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SUMMARY: The force field described by a potential function of the form U =∑n
k=1 ak/rk (r = distance between particles, ak = real parameters) models various

concrete situations belonging to astronomy, physics, mechanics, astrodynamics, etc.
The two-body problem is being tackled in such a field. The motion equations and the
first integrals of energy and angular momentum are established. The McGehee-type
coordinates are used to blow up the collision singularity and to paste the resulting
manifold on the phase space. The flow on the collision manifold is depicted. Then,
using the rotational symmetry of the problem and the angular momentum integral,
the local flow near collision is described and interpreted in terms of physical motion.

1. INTRODUCTION

This paper starts a research intended to bring
a unifying standpoint for several problems of particle
nonlinear dynamics. Many classical models, as those
of Kepler, Manev, Schwarzschild, Fock, Coulomb,
Van der Waals, etc., are included. We deal with
two-body problems associated to potentials of the
type U =

∑n
k=1 ak/rk, in which r is the distance

between particles, whereas ak, k = 1, n, are real con-
stants. Since the best known potential of this kind
is that represented by the zonal part of a planetary
gravitational potential, we shall assign the name of
zonal satellite problem to this class of problems (see
also Cid et al. 1983).

The study of the zonal satellite problem is
important especially for physics, mechanics, astron-
omy, astrodynamics, and not only. Its importance
is emphasized by the multitude of concrete situa-
tions modellable in this way. It is clear that a1 > 0,
ak = 0, (k = 2, n), features the Newtonian field (for

a photogravitational field with Newtonian gravita-
tional component, a1 can equally be negative). The
motion in Manev’s field (a1 > 0, a2 > 0, ak = 0,
k = 3, n) or in Manev-type fields (a1, a2 ∈ R, ak = 0,
k = 3, n) also belongs to this model (see, e.g., Di-
acu 1993, 1996; Diacu et al. 1995, Mioc and Stoica
1995a,b, 1996, 1997; Delgado et al. 1996; Stoica and
Mioc 1997b). The Schwarzschild (a1 > 0, a2 = 0,
a3 > 0, ak = 0, k = 4, n) or Schwarzschild-type
(a1, a3 ∈ R, a2 = 0, ak = 0, k = 4, n) models consti-
tute further examples (see, e.g., Moeckel 1992; Stoica
and Mioc 1997a). Moreover, the zonal satellite prob-
lem models the motion in other relativistic fields, as
for instance Fock’s one (Mioc 1994), or that featured
by the Reissner-Nordström metric. The Coulombian
field (Sommerfeld 1951; Belenkii 1981) also joins the
model. Implications in astrophysics (e.g. Stoica and
Mioc 1997a), mechanics (e.g. Moser 1975; McGehee
1981; Diacu 1990), celestial mechanics and dynami-
cal astronomy (Blaga and Mioc 1992; Diacu et al.
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1995; Mioc and Stoica 1995c; Stoica and Mioc 1996,
1997b), even in atomic physics (Diacu 1993), are to
be added to the above arguments.

The present paper attempts to provide a first
qualitative insight into the model of the zonal satel-
lite problem. In Section 2 we reduce the problem to a
central force problem, write the equation of motion,
and point out the first integrals of energy and angu-
lar momentum. The qualitative analysis starts with
Section 3, in which the powerful tool of McGehee’s
(1974) technique is used to blow up the collision sin-
gularity and to provide new, regularized equations of
motion.

In Section 4, consequent on McGehee’s trans-
formations, the collision manifold (M0) is pasted, in-
stead of the singularity, on the phase space. It proves
to be a 2D torus imbedded in the full 4D phase space
if an > 0, and the empty set (collisionless motion) for
an < 0. The flow on the M0 torus (consisting of two
circles of degenerate equilibria, connected by hete-
roclinic orbits moving from the upper circle to the
lower one) is deprived of physical significance. How-
ever, due to the continuity of solutions with respect
to initial data, its study provides valuable informa-
tions about the local flow near collision.

The behaviour of the solutions in the immedi-
ate neighbourhood of collision is tackled in Section
5. Exploiting successively the rotational symmetry
of the global flow (characteristic to the zonal satel-
lite problem) and the angular momentum integral,
we restrict the full phase space to the 3D reduced
phase space, then to dimension 2 (the phase plane
- PP). This allows a clear description of the local
structure of PP near collision, for the whole possible
interplay between the parameters an−1 and an. The
description is completed by a physical interpretation
of the respective phase curves.

2. EQUATIONS OF MOTION AND FIRST
INTEGRALS

It is clear that the potential we deal with is
central, therefore the associated two-body problem
can be reduced to a central force problem. The
motion is confined to a plane, so we fix one parti-
cle (hereafter centre) at the origin of this plane R2,
and study the relative motion of the other particle.
Within this framework, denoting by q = (q1, q2) ∈
R2 the position (or configuration) vector of the par-
ticle, the potential reads

U(q) =
n∑

k=1

ak/ |q|k . (1)

Let us introduce the momentum vector p = q̇,
p = (p1, p2) ∈ R2, and denote by T (p) = |p|2 /2 the
kinetic energy of the particle. In canonical formal-
ism, the equations of motion read

q̇ =∂H(q,p)/∂p,

ṗ = − ∂H(q,p)/∂q,
(2)

defining a vector field on the phase space Q × P,
where Q = R2 \ {(0, 0)} is the configuration space,
whereas P = R2 is the momentum space. The Ha-
miltonian function has the form

H(q,p) = T (p)−U(q) = |p|2 /2−
n∑

k=1

ak/ |q|k . (3)

Standard results of the differential equations
theory ensure, for given initial conditions (q,p)(0) ∈
Q×P, the existence and uniqueness of a real analytic
solution (q,p) of equations (2), defined locally on
some time interval (t−, t+), −∞ ≤ t− < 0 < t+ ≤
∞. Due to the symmetry, we may study, without loss
of generality, the properties of the solution on [0, t+)
only (i.e., the motion in the future). It is clear that
[0, t+) can now be extended to a maximal interval
[0, t∗), t+ ≤ t∗ ≤ ∞.

Using the standard technique, we find that the
Hamiltonian has the property

H(q,p) = h/2 = const., (4)

namely is a first integral of the system (called the in-
tegral of energy; h is the energy constant). The field
being central, the angular momentum is conserved,
hence we can obtain another first integral

L(q,p) = q1p2 − q2p1 = C = const., (5)

where C is the constant of angular momentum.
In an explicit form, the equations of motion

are
q̇ =p,

ṗ = −
n∑

k=1

(kak/ |q|k+2)q,
(6)

with the energy relation

|p|2 − 2
n∑

k=1

ak/ |q|k = h. (7)

3. McGEHEE’S TRANSFORMATIONS

The potential (1) has an isolated singularity
for t = t∗ < ∞, at q = (0, 0). Using a Painlevé-type
criterion (e.g. Diacu 1992), it is easy to prove that
this singularity corresponds to the collision particle-
centre. To remove it and to regularize equations (6),
we shall resort to McGehee-type transformations of
the second kind (McGehee 1974).

For the first step we use the real analytic dif-
feomorphism

Q× P× [0, t∗) →(0,∞) × [0, 2π] × R × R×
× [0, t∗)

((q1, q2), (p1, p2); t) �→(r, θ, ξ, η; t)
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defined by

r = |q| ,
θ = arctan(q2/q1),

ξ = ṙ = (q1p1 + q2p2)/ |q|
η = rθ̇ = (q1p2 − q2p1)/ |q| ,

(8)

which introduces the standard coordinates and the
polar components of the velocity. In variables (8),
the motion equations acquire the form

ṙ = ξ,

θ̇ = η/r,

ξ̇ = η2/r −
n∑

k=1

kak/rk+1,

η̇ = −ξη/r,

(9)

while the first integrals (7) and (5) become respec-
tively

ξ2 + η2 − 2
n∑

k=1

ak/rk = h; (10)

rη = C. (11)

The singularity corresponds now to r = 0. For
the second step, we have to scale down the compo-
nents of the velocity via the real analytic diffeomor-
phism

(0,∞) × [0, 2π] × R × R × [0, t∗) → (0,∞)×
×[0, 2π]× R×R × [0, t∗)

(r, θ, ξ, η; t) �→ (r, θ, x, y; t)

defined by
x = rn/2ξ,

y = rn/2η.
(12)

The equations of motion (9) now read

ṙ = x/rn/2,

θ̇ = y/rn/2+1,

ẋ = (nx2/2 + y2)/rn/2+1 −
n∑

k=1

kak/rk+1−n/2,

ẏ = (n/2 − 1)xy/rn/2+1,
(13)

whereas the first integrals (10) and (11) become re-
spectively

x2 + y2 = hrn + 2
n∑

k=1

akrn−k; (14)

y2 = C2rn−2. (15)

The singularity at r = 0 still persists. To re-
move it, we introduce the timelike variable s through

the real analytic diffeomorphism

(0,∞) × [0, 2π]× R × R × [0, t∗) → [0,∞)×
×[0, 2π]× R×R × [0,∞)

(r, θ, x, y; t) �→ (r, θ, x, y; s)

defined by
ds = r−n/2−1dt. (16)

With (16), and keeping by abuse the same notations
for the new functions of the fictitious time s, the
motion equations (13) become

r′ = rx,

θ′ = y,

x′ = nx2/2 + y2 −
n∑

k=1

kakrn−k,

y′ = (n/2 − 1)xy,

(17)

where ′ = d/ds. Obviously, the integrals (14) and
(15) keep their expressions.

4. COLLISION MANIFOLD

Both the equations of motion (17) and the
first integrals (14)-(15) are now well defined for the
boundary r = 0. This means that the phase space
can be analytically extended to contain the manifold

[Mcol = {(r, θ, x, y) | r = 0}, ]
which is invariant under the flow because r′ = 0
for r = 0. The relations (14) and (15) also extend
smoothly to this boundary.

Having in view (14), let us define the constant
energy manifold

[Mh = {(r, θ, x, y) | x2 + y2 = hrn + 2
n∑

k=1

akrn−k}, ]

which corresponds to a fixed level of energy. Now we
are able to define the collision manifold

M0 = Mcol ∩ Mh =

= {(r, θ, x, y) | r = 0, θ ∈ S1, x2 + y2 = 2an}.
(18)

Since the last term in the expansion of the
potential (1) must obviously be nonzero, the case
an = 0 will not be considered. For an < 0, M0 is the
empty set; the particle cannot encounter collisions.
Analogous results were established by Saari (1974),
or Stoica and Mioc (1997a) within different contexts.

Consider hence an > 0; by (18), M0 is a 2D
cylinder in the 3D space of the coordinates (θ, x, y) ∈
S1 × R × R (Figure 1). But, since θ ∈ S1 (the
segment [0, 2π] with the end points pasted together),
the M0 cylinder may be identified with a 2D torus,
both actually being imbedded in the 4D full phase
space of the McGehee- type coordinates (r, θ, x, y).
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Fig. 1. The M0 cylinder and the flow on it for
n = 4.

So, by means of McGehee’s technique, we have
blown up the singularity and pasted the M0 torus,
instead of it, on the phase space. Having in view (16),
M0 is formed only by equilibria of the flow on the full
phase space. In other words, every collisional phase
trajectory needs an infinite amount of fictitious time
s to reach M0.

In the sequel we shall describe the flow on M0.
This flow, although deprived of physical significance,
provides valuable informations about the behaviour
of near-collision orbits (due to the continuity of so-
lutions with respect to the initial conditions).

Using (17) and (14), the vector field on M0

reads
θ′ = y,

x′ = −(n/2 − 1)y2,

y′ = (n/2 − 1)xy.

(19)

One sees immediately that equations (19) ad-
mit the fixed points (θ, x, y) = (θe,±

√
2an, 0), with

arbitrary θ ∈ S1. Explicitly, there are two circles
of degenerate equilibria on the M0 torus: the up-
per circle (UC): (θ ∈ S1, x =

√
2an, y = 0), and

the lower circle (LC): (θ ∈ S1, x = −√
2an, y = 0).

By (19), removing the cases n = 1 (Newton-type
field) and n = 2 (Manev-type field), one sees that
x′ < 0 for y �= 0, which means that all orbits of
the flow on M0 are heteroclinic and move from UC
to LC. To determine the shape of these trajectories,
let us introduce the variable α via x =

√
2an cosα,

y =
√

2an sin α. Taking into account (19), this leads
to dα/dθ = n/2 − 1.To exemplify, the phase curves
on M0 for n = 4 are illustrated in Figure 1.

This provides a complete qualitative image of
the flow on M0.

To add some issues within this framework, fo-
cus on formula (15). On the one hand, it is clear
that all collisional trajectories eject from UC or tend
to LC. On the other hand, collisions occur not only
for C = 0, hence for radial motion (as in the New-
tonian case), but also for C �= 0. This is the so-
called black hole effect (the particle spirals infinitely
many times around the centre before collision/after
ejection) pointed out by Wintner (1941), McGehee
(1981), Diacu et al. (1995), or Stoica and Mioc
(1997a).

As a final remark, in case M0 is nonempty, it
does not depend on h, hence every total energy level
shares this boundary.

5. NEAR-COLLISION FLOW

In this section we shall study the local flow
in the neighbourhood of the collision manifold. First
observe that θ does not appear explicitly in either the
regularized vector field (17) or first integrals (14)-
(15). We can hence reduce the dimension of the
phase space from 4 to 3, by factorizing the flow to
S1. Of course, every phase curve in this 3D reduced
phase space (hereafter RPS) actually is a manifold
consisting of the product between the respective or-
bit and S1. The M0 torus in full phase space reduces
in RPS to the circle M̃0 = {r = 0, x2 + y2 = 2an}.

We can further reduce RPS to dimension 2
by resorting to the integral of angular momentum
(15), which relates y to r. So we obtain the phase
plane of the coordinates (r, x) (hereafter PP). It is
obvious that what we said above about the orbits
in RPS is to be applied to the solutions in PP, too.
The M̃0 circle in RPS reduces in PP to the points M
(r = 0, x =

√
2an) and N (r = 0, x = −√

2an).
Under these conditions, the energy integral in

PP reads

x2 =
n∑

j=o

Ajr
n−j , (20

where A0 = h, A1 = 2a1, A2 = 2a2 − C2, Aj = 2aj

(j = 3, n). It is obvious that we consider an �= 0 and
very small r (neglecting the terms in ri, i ≥ 2).

The local phase portrait for an > 0 is given
in Figure 2a. For an−1 < 0 we have the curves 1:
heteroclinic trajectories which eject from collision,
reach a maximum distance rmax = −an/an−1, then
tend back to collision. For an−1 = 0, we have the
curves 2 and 2’ (which eject from collision or tend to
collision, respectively). For an−1 > 0, the phase por-
trait consists of the curves 3 and 3’, which have sim-
ilar significances as the curves 2 and 2’, respectively.
Of course, the ejection/collision is asymptotic. The
phase portrait also contains the points M and N: de-
generate orbits which remain forever in collision (in
this first approximation with local character).

In case an < 0, the motion is collision-free.
If an−1 < 0 the real motion is impossible in our
approximation. If an−1 > 0, the phase portrait in
PP is given in Figure 2b: the phase trajectories ap-
proach the centre, reach a minimum distance rmin =
−an/an−1, then move away from the centre.

The near-collision physical orbits behave like
the above described PP trajectories. It is easy to see
that the motion is radial for C = 0, and spiral for
C �= 0 (with black hole effect at collision/ejection in
the case of collisional motion).

These results provide a qualitative picture of
the phase and physical motion in the neighbourhood
of collision within the framework of the zonal satellite
problem.
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Fig. 2. The near-collision flow in PP for: (a)
an > 0 (b) an < 0.
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Poǉe sile opisano potencijalom oblika
U =

∑n
k=1 ak/rk (r - rastojaǌe izme�u mater-

ijalnih taqaka, ak = realni parametri) mod-
eluje razne konkretne situacije koje spadaju u
astronomiju, fiziku, mehaniku, astrodinami-
ku itd. U takvom poǉu se razmatra problem
dvaju tela. Ustanovǉeni su jednaqine kretaǌa
i prvi integrali energije i momenta impulsa.

Korix�ene su koordinate MekGeeovog tipa u
ciǉu odstraǌivaǌa sudarne singularnosti i
preslikavaǌa rezultuju�eg skupa na fazni
prostor. Opisano je proticaǌe na sudarnom
skupu. Tada, korix�eǌem obrtne simetrije
problema i integrala momenta impulsa opisu-
je se i interpretira lokalni protok u oblasti
blizu sudara preko fiziqkog kretaǌa.
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