DYNAMICS OF QUADRUPLE SYSTEM FINSEN $332 = ADS \ 11640 = HIP \ 92027 = WDS \ 18455+0530$

D. Olević and Z. Cvetković

Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia and Montenegro

(Received: October 31, 2003; Accepted: November 5, 2003)

SUMMARY: In 1829 Struve discovered a double star denoted as STF 2375 AB later on. Its separation was 2''.2. It was noticed by Finsen from the Southern Observatory (Johannesburg) in 1953 that the components A and B are close binaries with separations about 0''.15. The motion within this quadruple system - FIN 332 Aa and FIN 332 Bb - has been monitored from that time on. The data about the motion of these close binaries are analysed by the present authors and the preliminary orbital elements are calculated for each of them. The dynamical parallax from the obtained period and the semimajor axis for pair FIN 332 Bb agrees completely with that obtained from the Hipparcos programme. In the case of FIN 332 Aa a somewhat higher parallax, but within the error limits following from the errors of the period and semimajor axis, is obtained and it agrees with the parallax for FIN 332 Bb. The dynamical masses for the components of both systems are as expected for their spectral type A1V (all of them belong to the Main Sequence and here one uses Angelov's (1993) relation). According to our results, the motion of both systems takes place approximately in the same plane, confirming thus some general properties already noticed in the case of multiple stars.

Key words. binaries: close

1. INTRODUCTION

In 1829 Struve detected a visual double star which at that moment had a separation of 2".3. The total apparent magnitude is 5.72 and the spectrum is A0. The first designation of this pair was STF 2375. In the ADS Catalogue it is referred to as ADS 11640. Observing from the Southern Observatory (Johannesburg), Finsen in 1953 finds that the components A and B are close binaries, in both cases the separation was 0".14.

Therefore, one has a quadruple system AaBb. The subsystems are referred to as FIN 332 Aa and FIN 332 Bb. From that time on, the motion of The data are taken from Fourth Catalog of Interferometric Measurements of Binary Stars (Hartkopf et al. 2002).

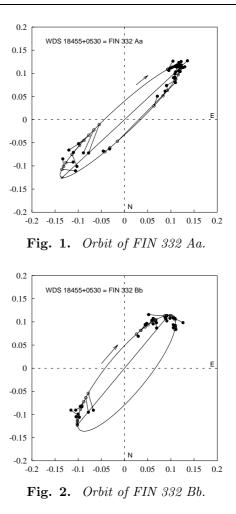
2. THE METHOD

For the purpose of calculating the orbital elements, one used the method known as KOVOLE (Olević and Cvetković 2003). This method was developed by Olević; it is based on Koval'skij's method which yields acceptable results for all possible cases (of data) without requiring the approximate values of P, T and e to be known, unlike the method used at CHARA - Center for High Angular Resolution Astronomy (Hartkopf et al. 1989).

3. RESULTS AND DISCUSSION

3.1 Results

In Table 1, the basic data on the system considered, orbital elements, dynamical parallax and the individual values of absolute magnitudes and masses of the components are given. In the calculation of the dynamical parallax, individual absolute magnitudes and the masses, we use Angelov's (1993) relation since the system belongs to the Main Sequence.


 Table 1.
 Orbital elements, absolute magnitudes, masses and parallaxes.

Name	FIN 332 Aa	FIN 332 Bb
WDS	18455 + 0530	18455 + 0530
HIP	92027	92027
m	6.50 - 6.60	7.50 - 7.50
Sp.	A1V+A1V	A1V
P(yr)	58.35	93.92
T	1989.85	1972.23
a('')	0.176	0.163
e	0.12	0.24
$i(^{o})$	98.9	105.3
$\Omega(^{o})$	132.9	140.3
$\omega(^{o})$	61.1	278.6
$M_1(mag)$	0.71	0.88
$M_2(mag)$	0.81	0.88
$\mathcal{M}_1(\odot)$	2.4	2.3
$\mathcal{M}_2(\odot)$	2.4	2.3
$\pi('')$	0.0069	0.0047
$\pi_{HIP}('')$	0.00460	0.00460

Table 2 gives all available measurements and residuals used in the calculations. The asterisk indicates those observations where the quadrant is changed (rotation by 180°) in the orbit calculation, in the parentheses one gives the ephemeride values of the coordinates according to the calculated orbital elements.

Finally, Table 3 gives the ephemerides for the interval 2004-2009.

Figs. 1 and 2 give the apparent orbits of subsystems FIN 332 Aa and FIN 332 Bb.

3.2 Discussion

There are several difficulties in the measurements of this system. The pairs are close, and the components are relatively bright. The entire quadruple system appears in the view field of the instrument during observations. The position angles and the separations in the observation interval covered up to now are similar for both subsystems. This can affect the accuracy of the measurements and the errors in the determining of the position-angle quadrant, i.e. cause accidental erroneous assigning of the data to either subsystem, etc.

These problems were indicated by the observers in Note in the Fourth Catalog of Interferometric Measurements of Binary Stars, as well as by Mason and Hartkopf (2002). There are (and there will be) gaps in the observations due to the impossibility of observing so small separations of the components during their motion, also shown in our analysis. For example, according to the ephemerides, the components of FIN 332 Aa in the period 1964-1969 had apparently a separation less than 0".05. For FIN 332 Bb such a case took place in the period 1964-1973.

The present authors have corrected the speculated errors in the quadrants on the basis of their analysis of the observations. The individual masses

WDS $18455 + 0530 = FIN 332$ Aa						
t	θ°	ho''	n	Obs.	$\Delta \theta^{\circ}$	$\Delta \rho''$
1953.73 *	136.5	.153	5	Fin	7.6	019
1954.68 *	122.7	.158	4	Fin	-5.	007
1955.72 *	129.8	.144	3	Fin	3.1	013
1957.76 *	134.7	.144	1	Fin	10.7	.008
1959.72 *	122.9	.131	3	Fin	2.6	.020
1960.72 *	118.9	.137	1	Fin	1.3	.039
1961.73 *	117.8	.112	3	Fin	3.8	.029
1962.72 *	129.2	.114	5	Fin	20.1	.045
1963.728 *	: 133.0	: .106	4	Fin	31.5	.051
1964.726	—	< .108	1	Fin	(269.0)	.066)
1966.758	—	< .107	1	Fin	(214.4)	.077)
1968.791	_	< .119	1	Fin	(169.1)	.071)
1976.2992	138.1	.143	1	McA	-1.2	.000
1976.3702	138.5	.149	1	McA	7	.005
1976.3728	140.5	.164	1	McA	1.3	.020
1977.3340	136.9	.158	1	McA	-1.0	.007
1977.4815	136.4	.162	1	McA	-1.4	.010
1977.4870	136.2	.164	1	McA	-1.6	.011
1977.6400	135.9	.175	1	McA	-1.7	.021
1978.5410	136.2	.170	1	McA	3	.011
1978.6147	136.6	.170	1	McA	.2	.011
1979.3601	134.0	.170	1	McA	-1.6	.008
1979.5321	133.2	.151	1	McA	-2.2	012
1979.7725	132.5	.166	1	McA	-2.6	.003
1980.4769	131.4	.173	1	McA	-2.9	.008
1980.4794	134.7	.169	1	McA	.3	.004
1980.7173	131.0	.159	1	McA	-3.1	006
1980.7199	131.8	.169	1	McA	-2.3	.004
1981.356	133.2	.186	1	Tok	2	.022
1982.5248	135.2	.160	1	McA	3.0	002
1983.4203	132.3	.157	1	McA	1.1	001
1984.3760	132.4	.147	1	Hrt	2.4	004
1985.4816	130.7	.139	1	McA	2.2	002
1985.5231	130.3	.142	1	McA	1.8	.002
1995.6008	126.1	.136	1	Hrt	-2.2	004
1985.8424	129.2	.117	1	McA	1.2	020
1987.7618	129.2	.117	1	McA	4.8	.005
1988.6655	125.1	.107	1	McA	3.1	.009
1990.2734	125.6	.087	1	Hrt	10.2	.017
1996.6930 *	153.0	.071	1	Hrt	0.6	.003
1997.3945	326.0	.082	1	Bag	-2.7	.002

Table 2. Observations and residuals. WDS 18455 ± 0530 – FIN 332 Å a

WDS $18455+0530 = FIN 332 Bb$						
t	θ°	ρ''	n	Obs.	$\Delta \theta^{\circ}$	$\Delta \rho''$
1953.73 *	135.3	.148	5	Fin	-5.0	012
1954.48 *	137.6	.144	4	Fin	-1.9	014
1955.72 *	134.9	.141	3	Fin	-3.3	012
1957.76 *	128.3	.147	1	Fin	-7.5	.004
1959.72 *	132.3	.124	3	Fin	-0.7	006
1960.72 *	130.9	.139	1	Fin	-0.5	.016
1961.73 *	131.0	.126	3	Fin	1.4	.012
1962.72 *	140.8	.123	5	Fin	13.4	.018
1963.728 *	: 143.6	: .113	4	Fin	18.8	.017
1964.726		< .117	1	Fin	(301.6)	.086)
1966.758		< .109	1	Fin	(291.9)	.064)
1968.791		< .123	1	Fin	(272.6)	.043)
1976.4549	156.9	.075	1	McA	-3.6	003
1977.4815	154.6	.104	1	McA	-2.0	.015
1977.4870	154.6	.104	1	McA	-2.0	.015
1978.6147	153.8	.108	1	McA	0.5	.008
1979.3601	150.5	.119	1	McA	-1.0	.012
1980.4769	150.2	.124	1	McA	1.1	.008
1981.356	141.5	.111	1	Tok	-6.0	012
1981.4681	147.2	.114	1	McA	-0.1	010
1981.6975	145.0	.120	1	McA	-1.9	005
1984.783	155.9	.127	1	Tok	13.4	015
1985.4816	141.3	.140	1	McA	-0.3	005
1985.5231	140.4	.139	1	McA	-1.1	006
1985.744	138.3	.137	1	Tok	-3.0	009
1985.8424	140.4	.140	1	McA	-0.7	006
1987.7618	137.8	.146	1	McA	-1.1	005
1988.6655	137.8	.146	1	McA	-0.0	006
1990.2734	135.9	.151	1	Hrt	-0.2	002
1991.25 *	308.0	.16	1	Hip	-7.0	.007
1992.3105	134.5	.153	1	Hrt	0.7	.002
1995.6061	131.8	.141	1	Hrt	2.0	002
1996.3215	130.7	.141	1	Hrt	1.8	.000
1996.3270	130.1	.142	1	Hrt	1.2	.001
1996.7012	127.1	.139	1	Hrt	-1.3	001
1997.3945	129.7	.137	1	Bag	2.2	.000

 Table 2. (continued)

	FIN 33	82 Aa	FIN 332 Bb		
t	θ°	ρ''	θ°	$\rho^{\prime\prime}$	
2004.0	315.8	.168	115.5	.103	
2005.0	314.8	.175	112.9	.097	
2006.0	313.9	.180	110.0	.092	
2007.0	313.0	.183	106.6	.086	
2008.0	312.2	.184	102.9	.080	

Table 3. Ephemerides.

for FIN 332 Aa obtained here are $2.4\odot$ and $2.4\odot$ as expected in view of the spectral types A1V+A1V. For FIN 332 Bb the component masses are $2.3\odot$ and $2.3\odot$, also according to the expectation in view of their spectral type - A1V.

The dynamical parallax obtained for FIN 332 Bb agrees fully with that given by the Hipparcos Mission. A somewhat worse agreement in the dynamical parallax for FIN 332 Aa can be explained by a higher heterogeneity of the data causing the orbital elements to be obtained less accurately.

The main conclusion derivable, at this moment from the present results, is that the orbital planes of both subsystems almost coincide and that the direction of the motion is the same. All the four components have approximately the same spectral type. Hence, this quadruple system is very interesting and deserves permanent observation because it can be of importance in the study of formation, dynamics and evolution of stellar systems.

The change of the position angle in the system FIN 332 Aa - FIN 332 Bb in the period 1829-1977 of 12 degrees makes impossible at present even a crude estimate of the orbital elements.

Acknowledgements – This research has been supported by the Serbian Ministry of Science Technology and Development (Project No. 1221 "Investigation of Double and Multiple Stars").

REFERENCES

Angelov, T.: 1993, Bull. Obs. Astron. Belgrade,

- 148, 1. Hartkopf, W.I., McAlister, H.A. and Franz, O.G.: 1989, Astron. J., 98, 1014.
- Hartkopf, W.I., McAlister, H.A. and Mason, B.D.: 2002, Fourth Catalog of Interferometric Measurements of Binary Stars, US Naval Observatory, Washington.
- Mason, B.D. and Hartkopf. W.I.: 2002, American Astronomical Society, DDA meeting, 33, 07.06.
- Olević, D. and Cvetković, Z.: 2003, Astron. Astrophys., (in press).

ДИНАМИКА КВАДРУПОЛНОГ СИСТЕМА FINSEN 332 = ADS 11640 = HIP 92027 = WDS 18455+0530

Д. Олевић и З. Цветковић

Астрономска опсерваторија, Волгина 7, 11160 Београд 74, Србија и Црна Гора

UDK 524.38 Претходно саопштење

Струве је 1829. године открио двојни систем који је добио ознаку STF 2375 AB, чија је сепарација била 2".2. Финзен запажа, 1953. године са јужне опсерваторије (Јоханесбург), да су компоненте A и B тесни двојни системи са сепарацијама око 0".15. Од тада се прати кретање тог квадруполног система: FIN 332 Aa и FIN 332 Bb. Аутори су анализирали податке о кретању ових тесних двојних система и израчунали прелиминарне путањске елементе за сваки од њих. Динамичка паралакса из израчунате периоде и велике полуосе за пар FIN 332 Bb је у потпуној сагласности са оном која је добијена из Ніррагсоз програма. За пар FIN 332 Аа добијена је нешто већа паралакса која је у оквиру граница грешака које следе из грешака за период и велику полуосу и у сагласности је са паралаксом за FIN 332 Вb. Динамичке масе компонената оба система су очекиване за њихов спектрални тип A1V (све припадају главном низу па је коришћена формула Ангелова (1993)). Према нашим резултатима оба система се крећу у приближно истој равни што потврђује неке опште карактеристике које су раније запажене код вишеструких система.