A VARIANCE-COMPONENTS ANALYSIS FOR THE LONGITUDE-NETWORK ADJUSTMENT

G. Perović¹ and Z. Cvetković²

¹Faculty of Civil Engineering – Department of Geodesy, Bul. kralja Aleksandra 73/I, 11000 Belgrade, Yugoslavia

²Astronomical Observatory, Volgina 7, 11160 Belgrade-74, Yugoslavia

Due to technical problems a number of formulae and notation have been erroneously printed.

(a) Linear:
$$\mathbf{v} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{t} + \mathbf{f}$$
, $\mathbf{f} = \mathbf{l}_o + \mathbf{l}$
(b) Stochastic: $\mathbf{M}[\mathbf{v}] = \mathbf{0}$, $\mathbf{M}[\mathbf{v}\mathbf{v}^T] = \mathbf{K} = \sigma^2 \mathbf{P}^{-1} = \sigma^2 diag\{P_i^{-1}\}$. (1)

where: \mathbf{v} – vector of measurement corrections; \mathbf{l} – vector of measurements; \mathbf{l}_o – vector of approximate values of measured quantities; \mathbf{x} – vector of **basic parameters**; \mathbf{t} – vector of **additional parameters**; \mathbf{A} and \mathbf{B} – matrices of known coefficients; σ^2 – variance coefficient, (in calculations assumed $\sigma^2 = 1$); \mathbf{K} – variance-covariance matrix of measurements and \mathbf{P} – matrix of measurement weights.

$$\mathbf{v} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{t} + \mathbf{f} , \qquad \mathbf{f} = \mathbf{l}_o - \mathbf{l}$$
(3)

where we study the influences of \mathbf{Bt} in the observations which can be described with the vector of additional parameters \mathbf{t} , whereas the vector of basic parameters \mathbf{x} is the same in all the functional models.

first paragraph, firs line $The \ vector \ of \ basic \ parameters \ \mathbf{x}$ is the

first paragraph, 8th line respect to the term \mathbf{Bt} representing the effects of individual

second paragraph, 3rd line the vector \mathbf{t} has 8 components: variation with time of latitude

threerd paragraph, 7th line night (23 observing nights). Therefore, the \mathbf{t} vector

fourth paragraph, 2nd line Model FM1 the \mathbf{t} vector is extended with additional