje da se vrednosti ekscentriqnosti
predlo�enih ovde ne razlikuju znatno od onih
koje odgovaraju ekscentriqnostima geometri-
jske prirode koje se obiqno primeǌuju.

53


