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SUMMARY: To apply the theorem of Nekhoroshev (1977) to asteroids, one first
has to check whether a necessary geometrical condition is fulfilled: either convexity,
or quasi-convexity, or only a 3-jet non-degeneracy. This requires computation of
the derivatives of the integrable part of the corresponding Hamiltonian up to the
third order over actions and a thorough analysis of their properties. In this paper
we describe in detail the procedure of derivation and we give explicit expressions

for the obtained derivatives.
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1. INTRODUCTION

To provide an answer to the question on the
stability of motion over very long time spans, one
can make use of the well-known theorem of Nekhoro-
shev (1977). However, to apply this theorem to the
real dynamical systems, e.g. in the case of asteroids
(Guzzo et al. 2002), we have to first check whether
the integrable part of the corresponding Hamiltonian
fulfils necessary geometrical condition required by
the theorem (convexity, quasi-convexity, 3-jet non-
degeneracy). To do that, we need to find the deriva-
tives up to the third order of the integrable part of
the Hamiltonian over actions. The aim of this paper
is to give in full the expressions for these derivatives,
and to describe in detail the procedure of their com-
putation, since they can be determined only numer-
ically. By using these derivatives in the analysis of
the structure of the phase space, we establish which
geometrical conditions are fulfilled in which part of
the phase space, thus making possible the application
of the theorem of Nekhoroshev in the regions where
(some of) these conditions are fulfilled (Pavlovi¢ and
Guzzo 2007).

2. THE ASTEROID HAMILTONIAN

The Hamiltonian of an asteroid can be repre-
sented as

1 N 1 r-s;
— . — J
H= 2L2+QE m; (Aj s? ), (1)

where A; is the distance of the j-th planet from the
asteroid, s; is the distance of the j-th planet from the
Sun, m; is the mass of the j-th planet, j =1,...,8,
and G is the gravitational constant.

Introducing the modified Delaunay’s variables

A = L, )\ == l+w,
H = [J—C:7 h == —,
Z = G-e, ¢ = -0, (2)

the Hamiltonian (1) becomes
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where we select units for mass, length and time in
such a way to get G = mop = 1 (mg is mass of
the Sun); A; are mean longitudes of the planets,
&j,n;,Pj,q; corresponding elliptic elements of the
planets (Morbidelli 2002) for which the linear the-
ory gives

8
ejcosw; = Z M; 1, cos(git + ax),

& =
k=1
8
nj = —ejsiney =Y Mjpsin(get +ax),
k=1
. 5 (4)
is
pj = sin Ej cos; = Z Nj r cos(skt + Br),
k=1
i 8
¢j = —sin 53 sinj = — Y Njpsin(spt + Br),
k=1

where g, si are the frequencies, M;, Njj ampli-
tudes and «y, O phases of forced perturbing terms.

Hamiltonian (3) is given as a sum of the inte-
grable part hg = ﬁ, which corresponds to the two-
body problem, and of the perturbation eXP, which
is of the order of the mass ratio of Jupiter and the
Sun (= 1073). Perturbation is time dependent indi-
rectly, via Aj, &5, 15, Pj, ¢;, which are known functions
of time, and of proper frequencies.

In general, when the Hamiltonian is time de-
pendent, the space of phases can be extended by a
new action conjugate to time, to get an autonomous
system. Applying this technique, Hamiltonian (3)
becomes

1
W= —gpg il evg Ay, +eve A, +

+eKP(A, H, Z, A h, G, A, (5)
& ()‘gj )s nj ()‘yj)vpj ()‘Sj )s q; ()‘Sj )

where the frequencies of the system are explicitly
present. In (5), A, are conjugate to A; (the fre-
quency of which are n;), and Ay, A, are conjugate
to Ay, = —g;t — aj, that is to \s;, = —s;t — 3;; we
put ev,, = —g; and evs;, = —s; to indicate the order
of magnitude of the secular frequencies.

Moreover, the Hamiltonian (5) must be ex-
panded in Taylor series around zero in terms of el-
liptic elements &;,7;,p;,q;, because these are small
quantities according to the theory of planetary mo-
tion. In this way, we get Hamiltonian in the form

o4

H = +niAj +evy Ay, +evs Ag, +

1
2A2
+€’C0+52’C1 +-,

where the index ¢ in IC; denotes order of the polyno-
mial in &;,7;,Pp;, g

Considering region of the phase space far from
the mean motion resonances between the asteroid
and the planets, we can eliminate from the Hamilto-
nian the fast variables A i A;, by means of the Lie’s

algorithm. Hamiltonian (6) then reads

Ha = —s5 tniljm +evg Ay, m +
2A2, (7)

tevg, Ny, m + Ko + 7Ky + -+,

where bar denotes averaging over A and \;, which
can be performed by computing the double integral.
As a results we do not get an analytic expression for
the Hamiltonian, but we can numerically compute it,
as well as its derivatives, for every point in the phase
space.

The integrable part of the Hamiltonian (7),

1

Ho = 5

+ Ko, (8)

is a function of actions A, H,Z and of the angle
g = (—h (Kozai 1962), where, for simplicity, we omit
the index ,,. It is now necessary to apply Henrard’s
(1990) semi numeric method to the Hamiltonian (8)
to reduce it to the form independent of the angle g

7’[0(1\7 J,Z) = ho—i—EKo(A, J, Z), (9)

where A, J, Z are the actions. In practice, this is the
easiest to do by switching from variables (2), via

P = L_@u p = _19_97
Q = G_@, q9 = 9

to cartesian canonical variables

v 2Q cos q,
v/ 2@ sin g,

(10)

X

y =

and then to action-angle variables

Y (4, J,2),
X, J,2),
= z+o(y,J, 2),
P = Z

)
v (12)
p

)

where J and Z are the actions, ¥ and z their con-
jugate angles, and p is correction which preserves
canonical character of the transformation (12).
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3. DERIVATIVES OF THE INTEGRABLE
PART OF THE HAMILTONIAN

Proper frequencies of the integrable part of the
Hamiltonian (9) are:

- 8h0 8(8K0)
R T
_ 8(8K0)_2£
wzo= oJ T’ (13)
T
o 8(€K0) o l a(EKQ)
YT oz *T/ ap W
0

Frequencies wy, ws, and w3 can be computed numer-
ically. T is the period which corresponds to the peri-
odic orbit in the (z,y) plane; the integration is per-
formed along that periodic curve () (Fig. 1). Prob-
lem of finding the curve () can be solved in various
ways; we have chosen to integrate numerically equa-
tions of motion of the Hamiltonian Ky. Even if this
method consumes more computing time, it has the
advantage of being equally applicable in case of the
circulation, as well as in case of the libration of the
angle g.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 1. Level curves of Kozai’s Hamiltonian Kq in
the (x,y) plane. Curve 7y corresponds to the peri-
odic orbit for libration, and yc for circulation of the
angle g.

Derivatives of the frequency w; over actions
A, J, and Z can also be computed numerically. For
example, derivative of wy over A can be computed
directly from

0*Hy 3

9*(eKo)
OA2

Own
oA

oA A% (14)

while the derivatives over J and Z are:

dwi  PHo  P(eKo)  2m 9T (15)
o]  OADJ  0AhdJ  T2OA’
% B 0*Ho _82(5K0)_
8Z — ONOZ  ONOZ
T
1 62(<€K0)
= 7/ anop - (16)
0
8(5K0) 10T
[“’3 P (T)]TaA'

We see that in the above expressions the derivative
‘3—3; appears, which represents change of the period
of the periodic orbit with the change of parameter
A, that is of the semimajor axis. By differentiating
expression for the period (Morbidelli and Henrard
1991)

3(5K0)>1

T = —_— dg, 17
[(%562) (17)
we straightforwardly find

ar (eKo)\ 2 [ 0%(cKp)

[ (75Y) (Gwag) w09

where the integration is performed along the periodic
curve 7.

According to Eq. (15) for the derivative of the
frequency wy over A, one gets

o 82’}-[0 o 8&)1 - 2w 0T

oNdJ — 0J TZ2OA

8w2

EN

(19)

The remaining derivatives of the frequency ws over
actions J and Z are explicitly given in Henrard

(1990)

dor _ 0 () _ mor

a7 — aJ\T )~ Tzar (20)
do _ 0 (o) _ oror

9z — o9z\T)~ T2az (21)

Derivatives of the period can be estimated on
the basis of periodicity of the solutions x = X (¢, J, Z)
ory=Y(t J, Z), that is

X(0,J,2) = X(T,J,2), (22)

while by differentiating (22) over J and Z one gets
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0T 0X 0X
33(0)% = W(O)_W( ),
oT 0X 0X (23)
37(0)37 = 87(0) - 87(T)'
If #(0) = 0, then one has to use the property of the periodicity of the solution Y (¢, J, Z)
(’)T oy oY

since £(0) and y(0) cannot simultaneously be equal to zero (Henrard, 1990). For the derivative of the
frequency ws over A, according to Eq. (16), one finds

Qws _ OPHy _ Dy _
ON — OANDZ  0Z
T
1 / P(eKo) | OP(eko) 0x | OP(eKo) Oy] [ 0leKo) @ 191 (25)
- ONOP 9x0P A | 9ydP OA YT TP T oA

Computation of 8“’3 and a“’?’ is slightly more complicated

% - /55K0
oJ aJ T

T (26)
- _lw _8(EK0)(T) 10T 1/ 82(5K0)@ 82(EK0)@ dt
- 5T op ToJ 0xdP oJ ' oyoP oJ|
T
hy 0|1 [OCKY, |
0z — 0Z|T oP n
0
T (27)
T 5‘(5K0)( 1 8TJr 1/ *(eKo) 9z 9*(eKo) 9y | 9*(eKo) "
T TP ToZ 9r0P 07 ' 0yoP aZ ' oPp? '
0
Quantities 5 —‘"” and are obtained by numerically solving homogeneous variational equations
dox 82(€K0) ox 82(51(0)@
atoJ oxdy dJ oy? 9J’ )
ddy  P(eKy) 0 | PP(eKy) By (28)
atoJ 0x2 0J oxdy 0J’

where, for the initial conditions (Henrard and Lemaitre 1986), one should take (1, %(O))7 while derivatives

% and g—% are computed by solving the non homogeneous variational equations

i% . _82(&'](0)% B 82(€K0)@ B aQ(EKQ)

atoz oxdy 07 oy? 0Z 0Py -
i@ . 82(EK0)@ 62(EK0)@ 82(5K0) ( )
atoz 0x2 07 oxdy 07 OPOx

with the initial condition (0,0).
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In total, there are ten various third derivatives of an integrable asteroid Hamiltonian (9) over actions
(A, J, Z), needed to check the fulfillment of the 3-jet non degeneracy condition

. Directly from (14) we
compute
32w1 837‘[0 12 83(6[(0)
oA?  oA® A5 oAT (30)

while from (19) and (25) we get somewhat more complex expressions

02w, A (OT\® 27 0T

o~ 79 \an) " Traar (81)
T

Oy 621/wm%tawuﬁ+w%mm51M”lﬁf

0A2 oA\ T oP QAN T OA 3 oP T2 \ OA T OA2
0

T
7i87T/ 0?(eKy) N & (eKo) 0z N & (eKo) 9y dt+ 29T [9*(eKy) | 9*(eKy) 0z | 9*(eKo) dy )
T2 OA OAOP drdP OA dyoP OA TOAN | OAOP 0x0P OA 0yoP OA
0

/ 83 EKO aB(EKo) % 83(5K0) @ T 83(€K0) 4 83(€K0)8i 83(5K0) @ %

OA20P T 9AOwdP OA OAOYyOP OA OANOxOP = 0x20P OA  dxdydP OA ) OA (32)

N 83(6K0) & (eKo) 9z | 9*(eKo) dy '\ dy N P (eKo) x| 9*(eKo) &%y
ONOYyOP ' dxdydP ON ' 0y20P OA ) OA OxOP OA? OyoP OA?

By differentiating (19) over J and Z, we get mixed derivatives

Puw, _ 4nOTOT _2m T (33)
ONDJ — T3ONDJT  T?OMNDT’

O, _ ATOTOT o 0T N
0NOZ — T30MNOZ T20MNOZ’ (34)
and differentiation of (27) over A gives
6%}3 _ _% . 82(EK0) 82(8K0)@ 62(€K0)@ (T) l@i _ 8(€K0) (T) %
oNdZ | OA dAOP dxOP ON '~ 0ydP OA ToZ ST ap

T
" [1oror 1 9*T ] 10T 9*(eKo) Oz N *(eKo) Oy | 9*(eKo) it +
T2 0A0Z T OANOZ| T?0A 0xOP 0Z oyoP 0Z opP?
0
T
[02(eKo) 0z 0%(eKo) 0y = 9*(eKp) 10T 1 93(eKy) (35)
Y\ owop 07 " Tagop 9z T op? } (T)T8A+T/{8A8P2 +
0

0xdP? AN ' 9ydP? HA

N P (eKy) | P(eKo) 9z 9°(eKo) dy @+82(5K0) Pz 0%*(eKy) 0%y U
OANOyOP = Ox0ydP OA Oy20P 0N ) 87 0xdP 0ANOZ 0yoP 0AOZ

83(€K0) ox 33(5Kg) @ 83(€K0) 83(5K0) ai aB(EKo) @ %
ONOxzOP = 0x20P ON  Ox0yOP ON ) 0Z

From (20) we compute

02ws dr (OT\? 21 02T
92~ 1\as) “T2ar (36)
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while differentiation of (26) over J and Z yields

2J2 oJ T@J

02ws Qws 10T {wg_ d(cKo) (T)} 1 (8T> - [w - 8(5K0)(T)] 1827

oP a.J oP ToJ? (37)

7i07T 62(8[(0) ai 32(€K0) @ dt 82(€K0) % i 82(€K0) @ (T) 10T
T2 8J 0xOP 0J oyoP 0J 0x0P 0J oyoP 0J T 8J
T
1
/|7
0

3(eKo) ()2 L, P(eKo) 0x Oy | (Ko <ay>2+ 0*(cKo) 0% az(eKo)aﬂ "

92zoP \aJ dxdydP 8J 8J = 0y20P \9J 0zdP 8J2 = 0yoP 0J2
that is
Pws  Ows 10T . _a(szo)(T) 1oror [ _8(5K0)(T) 10°T
0J0Z —  0ZTaJ ST op T2 8J 0Z ST op T0JoZ (38)

| 8T/T[82(5K0) or 82(51(0)@3,} e [62(5K0)833+ GQ(SKO)ay} 10T

T20Z7 0xOP 0.J oyoP dJ 0xdP 8J ' oyoP 0J ToZ

/ 03 (eKy) 0z 0x  93(eKy) dz 9y n Oz Oy 0%(eKo) dy dy 93 (eKyp) Oz
92xdP 0J0Z ' 9xdydP \9JOZ ' 9Z dJ Oy?0P 0J0Z = 0xOP? 0J

83(5K0)@ 0?(eKy) 0%*x N 0?(eKoy) 0%y i@t
oyoP? 0J = 0xOP 0J0Z OyoP 0J0Z

The last and the most complicated expression one gets by differentiating (27) over Z

Pwy  Bws 19T d(eKy) 1 /oT\? d(eKy) 1 62T
972 = " ozToz [“’3‘ P m](az) ‘{‘“3‘ P (T)}Taz?_
T
_i@i/ 82(€K0)% 82(5[(0)@ 82(5[(0) dt +
12 0% 9xOP 0Z = OyoP 0Z ' OP?
7/ Y(eKo) (On\T L 00(eKy) 0w 0y | O¥(eKo) (Oy\* | P(eKo) Ox (39)
P2zoP aZ dxdydP 0Z 0Z = 9y*0P \0Z dxdP? 07

63(51(0)@ + 83(€K0) n 82(€K0) (92.%‘ n 82(8[(0) 82y dt +
0yoP? 0Z op3 0x0P 0Z2 oyoP 072

82(6K0)% 82(€K0)@ 82(5K0) (T)lﬁi
0x0P 0Z oyoP 07 op? ToZ

The second derivatives of period T' over actions A, J, and Z are obtained by differentiating (18). The
second derivatives of coordinates (x,y) are found by differentiating variational Egs. (28) over J

QP PEK) (0r\ PR dr by P(eKo) (gD 9eKy) O 0eKy) 0%y
atoJz 0x20y \0J oxoy? 0J 0J oy? oJ Ox0y 0J? oy2 0J? 10
Aoy P(eKo) (0x\* L 0(Ko) O By | 0Y(eKo) (0y\* | DP(eKo) Px | (ko) Dy (40)
atoJ? ox3 oJ 0x20y 0J 0J oxoy? \9J 0x2  0J? 0xdy 0J?’

and (29) over Z
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ddx  PKy (9z\? 0Ky 9z dy Ko (9y\® . PKo Oz
dt9z2 0220y (az) - “0x0y2 0Z0Z  Oyd (az) - “0xdyoP 8Z
BKy Oy 0°Kg 0%z 0%Ky 0%y 3K,
0y20P0Z  0xdy0Z2  Oy? 072 OydP?
d oy  PKo <6w>2+283IC0 dr dy 93Ky <8y)2+2 Ky Oz
dt 072 ox3 \0Z 0x20y 07 0Z  Ox0y? \ 0Z 0x20P 07
PRy Oy 02K 0*x  9*Ky 9%y 03K,
0xdydP 0Z = 0x2 072 ' Ozdy0Z2  9zdP?’

while mixed derivatives are obtained either by differentiating homogeneous variational equations (28) over

Z, or non homogeneous Egs. (29) over J

d Px 7821C0 0%y B 0?Ky 0%z B 2K 2K dy 3Ky O\ 0y
dt 0JoZ oy? 0J0Z  OxOy 0JOZ oy20P Oy 0Z = 0x0y?90Z ) dJ
(0K, Ko by | Ko 0x) 0a
0xOyoP  0x0y20Z  0x20y 07 ) dJ
APy Ky Py PR P Ko 0Ko 0y | 0K dx) Oy (42)
dt0JoZ —  0xdyoJoZ = 0x2 0JOZ O0xdyoP ~ Ox0y*? 0Z  0x20y0Z ) dJ
. 03Ko 9*Ko dy 03Ko Oz \ Oz
0x20P = 0xz20y0Z  0Ox3 07 ) 8J’
with the initial condition (0, 0).
Table 1. Proper semimajor axis (ap), proper eccentricity (ep) and sine of proper inclination
(sinip), actions A, J, Z, frequencies wy, wo i ws and derivatives of the frequencies over actions
up to the second order for the asteroid (158) Koronis.
Proper elements Frequencies
ap(AU) ep sinip wi w2[1072] w3[1073]
2.86879 0.0452 0.0375 2.4410096 0.17698266 —0.58617676
Actions Derivatives of the frequencies
A J[1073] Z[1072]
—0.98810484D+401 —0.61957684D—01 —0.17779001D—04
0.74257530  0.52347921 0.12807165 | —0.61957684D—01 0.49731945D—-03 —0.25149875D—04

—0.17779001D—-04

—0.25149875D—04

0.94192010D—-02

Derivatives of the second order

0.51488061D+02
0.56724344D+-01
—0.46119948D+-02

0.56724344D+-01
0.17067368D—01
0.39393382D+-00

—0.46119948D+02
0.39393382D+4-00
0.11253108D+04

0.56724344D+01
0.17067368D—01
0.39393382D+00

0.17067368D—01
0.34914856D+01
0.33231819D+-00

0.39393382D+00
0.33231819D+00
—0.26951264D+01

—0.46119948D+02
0.39393382D+00
0.11253108D+04

0.39393382D+4-00
0.33231819D+-00
—0.26951264D+-01

0.11253108D+-04
—0.26951264D+01
0.11762035D-+04
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4. NUMERICAL EXAMPLE

To check the derived equations, as well as the
computer code! written in FORTRAN, in Table 1 we
give a numerical example for the asteroid (158) Ko-
ronis with the values of derivatives calculated from
Egs. (13) — (42). Apart from the gravitational con-
stant and the mass of the Sun, it turned out to be
convenient to set to unity also the semimajor axis of
Jupiter. Thus, the frequencies in Table 1 are given
in units of Jupiter’s mean motion (n; ~ 300 arc-
sec/day). Integrals from the above expressions are
computed numerically by dividing the period T in
200 equidistant points, thus achieving the required

accuracy while still not consuming too much com-
puter time.
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TPELM N3BOJU NMHTEI'PABMJIHOT JEJIA XAMMJIITOHNJAHA ACTEPOMUIA

R. Pavlovié

Astronomical Observatory, Volgina 7, 11160 Beograd 74, Serbia

YK 521.19 : 523.44
Opuzurasnu HaywHy pad

ITpe npumene Teopeme Hexopomesa (1977)
Ha acrepouze Tpeba TpOBEpUTU Oa JUA j€ UC-
OyHmeH MOTpebaH TeOMETPUjCKU yCJIOB: KOHBEK-
CHOCT, KBA3WKOHBEKCHOCT WJIM 3—TIeT HEIETreHe-
PUCAHOCT. 3a MpOBEpPYy OBUX YCJIOBA HEOIXOIHO

nput values for the code are the proper elements
http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo.

60

je mzpauyHaty u3Bonae no tpeher pena muaTEerpa-
OuaHOr mesa XaMUJITOHUjaHA W WCIATATU Y-
xoBe ocobume. OBaj unaHak maje EKCILIUIUTHE
u3pa3ze 3a u3pone 1o rpeher pena naTerpabuIHOD
mesia XaMUJITOHUjaHA aCTEPOUIA MO AKIMjaMa.

of asteroids, which can be found at AstDyS site



