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SUMMARY: Analytical and geometrical properties of generalized power-law
(GPL) density profiles are investigated in detail. In particular, a one-to-one cor-
respondence is found between mathematical parameters (a scaling radius, r0, a
scaling density, ρ0, and three exponents, α, β, γ), and geometrical parameters
(the coordinates of the intersection of the asymptotes, xC , yC , and three verti-
cal intercepts, b, bβ , bγ , related to the curve and the asymptotes, respectively):

(r0, ρ0, α, β, γ) ↔ (xC , yC , b, bβ, bγ). Then GPL density profiles are compared
with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute val-
ues and least-squares fits involving the above mentioned five parameters (RFSM5
method) are prescribed. More specifically, the sum of absolute values or squares

of absolute logarithmic residuals, Ri = log ρSDH(ri) − log ρGPL(ri), is evaluated on

105 points making a 5-dimension hypergrid, through a few iterations. The size is
progressively reduced around a fiducial minimum, and superpositions on nodes of
earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on
the scale of cluster of galaxies, within a flat ΛCDM cosmological model (Rasia et al.
2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged
over the whole sample, is assigned, which allows the calculation of the remaining
parameters. Using a RFSM5 method provides a better fit with respect to other
methods. The geometrical parameters, averaged over the whole sample of best

fitting GPL density profiles, yield (α, β, γ) ≈ (0.6, 3.1, 1.0), to be compared with

(α, β, γ) = (1, 3, 1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997),

(α, β, γ) = (1.5, 3, 1.5) (Moore et al. 1998, 1999), (α, β, γ) = (1, 2.5, 1) (Rasia et al.
2004); and, in addition, γ ≈ 1.5 (Hiotelis 2003), deduced from the application of a
RFSM5 method, but using a different definition of scaled radius, or concentration;
and γ ≈ 1.2-1.3 deduced from more recent high-resolution simulations (Diemand
et al. 2004, Reed et al. 2005). No evident correlation is found between SDH
dynamical state (relaxed or merging) and asymptotic inner slope of the fitting log-
arithmic density profile or (for SDH comparable virial masses) scaled radius. Mean
values and standard deviations of some parameters are calculated, and in particu-
lar the decimal logarithm of the scaled radius, ξvir, reads < log ξvir >= 0.74 and
σs log ξvir

= 0.15-0.17, consistent with previous results related to NFW density pro-
files. It provides additional support to the idea, that NFW density profiles may
be considered as a convenient way to parametrize SDH density profiles, without
implying that it necessarily produces the best possible fit (Bullock et al. 2001). A
certain degree of degeneracy is found in fitting GPL to SDH density profiles. If it
is intrinsic to the RFSM5 method or it could be reduced by the next generation of
high-resolution simulations, still remains an open question.
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1. INTRODUCTION

Recent observations of anisotropies in the cos-
mic microwave background put severe constraints on
the cosmological parameters, by comparison with the
predictions of current theories of structure formation
and the evolution of the Universe. The addition of in-
formation from large-scale structure surveys, Hubble
parameter determinations, and Type Ia supernova
results, yields evidence for a flat (Ωm + ΩΛ ≈ 1),
low-density (Ωm ≈ 0.3; ΩΛ ≈ 0.7) universe, a Zel-
dovich power-law index of primordial fluctuations
(ns ≈ 1), a (non baryonic) dark matter density
(Ωdh

2 ≈ 0.16) dominant over baryon matter den-
sity (Ωbh

2 ≈ 0.023), a Hubble parameter (normal-
ized to 100 km s−1Mpc−1) between one half and
unity (h ≈ 0.69), and a cosmological age between ten
and fifteen billion years (T ≈ 13.7 Gyr), which make
the main pieces of information (Sievers et al. 2003).
The above mentioned values are consistent with the
results deduced by other investigations (e.g. Rubiño-
Martin et al. 2003, Spergel et al. 2003, Fukugita and
Peebles 2004).

The related (ΛCDM) cosmological model (e.g.
Diemand et al. 2004, Reed et al. 2005) is consis-
tent with a bottom-up picture (hierarchical cluster-
ing) of dark matter haloes, where smaller systems
formed first from initial density perturbations and
then merged with each other to become larger sys-
tems, or were tidally disrupted and accreted from
previously formed larger systems. Most naturally,
the density profiles of haloes are expected to be a
two-parameters family. This is why, assuming that
halo formation may be approximated to an accept-
able extent by spherical collapse, each protohalo per-
turbation is characterized by two independent pa-
rameters e.g. mass and radius (or overdensity), at
some fiducial cosmological time.

A successful two-parameter functional form
for the halo profile, where a scaled density depends
on a scaled radius, was proposed by Navarro et
al. (1995, 1996, 1997, the last quoted hereafter as
NFW). They also argued that the density profile is
universal, in the sense that its shape does not appre-
ciably change (over two decades in radius) for differ-
ent halo masses (spanning about four orders of mag-
nitude), initial density fluctuation spectra, or cos-
mological parameters. Many studies on the NFW
”universal density profile”, both numerical (with in-
creasing resolution) and analytical, were done after
their proposal (for a more detailed discussion see e.g.
Hess et al. 1999, Klypin et al. 2001, Bullock et al.
2001, Fukushige and Makino 2001, 2003, Müchet and
Hoeft 2003, Zhao et al. 2003).

Generally speaking, the NFW density pro-
file may be considered as a special case of the 5-
parameter family (Hernquist 1990, Zhao 1996, 1997):

ρ

(

r

r0

)

=
ρ0

(r/r0)γ [1 + (r/r0)α]χ
; χ =

β − γ

α
;

(1)
related to the choice (α, β, γ) = (1, 3, 1), where ρ0

and r0 are a scaling density and a scaling radius,
respectively1.

The density profile, expressed by Eq. (1), re-
duces to a power-law both towards the centre, r → 0,
and towards infinite, r → +∞, where the exponent
equals −γ and −β, respectively. It may be conceived
as a generalized power-law and, in the following, it
shall be quoted as GPL density profile. On the other
hand, matter distribution within a simulated dark
matter halo, in the following, shall be quoted as SDH
density profile.

For fixed exponents, one among the two re-
maining free parameters, the scaling density and the
scaling radius, may be related to the mass and the
radius of the virialized region. For further details see
e.g. NFW, Bullock et al. (2001), Rasia et al. (2004).

Some doubts on the ”universality” of the
NFW density profile were cast by latter investiga-
tions. There are several main orders of reasons
against the idea of a universal NFW density profile,
which can be briefly summarized as follows.

(i) A steeper slope in the central regions
(e.g. Fukushige and Makino 1997, 2001, 2003,
Moore et al. 1998, 1999, Ghigna et al. 2000,
but see Navarro et al. 2004, for a different
point of view).
(ii) A non universal slope in the central re-
gions, which depends on the power spectrum
of the initial density perturbation (Syer and
White 1998), or on the mass (Jing and Suto
2000, Ricotti 2003). Additional support to
this idea is provided by recent, high-resolution
simulations (e.g. Fukushige et al. 2004,
Navarro et al. 2004).
(iii) A certain degree of degeneracy with re-
gard to the exponents, (α, β, γ), in fitting var-
ious GPL to SDH density profiles, in the whole
range of resolved scales (e.g. Klypin et al.
2001).
(iv) Different criteria in fitting GPL to
SDH density profiles, such as minimiz-
ing the maximum fractional deviations of
the fit, max | log(ρGPL/ρh) − log(ρSDH/ρh)|
(e.g. Klypin et al. 2001); the sum of
the squares of absolute2 logarithmic residu-
als, χ2 =

∑

[log(ρGPL/ρh) − log(ρSDH/ρh)]2

1To the knowledge of the authors, the family of density profiles expressed by Eq. (1) was first defined by Hernquist [1990,
Eq. (43) therein], even if his attention was restricted to the special case, (α, β, γ) = (1, 4, 1) which, in turn, was earlier pro-
posed by Kuzmin and Veltmann (1973). A family of density profiles including the special case studied by Hernquist, the so
called γ models, where (α, β, γ) = (1, 4, γ), was given independently by Dehnen (1993) and Tremaine et al. (1994). A detailed
investigation of general (α, β, γ) models was performed by Zhao (1996, 1997).

2The term ”absolute” here is not intended as ”absolute value”, but as opposite to ”relative”. More precisely, yi − y(xi) is an
absolute residual, while [yi − y(xi)]/y(xi) is the corresponding relative residual.
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(e.g. Bullock et al. 2001); the sum of
squares of relative residuals,

∑

[(ρSDH/ρh −
ρGPL/ρh)/(ρGPL/ρh)]2 (e.g. Fukushige and
Makino 2003, 2004), where ρh is a normal-
ization value. For a more detailed discussion
see e.g. Tasitsiomi et al. (2004).
(v) A gentler slope in the central regions (γ <
1) and a steeper slope sufficiently far from
the centre (β > 3), under reasonable bound-
ary conditions such as a finite halo mass and
force-free halo centre, and a vanishing density
at infinite distance (Mücket and Hoeft 2003).
Additional support to this idea is provided by
recent high-resolution simulations (Navarro et
al. 2004).
(vi) A gentler slope in the central regions

(γ
<∼ 1) to be consistent with rotation curves,

deduced from the observations, of low surface
brightness galaxies (McGaugh and de Blok
1988, de Blok et al. 2001), the Galaxy (Binney
and Evans 2001), and dwarf galaxies (van den
Bosh and Swaters 2001). For a more detailed
discussion, see Mücket and Hoeft (2003). In
addition, the validity of the Jeans equation
implies 1 ≤ γ ≤ 3 for dark matter haloes
(Hansen 2004), unless the effects of the bary-
onic component are taken into consideration
(El-Zant et al. 2004, Hansen 2004).
(vii) A discrepancy with the dark matter dis-
tribution required to ensure hydrostatic equi-
librium of gas, deduced from measured X-
ray brightness profiles, in clusters of galaxies
(Arieli and Rephaeli 2003).
Though the resolution of numerical simula-

tions is increasingly high, still there is no general
consensus, or insufficient investigation, about some
questions concerning dark matter halo density pro-
files, namely: (1) definition and formulation of uni-
versal density profiles (e.g. Huss et al. 1999, Bullock
et al. 2001); (2) connection between GPL and SDH
density profiles; (3) dependence of GPL density pro-
files on the three exponents, (α, β, γ) and the two
scaling parameters, (r0, ρ0); (4) extent to which two
or more GPL density profiles fit the results of numer-
ical simulations (e.g. Klypin et al. 2001, Fukushige
and Makino 2001, 2003); (5) degree of degeneration
of the three exponents in fitting GPL to SDH density
profiles (e.g. Klypin et al. 2001).

The hierarchical collapse of dark matter into
virialized haloes is likely to have played a key role in
the formation of large-scale objects, such as galaxies
and clusters of galaxies. The halo profile has a direct
dynamical role in determining the observable param-
eters of the baryonic subsystems. Therefore further
investigation on the above raised questions appears
to be important.

To this aim, in fitting GPL to SDH density
profiles, both a nonlinear least-absolute values and a
nonlinear least-squares method are used in the cur-
rent paper. The related boundary condition is that
both the mass and the radius of the virialized re-
gion are determined by the computer outputs and the

choice of the cosmological parameters. The main fea-
tures of GPL and SDH density profiles are outlined
in Sections 2. and 3, respectively. A comparison be-
tween GPL and SDH density profiles is performed in
Section 4. Nonlinear least-absolute values and least-
squares fits are outlined in Section 5. The subject of
Section 6 is an application to a sample of 17 SDHs
and the related mean density profile, on the scale of
clusters of galaxies, taken from Rasia et al. (2004).
The results are then discussed. Some concluding re-
marks are drawn in Section 7. Further investigation
on a few special arguments is made in the Appendix.

2. GPL DENSITY PROFILES

Plotting GPL density profiles on a logarith-
mic plane, (O log ξ log f), necessarily implies use of
dimensionless coordinates, defined as:

ξ =
r

r0
; f(ξ) =

ρ

ρ0
; (2)

where the scaled radius, ξ, can be related to density
profiles where the isopycnic constant density surfaces
are similar and similarly placed ellipsoids. For fur-
ther details, see Caimmi and Marmo (2003). Accord-
ingly, Eq. (1) reduces to:

f(ξ) =
1

ξγ(1 + ξα)χ
; χ =

β − γ

α
; (3)

independent of the scaling parameters.
The special choice:

ρ† = 2χρ0 ; r† = r0 ; (4)

translates Eq. (3) into:

f(ξ) =
2χ

ξγ(1 + ξα)χ
; χ =

β − γ

α
; (5)

which has an immediate interpretation, as:

f(1) = 1 ; ρ(r†) = ρ† ; (6)

the scaling density, ρ†, coincides with the density
on an isopycnic surface, where the radius equals
the scaling radius, r = r†. For further details, see
Caimmi and Marmo (2003).

Scaled GPL density profiles, expressed by
Eq. (3), include ∞2 GPL density profiles, expressed
by Eq. (1), for the whole allowed set of scaling param-
eters, (r0, ρ0). A similar situation occurs for poly-
tropes (e.g. Caimmi 1980).

As Eqs. (2) and (3) imply zero density at infi-
nite radius, the mass distribution has necessarily to
be ended at an assigned isopycnic surface, which de-
fines a truncation radius, R. The mass within the
truncation isopycnic surface is (Caimmi and Marmo
2003):

M = M(R) =
4π

3
r30ρ0νmas = M0νmas ; (7)
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where M0 is a scaling mass, and the profile factor,
νmas, has the explicit expression:

νmas = 3

∫ Ξ

0

f(ξ)ξ2 dξ ; (8)

and the integration is carried up to:

Ξ =
R

r0
; (9)

which may be conceived as a scaled, truncation ra-
dius.

The logarithmic GPL density profile, deduced
from Eq. (3), is:

log f = −γ log ξ − χ log(1 + ξα) ; (10)

it can be seen that the first and the third logarithmic
derivative, calculated at log ξ = 0 i.e. r = r0, yield:

(

d log f

d log ξ

)

log ξ=0

= −1

2
(γ + β) ; (11)

(

d3 log f

d(log ξ)3

)

log ξ=0

= 0 ; (12)

which discloses the geometrical meaning of the scal-
ing radius.

Geometrical meaning of the scaling radius in
GPL density profiles. With regard to logarithmic
GPL density profiles, the maximum slope variation
rate occurs at the scaling radius, log ξ = log(r/r0) =
0, where the slope equals the mean slope of the related
asymptotes, −γ and −β, respectively.

In the special case of NFW density profiles,
γ = 1, β = 3, and the slope at the scaling radius
equals −2 (e.g. Bullock et al. 2001, Klypin et al.
2001, Hiotelis 2003). For a more detailed discussion,
see Caimmi and Marmo (2003).

In the limit of negligible values of the scaled
radius, ξ, with respect to unity, Eq. (10) reduces to:

log f = −γ log ξ ; ξ << 1 ; (13)

which represents, in the logarithmic plane
(O log ξ log f), a straight line with slope equal to
−γ and intercept equal to 0.

In the limit of preponderant values of the
scaled radius, ξ, with respect to unity, Eq. (10) re-
duces to:

log f = −β log ξ ; ξ � 1 ; (14)

which represents, in the logarithmic plane
(O log ξ log f), a straight line with slope equal to
−β and intercept equal to 0.

It can easily be seen that the straight lines,
expressed by Eqs. (13) and (14), meet at the origin
and, in addition, represent the asymptotes of the log-
arithmic GPL density profile, expressed by Eq. (10).
The special cases related to NFW and MOA (Moore

et al. 1999) logarithmic density profiles, are plotted
in Fig. 1.

Fig. 1. Logarithmic NFW (top) and MOA (bottom)
density profiles (full curves), with their asymptotes
(dashed lines), in the plane (O log ξ log f).

The above results hold for α > 0. The case α < 0
makes the asymptotes change into each other. The
limiting case α = 0 either yields a vanishing density
(β 6= γ), or the asymptotes coincide i.e. the curve
reduces to a straight line (β = γ).

3. SDH DENSITY PROFILES

Dark matter haloes simulations need three ba-
sic ingredients, namely: (i) a cosmological model
with fixed values of the parameters; (ii) an envi-
ronment with defined initial conditions; and (iii) an
assigned computer code. The density profile dur-
ing the evolution is calculated through the follow-
ing steps: (1) determine the centre of mass of the
halo; (2) count the particles (bound to the halo)
within spherical shells, centered on the centre of
mass, and equally spaced in logarithmic distance i.e.
log(ri+1/ri) =const; (3) evaluate the mean density
within each shell. For further details see e.g. NFW,
Klypin et al. (2001), Bullock et al. (2001), Fukushige
and Makino (2001, 2003).

Simulated haloes are characterized by a
”virial” parameter, either the virial mass, Mvir, or
the virial radius, rvir, defined in such a manner that
the mean density inside the virial radius is ∆vir times
the mean matter universal density, ρh = ρcritΩm, at
that redshift:

Mvir =
4π

3
∆virρcritΩmr

3
vir ; (15)
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where ρcrit = 3H2/(8πG) is the critical density for
closure of the Universe. The critical overdensity
at virialization, ∆vir, is motivated by the spheri-
cal collapse model: it is below two hundreds for an
Einstein-de Sitter cosmology, and exceeds three hun-
dreds for a flat ΛCDM cosmology where Ωm ≈ 0.3,
at z = 0 (e.g. Bullock et al. 2001).

Plotting SDH density profiles on a logarith-
mic plane, (O log η logψ), necessarily implies use of
dimensionless coordinates, defined as:

η =
r

rvir
; ψ(η) =

ρ

ρh
; ρh = ρcritΩm ;

(16)
without loss of generality.

An upper limit to the domain of SDH den-
sity profiles follows from the definition of virial ra-
dius: regions placed outside are still falling in, and
their macroscopic kinetic energy has still to be con-
verted into peculiar energy (e.g. Cole and Lacey
1996, NFW).

A lower limit to the domain of SDH density
profiles is put by the occurrence of numerical arti-
facts (mainly two-body relaxation) in the central re-
gions, within about 0.01rvir (e.g. Bullock et al. 2001,
Fukushige and Makino 2001, 2003, 2004, Navarro et
al. 2004) or even less (e.g. Diemand et al. 2004,
Reed et al. 2005).

Accordingly, SDH density profiles appear to
be closely related to the virialized region in the range:

−2 < log η < 0 ; (17)

Fig. 2. Logarithmic SDH density profile (open cir-
cles) for a typical dark matter halo on the scale of
clusters of galaxies. The virialized region is safely
represented in the range −2 < log η < 0. Also plot-
ted are the best linear fits (dashed), determined by
use of a least-squares fit to simulated data, within
the γ-region, −2 < log η < −1, and the β-region,
−1 < log η < 0, respectively.

which shall be assumed in the following. A typical
SDH density profile on the scale of cluster of galax-
ies, taken from a sample of 17 simulated haloes (Ra-
sia et al. 2004), is represented in Fig. 2. Also plot-
ted therein are the best linear fits, determined by
use of a least-squares fit to simulated data, within
the γ-region, −2 < log η < −1, and the β-region,
−1 < log η < 0, respectively. For further details, see
Appendix A.

4. COMPARISON BETWEEN GPL
AND SDH DENSITY PROFILES

A comparison between GPL and SDH density
profiles necessarily implies that the truncation radius
and the mass enclosed within the truncation isopyc-
nic surface do coincide with the virial radius and the
virial mass, R = rvir and M = Mvir, respectively.
Then the combination of Eqs. (7) and (15) yields:

ρ0

ρh
=

∆virξ
3
vir

νmas
; (18)

ξvir =
rvir

r0
; (19)

where the scaled virial radius, ξvir, is usually defined
as concentration in the special case of NFW den-
sity profiles (NFW). With regard to a generic GPL
density profile, there are several definitions of con-
centration (e.g. Klypin et al. 2001). Throughout
this paper we shall define the concentration as the
scaled virial radius i.e. the ratio of the virial radius to
the radius where the logarithmic slope of the density
profile equals the mean slope of the two asymptotes,
and the slope variation rate is maximum, according
to Eqs. (11) and (12), respectively.

The comparison of scaled GPL density pro-
files, expressed by Eqs. (2), with scaled SDH density
profiles, expressed by Eqs. (16), yields:

ξ = ξvirη ; f =
ρh

ρ0
ψ ; (20)

where ξvir is defined by Eq. (19). Accordingly, a
generic, scaled GPL density profile, expressed by
Eq. (3), takes the equivalent form:

ψ(η) =
ρ0/ρh

(ξvirη)γ [1 + (ξvirη)α]
χ ; χ =

β − γ

α
;

(21)
and the related logarithmic GPL density profile is
deduced by use of Eq. (18). The result is:

logψ = log ∆vir − log νmas + 3 log ξvir

−γ log ξvir − γ log η − χ log [1 + (ξvirη)
α] ; (22)

which depends on three exponents, (α, β, γ), and two
scaling parameters, (r0, ρ0). On the other hand, the
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scaled mass, νmas, is defined by Eqs. (8) and (9), the
virial radius, rvir, is known from the computer run,
and the critical overdensity, ∆vir, is determined by
the cosmological model.

According to Eqs. (2), (11), (12), and (20), the
maximum variation in slope occurs at r = r0 and
log ξ = 0 i.e. log η = − log ξvir. Then Eqs. (11) and
(12) translate into:

(

d logψ

d log η

)

log η=− log ξvir

= −1

2
(γ + β) ; (23)

(

d3 logψ

d(log η)3

)

log η=− log ξvir

= 0 ; (24)

where the slope at log η = − log ξvir equals the mean
slope of the related asymptotes, −γ and −β, respec-
tively.

In the limit of negligible values of the scaled
radius, ξvirη, with respect to unity, Eq. (22) reduces
to:

logψ = log ∆vir − log νmas + 3 log ξvir

−γ log ξvir − γ log η ; ξvirη << 1 ; (25)

which represents, in the logarithmic plane
(O log η logψ), a straight line with slope equal to
−γ and intercept equal to log ∆vir − log νmas + (3 −
γ) log ξvir.

In the limit of preponderant values of the
scaled radius, ξvirη, with respect to unity, Eq. (22)
reduces to:

logψ = log ∆vir − log νmas + 3 log ξvir

−β log ξvir − β log η ; ξvirη � 1 ; (26)

Fig. 3. Logarithmic NFW (top) and MOA (bottom)
density profiles (full curves), with their asymptotes
(dashed lines), in the plane (O log η logψ). Values
of r0/rvir and ρ0/ρh have been arbitrarily chosen.

which represents, in the logarithmic plane
(O log η logψ), a straight line with slope equal to
−β and intercept equal to log ∆vir − log νmas + (3 −
β) log ξvir.

It can easily be seen that the straight
lines, expressed by Eqs. (25) and (26), meet at
the point (log η, logψ) = [log(r0/rvir), log(ρ0/ρh)],
where Eqs. (18) and (2) have been used. In addi-
tion, the above mentioned straight lines represent the
asymptotes of the logarithmic GPL density profile,
expressed by Eq. (22). Special cases related to NFW
and MOA (Moore et al. 1999) logarithmic density
profiles, are plotted in Fig. 3.

5. THE RFSM5 METHOD

Given a set of SDH density profiles, one is
left with the problem of fitting a GPL density pro-
file to each simulation and to the average on the
whole set. To this respect, nonlinear fits shall be
used, minimizing the sum of both absolute values
and squares of absolute logarithmic residuals, Ri =
logψSDH(ηi) − logψGPL(ηi), used in the literature
(e.g. Klypin et al. 2001, Bullock et al. 2001).

Strictly speaking, the problem reduces to a
search of extremum points of minimum, with re-
gard to a function, Y = F (X1, X2, X3, X4, X5),
which represents a 5-dimension hypersurface in a 6-
dimension hyperspace. In general, no point of min-
imum can exist within the domain, if bounded, or
a finite number, or infinite. If two or more minima
are present, then degeneracy occurs. Owing to an in-
trinsic difficulty related to the above mentioned an-
alytical procedure, a numerical alternative shall be
exploited.

More specifically, a 5-dimension hypergrid
made of 105 points is placed around a fiducial min-
imum, and the sum of both absolute values and
squares of absolute logarithmic residuals,

∑

|Ri| and
∑

R2
i , respectively, are evaluated at each point, and

finally two (in general) distinct minima are localized.
Then a new iteration is performed, with respect to a
new hypergrid, centered near the minima, where the
size has been reduced and superpositions on nodes
of earlier hypergrids have been avoided. For the cal-
culations made in the current paper, three iterations
have been revealed to be sufficient.

In dealing with the hypergrid, it would be bet-
ter to use parameters with an immediate geometri-
cal meaning, instead of their analytical counterparts,
(r0, ρ0, α, β, γ). To this aim, the logarithmic GPL
density profile, expressed by Eq. (22), has to be stud-
ied in detail, which is made in Appendix A. The ge-
ometrical parameters to be used, (xC , yC , b, bβ, bγ),
are the coordinates of the intersection of the asymp-
totes, and the vertical intercepts of the curve and the
asymptotes, respectively.

In summary, the procedure outlined above
acts along the following steps.
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(i) Select a set of SDH density profiles, re-
lated to an assigned computer code and a spec-
ified cosmological model.
(ii) Determine, for each SDH density pro-
file, the GPL density profiles which minimize
the sum of absolute values and/or squares
of absolute logarithmic residuals, using a 5-
dimension hypergrid in the 5-dimension hy-
perspace (OxCyCb bβbγ).
(iii) Perform the desired number of iterations
around the minima, using a hypergrid with
same number of points (but none in common),
and reduced in size, in respect of its earlier
analogue.
(iv) Define a mean SDH density profile, over
the whole set of simulations, and repeat the
procedure used for a single SDH density pro-
file.
The result consists in a one-to-one correspon-

dence between SDH density profiles, including the
related mean, and GPL density profiles which mini-
mize the sum of absolute values and/or squares of
absolute logarithmic residuals, in connection with
the hypergrid used. In the following, the above
mentioned procedure shall be quoted as RFSM5
(Residual Functions Sum Minimization within a 5-
dimension hyperspace) method. The functions used
in the current paper are the absolute value and the
square of the absolute logarithmic residual.

6. AN APPLICATION TO SDHS ON THE
SCALE OF CLUSTER OF GALAXIES

Using a RFSM5 method, GPL density profiles
are fitted to a sample of 17 SDH density profiles, on
the scale of cluster of galaxies within a flat ΛCDM
cosmology (Rasia et al. 2004, hereafter quoted as
RTM). The values of the cosmological parameters
used therein are: ΩΛ = 0.7; Ωm = 0.3; Ωb = 0.03;
h = 0.7; σ8 = 0.9; where the symbols have their
usual captions (e.g. Klypin et al. 2001, Bullock et
al. 2001) and, in particular, the indices m and b
denote all matter (dark + baryonic) and baryonic,
respectively. For a detailed discussion on the com-
puter code, initial conditions, the resolution issues,
and the way of finding the halo centre, see RTM and
further references therein.

Simulations include both dark and baryonic
matter, but only the former is relevant to the aim of
the current paper. Accordingly, the baryonic matter
shall not be considered, and all the parameters shall
be understood as related to the dark matter halo.

The definition of the virialized region within

each halo, via Eq. (15), requires the knowledge of the
critical overdensity at virialization, ∆vir. With re-
gard to total (dark + baryonic) matter, it depends
on the cosmological model (e.g. Bullock et al. 2001)
and, in the case under discussion, (∆vir)m = 323 at
z = 0, where all the sample haloes may be considered
as virialized to an acceptable extent (RTM).

If only the dark matter is considered, then
(∆vir)d = ∆vir = ζ(∆vir)m, where ζ is the fraction of
dark matter in each density perturbation, and aver-
aging over the whole sample yields ζ = 0.907 (RTM).
Accordingly, the value:

∆vir = 0.907 · 323 = 292.961 ; (27)

can be used to an acceptable extent3.
As clearly pointed out in RTM, owing to

the random criterion used for selection, their sam-
ple haloes are characterized by varying dynamical
properties: at the present time, some are more re-
laxed, while others are dynamically perturbed. The
surrounding environment can also be quite differ-
ent: some selected clusters are more isolated, while
others are interacting with the surrounding cosmic
web. Accordingly, the sample is expected to be good
enough to provide unbiased conclusions, and the re-
lated modelling may be thought of as representative
of an average cluster, in an average environment and
dynamical configuration.

6.1 Individual SDH density profiles

The main features of sample haloes at z = 0
are listed in Table 1. The mass, Mvir, has been taken
from RTM, while the mass, M ′

vir, has been deduced
from Eq. (15). The apparent discrepancy between
Mvir andM ′

vir is due to two different sources. Firstly,
a systematic contribution takes origin from the un-
certainty on ∆vir and, secondly, a random contri-
bution arises from the uncertainty on rvir, in both
cases with regard to Eq. (15). An additional random
contribution is related to averaging the fraction of
dark matter over the whole sample, with regard to
Eq. (27).

The relative difference, |1−M ′
vir/Mvir|, is less

than one percent in all the cases except 9, where it
is less than one and a half percent. Then the virial
mass can be evaluated, to a good extent, by use of
Eq. (15), taking the virial radius from the results of
simulations. It is worth mentioning that the RFSM5
method is independent of the value of the virial mass,
while a change in the value of the virial radius makes
SDH density profiles systematically shift along the
horizontal direction, see Fig. 2.

3The above value of the critical overdensity was deduced from an earlier, unpublished version of RTM. It is slightly different
from ∆vir = 0.903 · 323.7625 = 292.3576, deduced from the current version, which appeared when the calculations were
performed in this paper. As the relative difference amounts to about 0.2%, the calculations were not repeated using the latter
value of the critical overdensity.
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Table 1. Main features of sample haloes at z = 0. Column captions: 1 - case; 2 - computer run; 3 - type (R
- safely relaxed; M - safely a major merger occurring); 4 - number of dark matter particles within the virial
radius; 5 - virial radius (h−1 kpc); 6 - virial mass (h−11010M�); 7 - virial mass deduced from Eq. (15). Both
virial radii and virial masses are normalized to the dimensionless Hubble parameter at the current time, h.

case run type N rvir Mvir M ′
vir

1 S01.02 R 282574 1953 76330 76040
2 S02.10 M 278569 2305 125400 125010
3 S02.11 M 85159 1553 38340 38234
4 S03.05 R 294373 2347 132500 131970
5 S04.01 R 179681 1991 80820 80565
6 S04.07 R 146386 1860 65850 65686
7 S05.02 M 318653 2197 108700 108249
8 S06.01 M 427583 2470 153800 153825
9 S06.03 M 166855 1796 60020 59136

10 S07.01 R 275259 1691 49600 49359
11 S07.03 R 158345 1407 28530 28433
12 S08.01 R 190453 1884 68600 68262
13 S08.04 R 101482 1529 36560 36489
14 S09.03 R 159330 1913 71690 71463
15 S09.14 R 107229 1675 48250 47971
16 S10.03 R 58734 1524 36060 36132
17 S10.07 R 71937 1628 44170 44045

6.2 Averaged SDH density profiles

Given a set of logarithmic SDH density pro-
files, the mean SDH density profile is obtained by
averaging over the whole set the values related to
each logarithmic radial bin, in the range of inter-
est, expressed by Eq. (17). The value of the critical
overdensity at virialization, ∆vir, is fixed by Eq. (27),
then a single free parameter remains: the virial ra-
dius, rvir, which allows the calculation of the virial
mass, Mvir. The related values are determined by av-
eraging over the whole sample, using the data listed
in Table 1, and inserting the mean value of the virial
radius into Eq. (15). The result is:

rvir = 1866 h−1 kpc ; Mvir = 66330 h−1 1010M� ;
(28)

and the application of a RFSM5 method yields the
best fitting GPL density profiles, with radius and
mass equal to rvir and Mvir, respectively.

A mean virial radius was preferred rather than
of a mean concentration (RTM) for the following rea-
sons. Firstly, virial radii are independent of GPL
density profiles, contrary to concentrations, or veloc-
ity profiles, which should be calculated for any choice
of the fitting profile. Secondly, the range of virial
radii, 1407 ≤ rvir/(h

−1kpc) ≤ 2470, corresponds to
relative errors of about 25% and 33%, respectively,
with regard to a mean value, rvir = 1866 h−1kpc. On
the other hand, the range of concentrations (calcu-
lated for NFW density profiles), 5 ≤ ξvir ≤ 10, cor-
responds to relative errors of about 32% and 37%,
respectively, with regard to a mean value, ξvir =

7.2976. Thus the average of the virial radius should
be preferred to this respect.

Having in our hands a SDH density profile av-
eraged over the sample listed in Table 1, and a value
of virial radius and virial mass expressed by Eq. (28),
we are left with the search of a best fitting GPL den-
sity profile. To this aim, six alternatives are consid-
ered. The first one consists in a mere application of
the RFSM5 method to the mean SDH density profile.

Among the remaining five, three allow to fix
the exponents in the GPL density profile, expressed
by Eq. (1), and then minimize the sum of absolute
values and/or squares of absolute logarithmic resid-
uals, with respect to a single free parameter, the
scaling radius, r0 (e.g. Zhao et al. 2003). Ac-
cordingly, the minimization is performed using a
2-dimension grid. The related procedure shall be
quoted as RFSM2 (Residual Functions Sum Mini-
mization within a 2-dimension space) method. The
function used in the current paper is the absolute
value and/or the square of the absolute logarithmic
residual. The following special GPL density profiles
are selected: NFW, MOA, and a best fitting profile
deduced from both density and velocity distributions
in sample haloes (RTM), hereafter quoted as RTM
density profile4. The related values of the exponents
are (α, β, γ) =(1, 3, 1), (3/2, 3, 3/2), (1, 5/2, 1),
respectively.

Finally, the last two alternatives among the six
mentioned above, consist in calculating the mean val-
ues of the geometrical parameters, (xC , yC , b, bβ, bγ),
over the whole sample of best fitting, GPL density
profiles, with regard to the minimization of the sum

4It is worth mentioning that a different normalization was used here for the scaling density, ρ0 = (ξvir)
5/2(ρ0)RTM .
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Table 2. Parameters of GPL density profiles which (i) minimize the sum of absolute values of logarithmic
absolute residuals, using a RFSM5 method with regard to the 17 sample haloes listed in Table 1 (top), and
(ii) fit to the mean SDH density profile, to a different extent (bottom). Cases correspond to computer runs in
the former alternative, and to GPL density profiles in the latter. The GPL density profile which minimizes
the sum of absolute values of absolute logarithmic residuals, using a RFSM5 method with regard to the
mean SDH density profile, is denoted as ADP. The GPL density profile defined by geometrical parameters,
(xC , yC , b, bβ, bγ), averaged over their counterparts listed on the top (first 17 rows), is denoted as AGP. The

scaling radius, r0, and the scaling density, ρ0, are expressed in kpc and 1010M�/kpc3, respectively.

case α χ β γ ξvir r0 104ρ0

∑ |Ri|
1 0.74154 3.1652 3.4698 1.1226 3.3884 823.39 0.51314 0.37127
2 0.55959 4.5587 3.3698 0.81879 3.9446 834.78 1.6992 0.67590
3 0.44184 3.7405 2.8307 1.1780 6.6069 335.79 2.6317 0.77869
4 0.45956 3.6948 2.7388 1.0409 7.2577 461.97 2.6930 0.76086
5 0.65993 2.7518 3.0723 1.2563 4.7315 601.14 0.74171 0.45363
6 0.52739 3.2392 2.6766 0.96825 13.884 191.38 7.3923 0.62044
7 0.59587 4.0247 3.4760 1.0778 4.6559 674.11 1.8207 0.57012
8 0.66861 3.9138 3.4748 0.85806 4.1687 846.45 1.3190 0.22446
9 0.56370 3.9028 3.1506 0.95062 6.4565 397.38 3.2377 0.27807

10 0.42473 3.8973 2.7797 1.1139 6.1660 391.78 2.3455 0.47658
11 0.65178 3.7207 3.5506 1.1255 3.2359 621.15 0.67645 0.44895
12 0.66423 3.5417 2.9664 0.61389 7.9433 338.83 3.2752 0.75673
13 0.70250 3.1223 3.1281 0.93462 6.0256 362.50 1.6605 0.58189
14 0.74575 3.2092 3.2130 0.81972 5.1286 532.86 1.2029 0.35644
15 0.82346 2.1323 2.7865 1.0307 6.5313 366.37 0.91250 0.59466
16 0.71709 3.8681 3.7082 0.93443 4.0738 534.43 1.2889 0.43596
17 0.47209 3.1773 2.6513 1.1513 5.7544 404.16 1.1488 0.66217

ADP 0.54955 4.5235 3.3962 0.91034 3.8019 701.18 1.5496 0.12966
AGP 0.60209 3.4021 3.0756 1.0272 5.5083 483.96 1.5422 0.36819
NFW 1 2 3 1 6.35 419.81 0.90131 0.85996
MOA 1.5 1 3 1.5 3.08 865.52 0.093933 0.47639
RTM 1 1.5 2.5 1 13.050 204.28 2.1949 0.32672

of absolute values and squares of absolute logarith-
mic residuals, respectively.

6.3 Results

As outlined in Section 5, a RFSM5 method
was applied to each sample halo listed in Table 1,
and to the related, averaged SDH density profile de-
fined above. In addition, a RFSM2 method has been
applied to the mean SDH density profile, in the spe-
cial case of NFW, MOA, and RTM density profiles.
The values of the exponents, α, χ, β, γ, the scaled
radius, ξvir, the scaling radius, r0, the scaling den-
sity, ρ0, and the sum of residual functions at the
fiducial minimum,

∑

f(Ri), where f(Ri) = |Ri| and
f(Ri) = R2

i , are listed in Tables 2 and 3, respectively.
The following conclusions are deduced.

(i) In general, different GPL density profiles
best fit to an assigned SDH density profile,
with regard to the minimization of the sum of
absolute values or squares of absolute logarith-
mic residuals, respectively. The best fitting
GPL density profiles in the two above men-
tioned alternatives, are closer to each other
than with the mean SDH density profile in

dealing with the mean geometrical parame-
ters.
(ii) The values of the exponents, (α, β, γ),
appearing in Eq. (1), and deduced from the ge-
ometrical parameters averaged over the whole
halo sample, (xC , yC , b, bβ , bγ), are (α, β, γ) ≈
(0.6, 3.1, 1.0).
(iii) With regard to the mean SDH den-
sity profile, the GPL density profiles which
best minimize the sum of squares of abso-
lute logarithmic residuals, occur in the fol-
lowing order of accuracy: (1) application of
a RFSM5 method (ADP); (2) density profile
related to mean values of geometrical param-
eters (AGP); (3) RTM; (4) MOA; (5) NFW.
The best minimization of the sum of absolute
values of absolute logarithmic residuals, im-
plies the same order as above, but with AGP
and RTM density profiles interchanged.
The SDH density profiles related to the cur-

rent sample, listed in Table 1, and the related mean
SDH density profile, are plotted in Fig. 4 (dots) to-
gether with their best fitting GPL counterpart (full
curves), determined by use of a RFSM5 method in
the range defined by Eq. (17). In most cases, GPL
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Table 3. Parameters of GPL density profiles which (i) minimize the sum of squares of logarithmic absolute
residuals, using a RFSM5 method with regard to the 17 sample haloes listed in Table 1 (top), and (ii) fit to the
mean SDH density profile, to a different extent (bottom). Cases correspond to computer runs in the former
alternative, and to GPL density profiles in the latter. The GPL density profile which minimizes the sum
of squares of absolute logarithmic residuals, using a RFSM5 method with regard to the mean SDH density
profile, is denoted as ADP. The GPL density profile defined by geometrical parameters, (xC , yC , b, bβ, bγ),
averaged over their counterparts listed on the top (first 17 rows), is denoted as AGP. The scaling radius, r0,
and the scaling density, ρ0, are expressed in kpc and 1010M�/kpc3, respectively.

case α χ β γ ξvir r0 104ρ0

∑

R2
i

1 0.85979 2.7291 3.4893 1.1429 3.6308 768.43 0.45733 0.012843
2 0.70267 2.6771 2.8238 0.94262 7.1450 460.86 1.4462 0.050984
3 0.50594 3.6824 3.0631 1.2000 4.4668 496.68 1.1755 0.059798
4 0.40157 4.8960 2.9564 0.99023 4.1115 815.48 2.1391 0.044834
5 0.59295 3.2455 3.1244 1.2000 4.7863 594.26 1.0721 0.015935
6 0.50437 2.8516 2.5152 1.0769 16.501 161.03 7.3632 0.033055
7 0.60451 4.1915 3.5715 1.0377 4.2267 742.56 1.7070 0.029137
8 0.66861 3.9138 3.4748 0.85806 4.1687 846.45 1.3190 0.0049367
9 0.58477 3.7717 3.2083 1.0027 5.6234 456.26 2.2399 0.0061089

10 0.43019 3.7611 2.7372 1.1192 6.6374 363.95 2.5132 0.020731
11 0.69931 3.3055 3.4625 1.1509 3.7154 541.00 0.67645 0.017674
12 0.67451 3.0786 2.7795 0.70312 9.1201 363.19 2.8856 0.050487
13 0.68562 3.3840 3.1595 0.83933 6.8234 320.12 2.5718 0.036570
14 0.81937 2.4907 2.9870 0.94621 5.3088 514.77 0.77666 0.012273
15 0.70472 2.8497 2.8694 0.86117 7.6913 311.11 1.9963 0.028821
16 0.74414 3.9381 3.8674 0.93684 3.7154 585.99 1.1226 0.015259
17 0.44450 4.0781 2.8351 1.0224 4.6774 497.23 1.5144 0.057718

ADP 0.56832 4.0722 3.3143 1.0000 3.6308 734.22 1.0238 0.0014983
AGP 0.58866 3.5008 3.0528 0.99204 5.5170 483.20 1.5726 0.0065805
NFW 1 2 3 1 6.44 413.94 0.93151 0.046088
MOA 1.5 1 3 1.5 3.05 874.03 0.091827 0.015492
RTM 1 1.5 2.5 1 13.350 199.69 2.3074 0.0072902

Table 4. Comparison between parameters, ηADP, related to the best fitting GPL density profile to the mean
SDH density profile, and their counterparts, η, averaged over the best fitting GPL density profiles to the
whole halo sample, with regard to the minimization of the sum of absolute values of absolute logarithmic
residuals. Also listed are the related standard deviations, σs η , the standard deviations from the mean, σs η ,
and the standard deviations from the standard deviation from the mean, σs µ. It is worth remembering that
log ξvir = −xC , according to Eq. (39).

η ηADP η σs η σs η σs µ

α 0.54955 0.61292 0.11931 0.028937 0.0049626
β 3.3962 3.1202 0.34247 0.083062 0.014245
γ 0.91034 0.99973 0.16188 0.039261 0.0067332
ξvir 3.8019 5.8796 2.4766 0.60068 0.10301
νmas 0.42346 1.4063 1.0804 0.26205 0.044941
log ξvir 0.58 0.74102 0.15471 0.037522 0.0064350
log νmas −0.37319 0.050834 0.29116 0.070617 0.012111
yC 4.58 4.5779 0.29347 0.071178 0.012207
b 1.84 1.8467 0.065779 0.015954 0.0027360
bβ 2.6102 2.2988 0.14859 0.036038 0.0061804
bγ 4.052 3.8167 0.31970 0.077538 0.013298
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Table 5. Comparison between parameters, ηADP, related to the best fitting GPL density profile to the
mean SDH density profile, and their counterparts, η, averaged over the best fitting GPL density profiles
to the whole halo sample, with regard to the minimization of the sum of squares of absolute logarithmic
residuals. Also listed are the related standard deviations, σs η , the standard deviations from the mean, σs η ,
and the standard deviations from the standard deviation from the mean, σs µ. It is worth remembering that
log ξvir = −xC , according to Eq. (39).

η ηADP η σs η σs η σs µ

α 0.56832 0.62515 0.13353 0.032860 0.0055541
β 3.3143 3.1132 0.35867 0.086990 0.014919
γ 1.0000 1.0018 0.13893 0.033696 0.0057788
ξvir 3.6308 6.0210 3.1377 0.76101 0.13051
νmas 0.55823 1.7340 1.6790 0.40721 0.069837
log ξvir 0.56 0.74172 0.17256 0.041852 0.0071775
log νmas −0.25319 0.10544 0.33340 0.080860 0.013867
yC 4.4 4.5864 0.27926 0.067732 0.011616
b 1.85 1.8480 0.075648 0.018347 0.0031465
bβ 2.544 2.3221 0.21914 0.053149 0.0091151
bγ 3.84 3.8506 0.21627 0.052454 0.0089958

Fig. 4. The SDH density profiles related to the
current sample, listed in Table 1, and the mean SDH
density profile, denoted as ADP (open circles), to-
gether with their best fitting GPL counterparts (full
curves), determined by use of a RFSM5 method in
the range −2 < log(r/rvir) < 0. Two curves on
each panel correspond to the minimization of the
sum of absolute values and squares of absolute loga-
rithmic residuals, respectively. The above mentioned
curves are virtually indistinguishable in most cases,
and sometimes coincident.

Fig. 5. Comparison between different fits (full
curves) to the mean SDH density profiles (filled cir-
cles), listed on the lower parts of Tables 2 and 3. The
function log[(r/rvir)

2(ρ/ρh)] has been plotted instead
of log(ρ/ρh), to make different trends more evident.
The vertical scale is related to the lower case. The
remaining cases are, in turn, vertically shifted of one
unity with respect to their closest counterpart, start-
ing from the lower one, to gain clarity. With regard
to case AGP, the upper and the lower curve corre-
spond to the minimization of the sum of absolute val-
ues and squares of absolute logarithmic residuals, re-
spectively, and the contrary holds for case ADP. Con-
cerning the remaining cases NFW, MOA, and RTM
(labelled here as RAS), the two curves are virtually
indistinguishable.
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density profiles related to the minimization of the
sum of absolute values and squares of absolute loga-
rithmic residuals, are virtually indistinguishable, and
sometimes coincident.

Different fits to the mean SDH density pro-
file, listed on the lower parts of Tables 2 and 3, are
represented in Fig. 5, where log[(r/rvir)

2(ρ/ρh)] was
plotted instead of log(ρ/ρh), to make different trends
more evident. Curves related to the minimization of
the sum of absolute values and squares of absolute
logarithmic residuals are virtually indistinguishable
with regard to GPL density profiles with fixed expo-
nents: NFW, MOA, and RTM.

The values of some analytical and geometrical
parameters, ηADP, related to the best fitting GPL
density profile to the mean SDH density profile, are
listed in Tables 4 and 5 together with their counter-
parts, η, averaged over the best fitting GPL density
profiles to the whole halo sample, via minimization
of the sum of absolute values and squares of absolute
logarithmic residuals, respectively.

Also listed therein are the related standard
deviations, σs η, the standard deviations from the
mean, σs η , and the standard deviations from the
standard deviation from the mean, σs µ, which are
expressed as (e.g. Oliva and Terrasi 1976, Chap. V,
§ 5.6.3):

η =
1

n

n
∑

i=1

ηi ; (29)

σsη =

[

1

n− 1

n
∑

i=1

(ηi − η)2

]1/2

; (30)

σsη =

[

1

n

1

n− 1

n
∑

i=1

(ηi − η)2

]1/2

; (31)

σsµ =
σsη√
2n

; µ = σsη ; (32)

where n = 17; η = α, β, γ, ξvir, νmas, log ξvir,
log νmas, yC , b, bβ, bγ ; and, owing to Eq. (39),
log ξvir = −xC .

The following conclusions are deduced from
Tables 4 and 5.

(iv) Values of parameters, ηADP, related to
the best fitting GPL density profile to the
mean SDH density profile, are different from
their counterparts averaged over the best fit-
ting GPL density profiles to the whole halo
sample, as expected from the theory of errors.
(v) The exponents of best fitting,
GPL density profiles, are close to
their NFW counterparts, conform to
[Nint(α), Nint(β), Nint(γ)] = (1, 3, 1), where
Nint denotes the nearest integer. The differ-
ences increase from about one hundredth for
γ, to about one tenth for β, and to about one
half for α.
(vi) The rms error of the logarithm of the
scaled radius, ξvir, is σs log ξvir

= 0.15 − 0.17,
to be compared with σs log ξvir

= 0.18 deduced
from richer samples where (α, β, γ) = (1, 3, 1);

Mvir =(0.5-1.0)×10nh−1m�; 11 ≤ n ≤ 14;
and n is an integer (Bullock et al. 2001).

6.4 Discussion

The application of an RFSM5 method suceeds
in minimizing the sum of absolute values and squares
of absolute logarithmic residuals, with respect to
GPL density profiles where the exponents are kept
fixed, such as NFW, MOA, and RTM, which allows
the following definition.

Universal density profile. Let a RFSM5 method
be applied to an assigned set of SDH density profiles.
The best fitting GPL density profile to the mean SDH
density profile, is defined as the related universal den-
sity profile.

In this view, ”universal” has to be understood
as nothing but ”best fitting”. Strictly speaking, the
above statement should apply to a simulated halo
sample which is representative of the whole set of
real dark matter haloes.

The minimization of the sum of absolute
values or squares of absolute logarithmic residuals
makes a firm criterion for deciding which, among two
or more GPL density profiles, best fits an assigned
SDH density profile. The results of the current pa-
per confirm earlier results about sample haloes on
the scale of cluster of galaxies, namely (a) MOA den-
sity profiles provide a better fit with respect to NFW
(Fukushige and Makino 2001, 2003), and (b) RTM
density profiles provide a better fit with respect to
NFW (RTM), with the additional result (c) RTM
density profiles provide a better fit with respect to
MOA.

A RFSM5 method has recently been used for
determining the scaled radius (Hiotelis 2003), but
using a different definition with respect to ξvir =
rvir/r0, Eq. (19). In fact, the usual definition of con-
centration is c = rvir/r−2, where r−2 is the radius
related to a logarithmic slope, defined by Eq. (49),
dy/ dx = −2 (e.g. Klypin et al. 2001, Bullock et al.
2001, Hiotelis 2003). The former definition seems to
be more general, since it allows the maximum change
in slope at the scaled radius, as pointed out in Section
2. In addition, it makes the definition of concentra-
tion meaningful also in early times, where the slope
of a GPL density profile may be smaller (by absolute
value) than 2 (Hiotelis 2003).

In dealing with dark matter haloes on the scale
of cluster of galaxies, Hiotelis (2003) finds GPL den-
sity profiles where the exponent, γ, attains a value
of about 1.5, in contrast to the results γ ≈ 1 of the
current paper. Such a discrepancy is probably due
to a different definitions of concentration, mentioned
above, which have been used.

On the other hand, values of asymptotic inner
slopes of fitting density profiles determined in the
current paper are consistent with their counterparts
deduced from recent high-resolution simulations us-
ing a three-parameter fit involving scaling radius,
scaling density, and asymptotic inner slope (6 sample
objects, Diemand et al. 2004) or a two-parameter fit
involving scaling radius and asymptotic inner slope
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Table 6. Comparison between statistical parameters related to the asymptotic inner slope, γ, deduced from
different samples using different fits. Column captions: 1 - case: A - current paper, minimization of the sum
of absolute values of absolute logarithmic residuals; S - current paper, minimization of the sum of squares
of absolute logarithmic residuals; D - Diemand et al. (2004); R - Reed et al. (2005); 2 - n: total number of
sample objects; 3 - γ: arithmetic mean; 4 - σs γ : standard deviation; 5 - σs γ : standard deviation from the
mean; 6 - ∆−γ: maximum negative deviation from the mean; 7 - ∆+γ: maximum positive deviation from
the mean; 8 - ∆∓γ: mean maximum deviation from the mean; 9 - γ− = γ − 3σs γ : lower limit assigned
to the mean; 10 - γ+ = γ + 3σs γ : upper limit assigned to the mean. Sample haloes represent clusters or
groups, with the exception of three objects belonging to the original R sample (excluded in the reduced R
sample), which represent SDHs embedding the Milky Way and two dwarf galaxies, respectively.

c n γ σs γ σs γ ∆−γ ∆+γ ∆∓γ γ− γ+

A 17 0.99973 0.16188 0.039261 0.38584 0.25657 0.32120 0.88195 1.1175
S 17 1.0018 0.13893 0.033696 0.29868 0.19820 0.24844 0.90071 1.1029
D 6 1.1617 0.13732 0.056060 0.24167 0.25833 0.25000 0.99352 1.3299
R 16 1.2875 0.23910 0.059774 0.28750 0.41250 0.35000 1.1082 1.4668
R 13 1.2692 0.24285 0.067353 0.26923 0.43077 0.35000 1.0671 1.4713

(16 sample objects, Reed et al. 2005). The related
parameters are listed in Table 6, which shows agree-
ment between different approaches, within the fidu-
cial range, γ ∓ 3σs γ . All sample haloes are on the
scale of cluster of galaxies, with the exception of
three objects belonging to the Reed et al. (2005)
sample, which represent SDHs embedding the Milky
Way and two dwarf galaxies, respectively. To get a
homogeneous sample, a reduced set has been consid-
ered, which includes SDHs embedding only clusters
of galaxies. A marginal discrepancy between results
from the current paper and the original Reed et al.
(2005) sample is found to disappear in dealing with
the reduced sample, as shown in Table 6.

With regard to the asymptotic inner slope of
the logarithmic density profile, the current results
conform to the validity of the Jeans equation, which
demands 1 ≤ γ ≤ 3 for dark matter haloes (Hansen
2004), but shallower slopes may occur if the effects of
the baryonic component are considered (e.g. El-Zant
et al. 2004, Hansen 2004). In addition, the inequal-
ity γ < 2, related to simple analytical treatments of
dark matter haloes (Williams et al. 2004), is also ful-
filled by the current results, see Tables 2-5. On the
contrary, the inequality, γ < 1, related to force-free
halo centre and vanishing density at infinite distance
(Mücket and Hoeft 2003), is only marginally consis-
tent with the current results.

No evident correlation is found between SDH
dynamical state (relaxed or merging) and asymptotic
inner slope of the logarithmic density profile, −γ,
or (for SDH of comparable virial masses) scaled ra-
dius, ξvir, contrary to previous results (Ascasibar et
al. 2004) related to a sample of 19 high-resolution
SDHs on the scale of both clusters of galaxies (13 ob-
jects) and galaxies (6 objects), with regard to NFW
density profiles. An investigation on richer samples
could provide more information to this effect.

The GPL density profiles which best fit to the
averaged SDH density profile, are characterized by
exponents, (α, β, γ), satisfying [Nint(α), Nint(β),
Nint(γ)] = (1,3,1), the last related to NFW den-
sity profile. But the corresponding deviations are

not negligible, with the exception of the one from γ.
The comparison with values averaged on the whole
halo sample, discloses that the exponents β and γ
seem to fluctuate around their NFW counterparts,
but the same does not hold for α, which has a mean
value of about 0.6. Accordingly, NFW density pro-
files cannot be conceived as universal, in the sense
mentioned above, with regard to the current halo
sample.

On the other hand, following, e.g. Bullock et
al. (2001), NFW density profiles (or alternative func-
tional forms) may be considered as a convenient way
to parametrize SDH density profiles, without imply-
ing that it necessarily provides the best possible fit.
This is why the scaled radius, ξvir, and the scaled
mass, νmas, can be interpreted as general structure
parameters, not necessarily restricted to a specific
density profile. In particular, any spread in ξvir and
νmas can be attributed to a real scatter in a ”phys-
ical” scaling radius, defined by e.g. Eq. (11), rather
than to inaccuracies in the assumed, ”universal” den-
sity profile. For further details see e.g. Bullock et al.
(2001).

Additional support to the above considera-
tions is provided by the value calculated for the stan-
dard deviation of the decimal logarithm of the scaled
radius, σs log ξvir

= 0.15-0.17, which is very close to
σs log ξvir

= 0.18 deduced from a statistical sample
of about five thousands of simulated haloes, within
mass bins equal to (0.5-1.0) ×10nh−1M�, where
11 ≤ n ≤ 14 and n is an integer (Bullock et al.
2001).

The standard deviations listed in Tables 2 and
3, related to characteristic parameters of best fitting
GPL density profiles, with regard to sample haloes,
were calculated under the assumption that they obey
a Gaussian distribution, using Eqs. (29)-(32). The
existence of a Gaussian distribution is a necessary,
but not sufficient condition, for the validity of the
central limit theorem. In this view, the parameters
under discussion are related to the final properties
of the corresponding sample halo, which are con-
nected with the initial conditions, α1, α2, ..., αn,
intended as random variables, by a transformation,
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η∗ = α1 ·α2 · ... ·αn. For further details, see Caimmi
and Marmo (2004).

In addition, it is worth of note that the appli-
cation of a least-absolute values or a least-squares
method (in particular RFSM5) in fitting GPL to
SDH density profiles (e.g. Dubinski and Carlberg
1991, Klypin et al. 2001, Fukushige and Makino
2003) implies a (fiducial) Gaussian distribution of the
SDH density profile, ySDH = log(ρSDH/ρh), around
the expected value deduced from the related GPL
density profile, yGPL = log(ρGPL/ρh), for any fixed
logarithmic radial bin centered on x = log[(ri+1 +
ri)/(2rvir)]. It is the particularization, to the case of
interest, of a well known result of the theory of errors
(e.g. Taylor 2000, Chap. 8, § 8.2).

The results of the current paper confirm a cer-
tain degree of degeneracy in fitting GPL to SDH den-
sity profiles, as pointed out by Klypin et al. (2001).
For instance, four GPL density profiles fit to the sam-
ple halo S02.10, where the sum of absolute values
and squares of absolute logarithmic residuals,

∑ |Ri|
and

∑

R2
i , the exponents, α, β, and γ, the scaled ra-

dius, ξvir, the scaled mass, νmas, the scaling radius,
r0, and the scaling density, ρ0, lie within the follow-
ing ranges:

0.675 <
∑

|Ri| < 0.732 ; (33a)

0.0509 <
∑

R2
i < 0.0537 ; (33b)

0.559 < α < 0.727 ; (33c)

2.73 < β < 3.37 ; (33d)

0.818 < γ < 0.943 ; (33e)

3.89 < ξvir < 8.04 ; (33f)

0.431 < νmas < 3.10 ; (33g)

409 < r0/kpc < 847 ; (33h)

1.28 < 104ρ0/(1010M�/kpc3) < 1.70 ; (33i)

which could be explained in a twofold manner.
On one hand, a degeneracy could be intrin-

sic to the 6-dimension hyperspace where the RFSM5
method works. Accordingly, the 5-dimension hyper-
surface, w = F (xC , yC , b, bβ, bγ), defined by the sum
of absolute values or squares of absolute logarithmic
residuals, happens to be parallel, in some finite re-
gion of the domain, to the principal 5-dimension hy-
perplane, (O xC yC b bβ bγ), which implies infinite
extremum points of minimum5.

On the other hand, a degeneracy could be ow-
ing to the restricted domain of SDH density profiles,
defined by Eq. (17), which is limited by the virial ra-
dius on the right and by the occurrence of numerical
artifacts (mainly two-body relaxation) on the left. In
this view, a more extended range could reduce the
degeneracy. As the fit must necessarily be restricted
to the virialized region, one shall wait for higher-
resolution simulations involving five-parameter fits

to test this possibility. But in recent high-resolution
simulations, two or three-parameter fits only have
been used (e.g. Navarro et al. 2004, Diemand et al.
2004, Reed et al. 2005).

The current attempt is limited to GPL density
profiles defined by Eq. (1). However, different alter-
natives have been exploited in the literature, such as
the Burkert (1995) density profile:

ρ = ρ0

[

1 +

(

r

r0

)2
]−1

[

1 +
r

r0

]−1

; (34)

which resembles the NFW density profile for r
>∼

0.02rvir. The corresponding scaling and scaled radii
may be related as: (r0)B = (r0)NFW /1.52; (ξvir)B =
1.52(ξvir)NFW ; respectively (e.g. Bullock et al.
2001).

Another possibility is a profile that curves
smoothly over to a constant density at very small
radii (Navarro et al. 2004):

ρ = ρ0 exp

{

− 2

λ

[

(r

r 0

)λ

− 1

]}

; (35)

where the parameter λ prescribes how fast the den-
sity profile turns away from a power-law near the cen-
tre. In logarithmic form, Eq.(35) represents a class
(defined by the parameter, −2/λ) of Sersic (1968)
density profiles (Merritt et al. 2005). The best
fit reads (19 sample objects, Navarro et al. 2004):

λ∓ 3σs λ = 0.17216∓ 0.021897.
On the other hand, the RFSM5 method may

be extended to any kind of density profile, keeping
in mind that different classes could exhibit different
geometrical properties.

The ”universality” of density profiles involv-
ing scaled parameters, has to be understood as in
polytropes (e.g. Caimmi 1980).

A single distribution in the abstract space of
the scaled variables, φ = f(ξ), corresponds to ∞2

distributions in the physical space, ρ/ρ0 = f(r/r0),
provided that the free parameters are the scaling ra-
dius, r0, and the scaling density, ρ0, and the scaled
radius reads ξ = r/r0.

In dealing with SDH density profiles, it would
be more germane to the matter speaking about best
fitting, instead of universal, density profiles. The
validity of the fit has to be restricted to a fiducial
range where simulations are not affected by spurious
effects such as two-body relaxation, according to, e.g.
Eq. (17). In particular, the asymptotic inner slope is
necessary for the definition of GPL density profiles,
but any conclusion outside the above mentioned fidu-
cial range may be at risk, in absence of some kind of
(direct or indirect) observational support.

5An example in a 3-dimension space, (Oxyz), is provided by the surface of a cylinder: in the special case where the height, or
a basis, is parallel to the principal plane, (Oxy), infinite extremum points of minimum occur. If otherwise, there is a single
extremum point of minimum.
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7. CONCLUSION

Analytical and geometrical properties of gen-
eralized power-law (GPL) density profiles were in-
vestigated in detail. In particular, a one-to-one cor-
respondence was found between mathematical pa-
rameters (a scaling radius, r0, a scaling density, ρ0,
and three exponents, α, β, γ), and geometrical pa-
rameters (the coordinates of the intersection of the
asymptotes, xC , yC , and three vertical intercepts,
b, bβ, bγ , related to the curve and the asymptotes,
respectively): (r0, ρ0, α, β, γ) ↔ (xC , yC , b, bβ, bγ).

Then GPL density profiles were compared
with simulated dark haloes (SDH) density profiles,
and nonlinear least-absolute values and least-squares
fits involving the above mentioned five parameters
(RFSM5 method) were adopted. More specifically,
the sum of absolute values or squares of absolute log-
arithmic residuals, Ri = log ρSPH(ri)− log ρGPL(ri),
was evaluated on 105 points making a 5-dimension
hypergrid, through a few iterations. The size has
progressively been reduced around a fiducial mini-
mum, and superpositions on nodes of earlier hyper-
grids have been avoided.

An application was made to a sample of 17
SDHs on the scale of cluster of galaxies, within a flat
ΛCDM cosmological model (Rasia et al. 2004). In
dealing with the mean SDH density profile, a virial
radius, rvir, averaged over the whole sample, was as-
signed, which allowed the calculation of the remain-
ing parameters. Using a RFSM5 method provided a
better fit with respect to other methods.

The geometrical parameters, averaged over
the whole sample of best fitting GPL density pro-
files, have yielded (α, β, γ) ≈ (0.6, 3.1, 1.0), to be
compared with (α, β, γ) = (1, 3, 1), i.e. the NFW
density profile (Navarro et al. 1995, 1996, 1997);
(α, β, γ) = (1.5, 3, 1.5) (Moore et al. 1998, 1999);
(α, β, γ) = (1, 2.5, 1) (Rasia et al. 2004); and, in
addition, γ ≈ 1.5 (Hiotelis 2003), deduced from the
application of a RFSM5 method, but using a dif-
ferent definition of scaled radius, or concentration;
γ ≈1.2 -1.3 deduced from more recent fits (Diemand
et al. 2004, Reed et al. 2005). No evident corre-
lation was found between SDH dynamical state (re-
laxed or merging) and asymptotic inner slope of the
logarithmic density profile or (for SDH comparable
virial masses) scaled radius.

Mean values and standard deviations of some
parameters were calculated, and in particular the
decimal logarithm of the scaled radius, ξvir, was
found to yield < log ξvir >= 0.74 and σs log ξvir

=
0.15-0.17, consistent with previous results related to
NFW density profiles. It provided additional sup-
port to the idea that NFW density profiles may be
considered as a convenient way to parametrize SDH
density profiles, without implying that it necessarily
produces the best possible fit (Bullock et al. 2001).

A certain degree of degeneracy was found in
fitting GPL to SDH density profiles. Whether it is in-
trinsic to the RFSM5 method or it could be reduced
by the next generation of high-resolution simulati-
ons, still remains an open question.

Future work demands a generalization of the
above results on two respects. First, the method
could be applied to data related to dynamical mass
distributions inferred in cluster of galaxies (or galax-
ies), and the fit be compared with its counterpart
deduced from simulated density profiles. Second, the
method could be applied using Sersic (1968) density
profiles in place of the family defined by Eq. (1). An
advantage is that both baryonic and dark (non bary-
onic) mass distributions are well represented by the
Sersic law (Merritt et al. 2005), which depends on
four parameters instead of five.

Acknowledgements – We are indebted to E. Rasia, G.
Tormen, and L. Moscardini, for making the results of
their simulations, investigated in RTM, available to
us. In addition, we are deeply grateful to all of them
for clarifying and fruitful discussions. We thank two
anonymous referees for useful critical comments.

REFERENCES

Ascasibar, Y., Yepes, G., Gottlöber, S., Müller, V.:
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Klypin, A.A.: 2004, Astrophys. J., 607, 125.

Taylor, J.R.: 2000, Introduzione all’analisi degli er-
rori, Zanichelli, Bologna.

Tremaine, S., Richstone, D.O., Byun, Y., et al.:
1994, Astron. J., 107, 634.

van den Bosh, F.C., Swaters, R.A.: 2001, Mon. Not.
R. Astron. Soc., 325, 1017.

Williams, L.L.R., Babul, A., Dalcanton, J.J: 2004.
Astrophys. J., 604, 18.

Zhao, H.S.: 1996, Mon. Not. R. Astron. Soc., 278,
488.

Zhao, H.S.: 1997, Mon. Not. R. Astron. Soc., 287,
525.

Zhao, D.H., Mo, H.J., Jing, J.P., Börner, G.: 2003,
Mon. Not. R. Astron. Soc., 339, 12.

Appendix

A. Analytical and geometrical properties of
logarithmic GPL density profiles

The values of the vertical intercept related to
the curve, b, and to the asymptotes, bβ and bγ , are
readily determined by putting log η = 0 i.e. η = 1 in
Eqs. (22), (25), and (26), respectively. The result is:

b = log ∆vir − log νmas + 3 log ξvir − γ log ξvir

− χ log(1 + ξα
vir) ; (36)

bγ = log ∆vir − log νmas + 3 log ξvir − γ log ξvir; (37)

bβ = log ∆vir − log νmas + 3 log ξvir − β log ξvir; (38)

for sake of brevity, let us denote the intersec-
tion of the asymptotes in the logarithmic plane
(O log η logψ) by C(xC , yC) where, owing to
Eqs. (18), (19), (25), (26), (37), and (38), the explicit
expression of the coordinates reads:

xC = − log ξvir = − log
rvir

r0
= log

r0
rvir

; (39)

yC = log
∆virξ

3
vir

νmas
= log

ρ0

ρh
; (40)

which yields the following.

Theorem. For a selected (but arbitrary) SDH den-
sity profile, cosmological model, and GPL density
profile, the intersection of the asymptotes in the log-
arithmic plane, (O log η logψ), occurs at a point,
C(xC , yC), where the coordinates are the decimal log-
arithm of the ratio between scaling radius and virial
radius, and scaling density and mean (matter) den-
sity of the universe, respectively.

The combination of Eqs. (18), (19), (39), and
(40) yields:

log νmas = log ∆vir − 3xC − yC ; (41)

accordingly, the vertical intercepts of the curve and
the asymptotes, expressed by Eqs. (36), (37), and
(38), reduce to:

b = yC + γxC − χ log [1 + exp10(−αxC)] ; (42)

bγ = yC + γxC ; (43)

bβ = yC + βxC ; (44)

where, in general, expu x = ux, and expx = ex, ac-
cording to the standard notation.

A change of coordinates, defined by:

x = log η ; y = logψ ; (45)

translates the expressions of the curve and the
asymptotes, defined by Eqs. (22), (25), and (26),
into:

y = yC − γ(x− xC)

− χ log{1 + exp10[α(x − xC)]} ; (46)

y = yC − γ(x− xC) ; x << xC ; (47)

y = yC − β(x − xC) ; x� xC ; (48)
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with regard to the plane (Oxy).
The first derivative of the curve defined by

Eq. (46) becomes:

dy

dx
= −β +

β − γ

1 + exp10[α(x − xC)]
; (49)

and the particularization of the above result to the
vertical intercept of the curve reads:

(

dy

dx

)

x=0

= −β +
β − γ

1 + exp10(−αxC)
; (50)

according to Eqs. (42) and (50), the equation of the
tangent to the curve at the vertical intercept is:

y =

[

−β +
β − γ

1 + exp10(−αxC)

]

x+ b ; (51)

the intersections M(xM , yM ) and R(xR, yR) of this
line with the asymptotes expressed by Eqs. (47) and
(48), may be calculated after some algebra. The re-
sult is:

xM =
bβ − b

β − γ
[1 + exp10(−αxC)] ; (52)

yM = bβ − β
bβ − b

β − γ
[1 + exp10(−αxC)] ; (53)

xR = −bγ − b

β − γ
[1 + exp10(−αxC)] ; (54)

yR = bγ + γ
bγ − b

β − γ
[1 + exp10(−αxC)] ; (55)

the curve, the tangent to the curve at the vertical
intercept, and the asymptotes, are represented in
Fig. 6. It is apparent that the curve must necessarily
lie below the asymptotes and the segment, MR, with
the exception of the tangential point, B(0, b).

The combination of Eqs. (42), (43), and (44)
yields:

bγ − b = χ log [1 + exp10(−αxC)] ; (56)

bβ − bγ = (β − γ)xC = χαxC ; (57)

and the comparison between the alternative expres-
sions of the exponent χ, deduced from Eqs. (56), (57),
produces:

Aw = log [1 + exp10 w] (58a)

A =
bγ − b

bγ − bβ
> 1 ; (58b)

w = −αxC > 0 ; (58c)

which is equivalent to:

uA − u− 1 = 0 ; (59a)

u = exp10 w ; (59b)

where A > 1, w > 0, and −β < −γ < 0, in the case
of interest (logarithmic GPL density profiles of the
kind represented in Fig. 6).

Fig. 6. A NFW logarithmic density profile, to-
gether with the tangent at the vertical intercept and
the asymptotes, on the (Oxy) plane. The above men-
tioned straight lines define a triangle, CMR. The
curve must necessarily lie below the asymptotes and
the segment, MR, with the exception of the tangential
point, B.

The function, φ(u), on the left-hand side of
Eq. (59a), has the following properties:

φ(u) = uA − u− 1 ; 0 ≤ u < +∞ ; (60a)

φ(0) = −1 ; umin = A−1/(A−1) ; (60b)

lim
u→+∞

φ(u) = +∞ φ(u0) = 0 ; (60c)

where umin and u0 denote the abscissa of the ex-
tremum point (of minimum) and the zero of the func-
tion, respectively. Eq. (59a) may be solved by an it-
erative method.

The combination of Eqs. (57), (58c), and (59b)
yields:

α = − logu0

xC
; (61)

χ =
bγ − bβ
log u0

; (62)

on the other hand, the exponents γ and β may be
deduced from Eqs. (43) and (44), respectively, as:

γ =
bγ − yC

xC
; (63)

β =
bβ − yC

xC
; (64)
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and the scaling parameters r0 and ρ0 may be deduced
from Eqs. (39) and (40), respectively, as:

r0 = rvir exp10 xC ; (65)

ρ0 = ρh exp10 yC ; (66)

the set of Eqs. (61)-(66) yields the following.

Theorem. For a selected (but arbitrary) SPH den-
sity profile, cosmological model, and GPL density
profile, in the logarithmic plane, (Oxy), there is
a one-to-one correspondence between analytical pa-
rameters, (r0, ρ0, α, β, γ), and geometrical parame-
ters, (xC , yC , b, bβ, bγ), in the sense that either set
uniquely determines a GPL density profile.

The advantage of using geometrical instead of
analytical parameters lies in a better understanding
of how the curve changes as one or more parameters
do.

With regard to SDH density profiles, accord-
ing to Eqs. (17) and (45), let us divide the domain
into two distinct regions, as:

−2 ≤ xγ ≤ −1 ; −1 ≤ xβ ≤ 0 ; (67)

which shall be called the γ region and the β region,
respectively.

Let (xi, yi) be coordinates of a generic point
of a logarithmic SDH density profile, and [xi, y(xi)]
their counterparts related to a fitting, logarithmic
GPL density profile. Owing to Eq. (46), the corre-
sponding, logarithmic absolute residual, is:

Ri = yi − y(xi) = yi − yC + γ(xi − xC)

+ χ log{1 + exp10[α(xi − xC)]} ; (68)

the particularization of Eq. (68) to the γ and β re-
gion, defined by Eq. (67), allows the application of a
least-squares fit to the related portions of SDH den-
sity profile. The best linear fits are:

y = bsγ − γsx ; (69)

y = bsβ − βsx ; (70)

and the coordinates of their intersection point,
Cs(xs, ys), are:

xs =
bsγ − bsβ

βs − γs
; ys =

bsγβs − bsβγs

βs − γs
; (71)

the best linear fits to a selected SDH density profile,
are plotted in Fig. 2.

The intercepts, bsγ and bsβ , and the slopes,
−γs and −βs, appearing in Eqs. (69) and (70), are
calculated using the standard formulation of the
method (e.g. Secco 2001, Chap. 4, § 4.1):

−λs =
xλyλ − xλyλ

xλxλ − xλxλ
; (72)

bsλ =
yλxλxλ − xλxλxλ

xλxλ − xλxλ
; (73)

σ2
s λs

= σ2
s yλ

1

xλxλ − xλxλ
; (74)

σ2
s bs

= σ2
s yλ

xλxλ

xλxλ − xλxλ
; (75)

where λ = β, γ, a bar denotes arithmetic mean over
the corresponding range of simulated values, and σ2

s
is the empirical variance of the histogram calculated
for the selected random variable.

The comparison between best linear fits to
SDH density profiles, defined by Eqs. (69) and (70),
and related asymptotes of GPL density profiles, de-
fined by Eqs. (47) and (48), leads to the following,
fiducial conclusions: (i) SDH best linear fits lie be-
low related GPL asymptotes, in the range of interest,
and (ii) SDH best linear fits are more inclined (in ab-
solute value) with respect to related GPL asymptotes
towards negative infinite, and less inclined (in abso-
lute value) with respect to related GPL asymptotes
towards positive infinite. Accordingly, (iii) the inter-
section between SDH best linear fits lies below, and
on the left, with respect to the intersection of related
GPL asymptotes.

The above conclusions (i) and (ii) read:

b < bsβ ; bsβ < bβ ; bsγ < bγ ; (76)

γs < γ < 0 ; β < βs < γs ; (77)

on the other hand, GPL asymptotes intersect within
the (−+) quadrant, according to Eqs. (39) and (40),
which yields:

b < yC ; bβ < yC ; bγ < yC ; (78)

finally, lower and upper values to the ranges:

ymin < yC < ymax ; xmin < xC < xmax ; (79)

and the lower value to the range:

bmin < b < bsβ ; (80)

may be deduced from SDH density profiles. The up-
per value of inequality (80) is due to the first in-
equality (76). The combination of inequalities (76)
and (78) yields:

bsβ < bβ < yC ; bsγ < bγ < yC ; (81)

due to negative slopes of GPL asymptotes, −γ < 0
and −β < 0.

With regard to a 5-dimension hyperspace,
(O xC yC b bβ bγ), inequalities (79), (80), and (81),
define a 5-dimension hyperparallelepiped of sides
(xmax−xmin), (ymax−ymin), (bsβ−bmin), (ymax−bsβ),
and (ymax − bsγ), respectively. Then it is possible to
make a 5-dimension hypergrid where the points are
equally spaced; according to inequalities (81), the
ranges yC < bβ < ymax and yC < bγ < ymax are to be
excluded as outside the cases of interest. In dealing
with the remaining points, the sum of both absolute
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values and squares of absolute logarithmic residu-
als, defined by Eq. (68), are formed, and the mini-
mum on the hypergrid is determined in each alter-

native. Let them be
(

x
(a)
C , y

(a
C ), b(a), b

(a)
β , b

(a)
γ

)

and
(

x
(s)
C , y

(s
C ), b(s), b

(s)
β , b

(s)
γ

)

, where the indices, a and s,

denote absolute value and square, respectively.
The next iteration is in connection with a 5-

dimension hyperparallelepiped, which has the follow-
ing features: (1) it is centered near the previously de-
termined point of minimum; (2) it is reduced in size
by a factor of about 10, provided inequalities (79),
(80), and (81) continue to hold; and (3) there is no
point in common with the earlier hypergrid. Then

two additional points of minimum are calculated and
the next iteration is allowed to start.

The computations end when the sum of abso-
lute values and squares of absolute logarithmic resid-
uals fall below an assigned treshold, which yields:

N
∑

i=1

|Ri| < ε(a) ; (82)

N
∑

i=1

R2
i < ε(s) ; (83)

where the sum is performed on the range of interest,
defined by Eq. (67).
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Detaǉno su istra�ena analitiqka i
geometrijska svojstva uopxtenih stepenih
profila gustine (USP). Konkretno, na�ena
je obostrano jednoznaqna korespondencija
izme�u matematiqkih parametara (karakte-
ristiqni polupreqnik, r0, karakteristiqna
gustina, ρ0, i tri izlo�ioca, α, β, γ) i ge-
ometrijskih parametara (koordinate preseka
asimptota xC , yC i tri vertikalne du�i b,
bβ, bγ, uzete u odnosu na krive i asimptote,
respektivno): (r0, ρ0, α, β, γ) (xC, yC, b, bβ,
bγ). Tada se USP profili gustine porede sa
simuliranim profilima gustine za haloe od
tamne materije (STH), a uskla�ivaǌe se vrxi
primenom nelinearnog metoda najmaǌih apso-
lutnih vrednosti i metoda najmaǌih kvadrata
gde se koristi pet gorepomenutih parameta-
ra (metod RFSM5). Konkretnije, proceǌuje
se zbir apsolutnih vrednosti ili kvadrata
apsolutnih logaritamskih reziduala, Ri =
log ρSDH(ri) − log ρGPL(ri), na 105 taqaka koje
obrazuju jednu petodimenzionu hipermre�u
kroz nekoliko iteracija. Veliqina se pro-
gresivno smaǌuje oko jednog minimuma pove-
reǌa, a superpozicije na qvorovima ranijih
hipermre�a se izbegavaju. Ovo je primeǌe-
no na jedan uzorak od 17 STH na dimenzi-
jama koje odgovaraju jatu galaksija unutar
ravnog ΛCDM kosmoloxkog modela (Razija i
dr. 2004). U radu sa sredǌim STH pro-
filom gustine dodeǉen je virijalni polupre-
qnik, rvir, usredǌen po celom uzorku, koji
omogu�uje izraqunavaǌe preostalih parame-
tara. U pore�eǌu sa drugim metodima ko-
rix�eǌe metoda RFSM5 daje boǉe slagaǌe.
Geometrijski parametri, usredǌeni po celom
uzorku kod najboǉeg slagaǌa za USP profile

gustine, daju (α, β, γ) ≈ (0.6, 3.1, 1.0) xto
treba uporediti sa (α, β, γ) = 1, 3, 1), tj. sa
NFW profilima gustine (Navaro i dr. 1995,
1996,1997); (α, β, γ) = (1.5, 3, 1.5) (Mur i dr.
1998, 1999); (α, β, γ) = (1, 2.5, 1) (Razija i
dr. 2004)i jox sa γ ≈ 1.5 (Hiotelis 2003) xto
je dobijeno primenom metoda RFSM5, ali ko-
rix�eǌem razliqite definicije karakteris-
tiqnog polupreqnika ili koncentracije; i γ ≈
1.2− 1.3 koji se izvodi iz skorijih simulacija
velike razdvojne mo�i (Dimand i dr. 2004,
Rid i dr. 2005). Nije na�ena nikakva evi-
dentna korelacija izme�u dinamiqkog staǌa
STH (relaksacija ili uroǌavaǌe) i asmptot-
skog unutraxǌeg nagiba logaritamskog pro-
fila gustine za uskla�ivaǌe ili (za upore-
dive virijalne mase STH) karakteristi-
qnog polupreqnika. Izraqunate su sredǌe
vrednosti i standardne devijacije za neke
parametre i, konkretno, za dekadni logari-
tam karakteristiqnog polupreqnika, ξvir, je
< log ξvir >= 0.74 i σs log ξvir

= 0.15 − 0.17
xto je u saglasnosti sa ranijim rezulta-
tima za NFW profile gustine. Ovo ide do-
datno u prilog ideje da se NFW profili gus-
tine mogu razmatrati kao pogodan naqin za
parametrizaciju STH profila gustine, a da
tom prilikom nije neophodno da se dobije naj-
boǉe mogu�e slagaǌe (Bulok i dr. 2001).
Prilikom uskla�ivaǌa profila gustine USP
sa profilima STH na�en je izvestan stepen
degenerisanosti. Da li je on svojstven metodu
RFSM5 ili bi mogao biti smaǌen u slede�oj
generaciji simulacija velike razdvojne mo�i,
jox uvek je otvoreno pitaǌe.
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