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SUMMARY: In this paper we shall investigate the timelike geodesics for an
extremal, spherically symmetric, massless dilaton black hole, using an exact solution
obtained by Gary Horowitz.

1. INTRODUCTION

In classical general relativity, the geometry of
a static, charged, spherically symmetric black hole is
described by the well-known Reissner-Nordström so-
lution. However, if string theory is to be used for the
description of nature, then, in the low energy limit
of this theory, the action includes, besides the pure
gravitational part, a minimally coupled scalar field,
the dilaton. Horowitz (1993) showed that, by ap-
plying to the Schwarzschild solution a Harrison-like
transformation, we can obtain a metric which is a
solution of the Einstein-Maxwell-dilaton field equa-
tions and a not very difficult investigation reveals
the fact that it is a static, spherically symmetric so-
lution, corresponding to a charged, massless dilaton.
The line element for this solution is given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2+

+ r

(
r − Q2

M

) [
dθ2 + sin2 θdϕ2

] (1)

In a previous paper (Blaga, Blaga, 1996), we

were able to show that the geodesics equation for this
metric is separable and we obtained the following
generating function

S = −1
2
δ1 −Et + Lz +

∫ r
√

R

∆
dr +

∫ θ √
Θdθ, (2)

in curvature coordinates. Here

δ1 =




−1 for timelike geodesics
0 for null geodesics
1 for spacelike geodesics

E is a constant, identified to the total energy of the
particle moving on the geodesics.
Lz is the kinetic energy of the particle.

R = −δ1r

(
r − Q2

M

)
+

r
(
r − Q2

M

)
1 − 2M

r

E2 −Q (3a)

∆ = r

(
r − Q2

M

) (
1 − 2M

r

)
(3b)

Θ = Q− L2
z

sin2 θ
(3c)
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Q is the fourth constant of the motion (besides δ1, E
and Lz), it is a separation constant and it was first
introduced by Brandon Carter, when he studied the
motion around a Kerr-Newman black hole.

2. THE GEODESIC EQUATIONS

Starting from the complete integral (2), by
using the Hamilton-Jacobi theorem, we recast the
geodesics equations in the following first order form:

dλ =
r
(
r − Q2

M

)
dr

√
R
√

∆
(4a)

dt =
r
(
r − Q2

M

)
E(

1 − 2M
r

)√
R
√

∆
dr (4b)

dϕ =
Lz

sin2 θ
√

Θ
dθ (4c)

dr√
∆
√

R
=

dθ√
Θ

, (4d)

allowing us the study of the motion in this field.
The quantity Q is related to the electrical

charge of the black hole. Horowitz emphasized that
we are actually dealing with a black hole (and not
a naked singularity) only for Q2 ≤ 2M2. We shall
consider hereafter only the case Q2 = 2M2, referred
to as the extremal case.

The timelike geodesics from the equatorial
plane θ = π/2 are described by the equations (4c)
and (4d). †

Passing from the variable r to the variable u =
1
r we get:

(
du

dϕ

)2

= (2Mu − 1)2
(
−u +

2M

L2
z

u +
E2 − 1

L2
z

)

≡ f(u),
(5)

or, passing back to r and performing the square root,

dϕ = ± Lzdr

|r − 2M |√r2(E2 − 1) + 2Mr − L2
z

. (6)

It is now clear how to use the equation(6) to de-
termine the behaviour of geodesics. For each set of
values of the parameters (M, E, Lz) the only motions
that are allowed are those for which the argument of
the square root is (strictly) positive.

What is interesting to note is that in the case
of the dilaton black hole, no geodesic actually is
passing through the event horizon r = 2M , which
means that no uncharged test particle can reach the
singularity in a free fall. This is not a contradic-
tion with the fact that we are dealing with a black
hole, because the singularity can be reached in a non-
geodesic motion.

We were able to integrate the equation (6) and
we obtained the following results, for different values
of the quantities:

a = 4M2E2 − L2 and ∆ = M2 + L2(E2 − 1).

Using also the notations

I = ± (ϕ − ϕ0)
L

, x =
1

r − 2M
,

b = 2M(2E2 − 1), and c = E2 − 1,

we have the following cases:
(i) a < 0 and ∆ > 0 the solution has the form

r = 2M −
2a
b

1 +
√

∆
b sin(

√−aI)
, (6.1)

(ii) a = 0, if bx + c > 0 the solution reads:

r = 2M +
4b

b2I2 − 4c
, (6.2)

(iii) a > 0 and ∆ arbitrary. The solution is

r = 2M +
4εae

√
aI

(e
√

aI − εb)2 − 4ac
(6.3)

where

ε = sgn(2ax + b + 2
√

a(ax2 + bx + c))

It goes without saying, but has to be said that
only selected parts of the curves described by the
equations (6.1)–(6.3) are actually geodesics.

The general characteristics of the geodesics
will be dealt with in a forthcomming paper. What
we want here is simply to illustrate the shape of them
for some set of parameters.

3. EXAMPLES

We selected for this paper a number of four
sets of values for the parameters (M, E, Lz), to illus-
trate the shape of the timelike geodesics (see Figures
1–4).

† It is not difficult to see that a geodesics for
which at a given moment t0, θ = π

2 and θ̇ = 0, does
not leave the equatorial plane.
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Fig. 1. M = 1, E =
√

2, Lz = 4 (case (i)).

Fig. 2. M = 0.9, E = 0.5, Lz = 1.5 (case (i)).

Fig. 3. M = 1, E = 0.75, Lz = 1.5 (case (ii)).

Fig. 4. M = 1, E = 0.5, Lz = 1 (case (ii)).
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Fig. 5. M = 1, E = 1√
2
, Lz = 1 (case (iii)).

Fig. 6. M = 1, E = 2, Lz = 2 (case (iii)).

Fig. 7. M = 1, E = 2, Lz = 4 (case (ii)).
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O GEODEZICIMA ZA SFERNO SIMETRIQNU BEZMASENU CRNU JAMU
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U ovom radu ispitujemo vremenske geo-
dezijske linije u ekstremnoj, sferno simetri-

qnoj, bezmasenoj crnoj jami, koriste�i jedno
taqno rexeǌe koje je dobio Gary Horowitz.
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