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The Stellar Atmosphere Physical System

Two components:

●  radiation field
●  matter

Representation of the physical system:

macroscopic and microscopic  description
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● The physical ground of radiative transfer is the
propagation of radiation through a medium,
namely a transport process

● Any transport process is  characterized by the
               flux of a proper quantity

● We will consider the specific transport process where
 radiant energy is carried on through a medium with which
it exchanges energy.
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Ab initio
God said, Let Newton be! 
                      And all was light

(A. Pope)

The least Light, or part of Light, which may be stopp'd alone without
the rest of the Light, or propagated alone, or do suffer anything alone,
which the rest of the Light doth not or suffers not, I call a Ray of Light.
(Optiks, 1704)

Rays of light

Light is made of corpuscle
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Huygens wave theory  (17 th  century)

confirmed experimentally by Young and Fresnel

Maxwell's electromagnetic waves
revealed by Hertz's experiments

The dual nature of light

Einstein's hypothesis of the

quantum of light
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1. Electrodynamic formulation;

2. Fluid dynamic - like picture;

3. Microscopic picture;

4. The RT equation as a kinetic equation for photons;

Contents:

5. The macroscopic RT coefficients;

6. Transport like a fluid dynamics process; 

7. Comparison between the electrodynamic and 
the macroscopic picture.
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1. Electrodynamic formulation



25/10/17 8

A Dynamical Theory of the 
Electromagnetic Field (1865)

War es ein Gott,
Der diese Zeichen 
schreib?

James Clark Maxwell
      (1831 - 1879)

∇⋅D = 4 πρ ;

∇×H +
1
c
∂ D
∂ t

=
4 π

c
J .

∇⋅B = 0 ;

∇×E +
1
c
∂B
∂ t

= 0 ;
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Following Maxwell:

magnetic and electric energy density

W mag =
1

8π
H⋅B ; W elec =

1
8π

D⋅E .

Energy is localized in the field.

We adopt the Gauss conventional system of units, where

[E ]= [D ] = [B] = [H ] = M 1/2 L−1/2T−1

ε = μ = 1 ; [ε] = [μ] = M 0 L0T 0
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Poynting's vector: S ≡
c

4 π
E × H

[S] = (L T−1 ) (M 1 /2 L−1/2T−1 ) 2
= ( M L2 T−2 ) T−1 L−2

i.e.
energy

time⋅surface
= power flux

By a proper treatment of the last two Maxwell's equations

→
1

4π
H⋅Ḃ +

1
4π

E⋅Ḋ +E⋅J + ∇ S = 0

Poynting's theorem

John H. Poynting
(1852 – 19 14  )

[each term] = M L−1T−3
= (M L2T−2 ) T−1 L−3 i.e. power density
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Ẇ elec =
1

8 π
E⋅Ḋ +

1
8π

Ė⋅D =
1

4 π
E Ḋ

W J ≡ E⋅JJoule heat:

It can be shown that

The same for Ẇ mag .

Hence  from Poynting's theorem

Ẇ + ∇⋅S = −W J .

energy balance of the electromagnetic  field

∫
Σ

S⋅n d σ = − ∫
V
[∂W
∂ t

+ W J ] dV

By integration over a volume V and Gauss theorem

W ≡ W elec + W mag

conservation equation
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Physical meaning of the Poynting's vector:

energy flux per unit time 
across unit area of the
 boundary surface of the volume considered

→ Transport of  energy of the electromagnetic field  

The Poynting's vector accounts for the

intrinsic directed aspect 
of the propagation of the electromagnetic field.
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 Transport of radiant energy by an e.m. wave

monochromatic polarized plane wave 
x̂propagating along the x – axis, specified by

E ⊥ H : Ey H zonly and 0not

Ey (x ,t ) = E0 cos (k x − ωt )

wave equation

∂
∂ t { 1

8π k 2 [ 1

c2 (∂ E y

∂ t )
2

+ (∂E y

∂ x )
2

] } − ∂
∂ x ( 1

4π k 2

∂E y

∂ t

∂ E y

∂ x ) = 0 .

solution

e ≡
1

8π k 2 [ 1
c2 (∂E y

∂ t )
2

+ (∂ Ey

∂ x )
2

] f ≡ − ( 1
4π k 2

∂E y

∂ t

∂E y

∂ x )

by proper manipulation

1
c2

∂ 2 E y

∂ t 2 −
∂ 2 E y

∂ x 2 = 0
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∂e
∂ t

+
∂ f
∂ x

= 0 .

wave equation equation of continuity=>

[e] = (M L 2T −2 ) L −3 ; [ f ] = (M L 2T −2 ) T −1 L−2

e (t) =
E0

2

4 π
sin 2

(kx −ω t)

W (t ) = W elec (t) + W mag(t ) =
E0

2

4 π
cos 2

(kx −ω t )

f (t) =
E0

2

4 π
ω
k

sin 2
(kx − ωt ) =

c
4 π

E0
2 sin 2

(kx −ω t )

S (t ) =
c

4 π
E y

2
(t) x̂ =

c
4 π

E0
2 cos 2

(kx − ωt ) x̂ .

e W

<=>f x̂

<=>

S

energy density power flux

From the previuos definitions:
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2. Fluid dynamic – like picture
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Picture based on macroscopic quantities

related to the microscopic photon picture
(corpuscular model of the radiation field)

Analogue  with fluid dynamics:

macroscopic flux of particles  propagating along the

paths of geometrical optics  (eikonal equation)

that carry on and exchange energy with matter particles
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Ray :

amount of radiant energy of frequency ν

carried on along the direction n with speed c

per unit time

across a unit surface perpendicular to n

rays transport of energytransport of energy⇐⇒
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Under the assumptions of

a weak electromagnetic field and

propagation through a diluted medium

the energy carried on by rays obeys the empirical laws of

radiometry

1.  propagation through vacuum along straight lines with speed c; 

2.  all rays through a given point are independent;

3.  they are linearly additive both in direction and frequency.

(Hypotheses already formulated by Newton in his Opticks)
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The above laws of photometry warrants that

the transport process is intrinsically  linear

However

a single directed quantity (i.e. a vector) is not enough

to specify completely the radiation firld:

virtually infinite pencil of rays
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Fundamental physical observable in radiative tyranfer:

the energy carried on by a ray

From rays to specific intensity

→ Scalar macroscopic  local and directed quantity :

 specific intensity of the radiation field
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amount of energy δ Eν(n)

oriented surface k δS

solid angle δΩ

around  P1

around  n

time interval δ t spectral range δ ν

observable:

elements of the measure:

δ Eν(n) ∝ n⋅k δS δΩ δν δt

(n⋅k )
−1

lim δS δΩ δν δt → 0
δ Eν(n)

δS δΩ δν δt
≡ I ( r , t ;n , ν)
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By definition the specific intensity  

is the coefficient of proportionality

 observable  and the  elements of the measurement

[I ] = (M L2 T−2 )⋅L−2
⋅T−1

⋅T

i.e.  energy flux per unit time and unit frequency band

I (r , t ;n , ν)

charactyerized by (n , ν)

Dimension:

between the
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J (r , t ;ν ) ≡
1

4 π ∮ I (r , t ;n , ν ) d n

Fν (r , t) ≡ ∮ I (r ,t ;n ,ν) n d n

Tν (r ,t) ≡
1
c ∮ I (r , t ;n , ν) n n d n

Moments of the specific intensity

scalar

vector

tensor

0 th order moment:   average mean intensity

1 st  order moment:   flux of radiation

2 nd order moment:   radiation pressure

Dyadic notation
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Energy density of the radiation field

 In the time interval dt the volume dV = n⋅k dS c dt is filled in

Specific energy density: U (r , t ; n ,ν ) ≡
d Eν (n)

dV

By definition U (r , t ; n ,ν ) dΩ d ν =
1
c

I ( r ,t ; n ,ν ) dΩ d ν

By integration over  all the directions

→
uν ≡ u(r ,t ;ν) ≡

1
c ∮ I (r ,t ;n ,ν)d Ω =

4π
c

J (r ,t ; ν)

directed and spectral

by radiant energy

[uν] = (M L2 T−2) L−3 T

spectral
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3. Microscopic picture
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The photon distribution function

Because of the corpuscular nature of photons, let us define a

distribution function  such that

f ( r ,t ;n ,ν ) d Ωd ν

is equal to the

nr. of photons  per unit volume at r and t 

(ν ,ν+d ν )

that propagates along n with speed c into d Ω .

in the band

 f  is characterized by the pair (n ; ν)

[ f ] = L−3
⋅T

directed and spectral
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crossing the surface k⋅n dS

during dt  to fill a volume dV = n⋅kdS c dt

is by definition

f ( r ,t ;n ,ν ) n⋅k dS c dt d Ω d ν

The number of specific photons 

c⋅dt

into d Ω

Transport process in terms of the photon distribution function

Each photon carries on its energy h ν

Specific energy flowing through k⋅n dS

d Eν (n) = h ν c f (r , t ;n , ν) n⋅k dS d Ω d ν dt

I ( r ,t ; n ,ν ) = ch ν f (r , t ; n ,ν )
By direct comparison
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Time for a cup of tea
(May be a pint would be better)
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4. The RT equation as a kinetic equation for photons
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From a formal  standpoint 

Total rate of change = Source terms  –  Sink terms

a  kinetic equation for any transported quantity is formally

Total rate of change = Eulerian derivative:

d
dt

= ∂
∂ t

+ v⋅ ∂
∂ r

+ ṗ⋅ ∂
∂ p

Sources and sinks determined by:
atomic properties of the interaction matter - radiation

equation of state of matter (LTE) or  SE equations

(Boltzmann's equation)

In our case
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F ( r , p , t )Distribution function

p = n
hν
c

; p = p (n , ν)

d
d t

F (r , p , t) = [δ F
δ t ] sources

− [ δ F
δ t ] sinks

f (r , t ;n , ν) =
h3

ν
2

c3 F (r , p , t)

Kinetic equation:

It can be shown that

I ( r ,t ; n ,ν ) = ch ν f (r , t ; n ,ν )

→ F (r , p ,t ) =
c2

h4
ν

3 I (r , t :n , ν)

for photons with momentum

parameters (n , ν)
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d
dt

= ∂
∂ t

+ v⋅ ∂
∂ r

+ ṗ⋅ ∂
∂ p

;

ṗ = 0v = c n and

∂
∂r

= ∇

For photons

→
1
c

∂
∂ t

I (r , t : n ,ν) + n⋅∇ I (r ,t ;n ,ν) =

1
c [ δ I

δt ] sources

−
1
c [ δ I

δ t ] sinks

= [ δ I
δ l ] sources

− [ δ I
δl ] sinks

where δ l = c δ t is a  path length  along n
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1
c

∂
∂ t

I (r , t : n ,ν) + n⋅∇ I (r ,t ;n ,ν) = [ δ I
δl ] sources

− [ δ I
δ l ] sinks

Radiative Transfer equation:

mathematical formulation of a directional problem

For any specific intensity , 
(n ; ν)

one specific RT equation

characterized by the pair of parameters

Each term in the RT equation has dimension

(M L2T 2 ) L−2 L−1
= M L−1 T−2

in terms of the  macroscopic quantity  specific intensity 
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From a linear to non-linear problem

Mathematical complications arise when

the individual specific RT equations are coupled together

through the Source and Sink terms

Non-local problems

Moreover the transport process necessarily implies

non-local effects

brought about by matter-radiation interaction
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5.  Macroscopic RT coefficients
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Consistently with the macroscopic picture

we consider homogeneous volume elements that
emit and absorb radiant energy isotropically

All the physical information at atomic level is incorporated

into  a limited number of macroscopic coefficients
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Thermal emission coefficient

Δ Eν
th energy emitted along n ΔVby

into ΔΩ

during Δ t

in (ν , ν+Δ ν)

measurable quantity

parameters of the measure

Δ Eν
th ∝ ΔV ΔΩ Δν Δ t

         lim
Δσ ΔΩ Δν Δt → 0

δ Eν
th

δV δΩ δ ν δ t
≡ ην

th
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Decrease of the specific intensity

along a path δ l in the direction n

True absorption coefficient

δ I (n) ∝ I (n) δ l δ I (n)
I (n)

= aν (n) δ l

fraction of energy removed  

Likewise

Scattering coefficient

converted into internal energy

fraction of energy removed
diverted into a different direction

aν(n) :

σν(n) :
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Extinction coefficient

Global effect of the attenuation,
i.e., removal of photons from a given beam

χν(n) ≡ aν(n) + σν (n)

[χν ] = [aν ] = [σν ] = L −1
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Factorization of the macroscopic coefficients

coefficient = cross section × nr . of carriers

a (ν) = aP(ν) nPa ; σ(ν) = σP(ν) nPs

aP σPand atomic data

nPa nP sand populations density

[aP ] = [σP ] = L2

[nPa ] = [nPs ] = L−3
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6. Transport like a fluid dynamics process
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Analogy between fluid dynamics and radiative transfer

Fluid dynamics considers the motion of
fluid elements along streamlines

 

Macroscopic representation of the radiation field:

The amount of specific energy Δ Eν(n) carried on along n

takes the place of the fluid elements 

Correspondence between the  equations of fluid dynamics
and the eikonal equation of geometrical optics

streamlines <=> rays
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generic scalar quantity Q = q N c

q     quantity for an individual particle

Nr. of carriers along  nN c

associated with the vector quantity Q v

 velocity v = v n

d Q(r ,t )
d t

=
∂Q(r , t)

∂ t
+ ∇Q(r , t)⋅c v =

∂Q(r , t)
∂ t

+ ∇⋅ [Q(r , t) v ] .

Space – time evolution of Q(r ,t) :

if  v constant
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If Q is  conserved dQ(r ,t )
d t

= 0

=> continuity equation
∂Q(r ,t)

∂ t
= − ∇⋅ [Q(r ,t ) v ]

Q v (n⋅k) d σ is the flux of Q v through k d σ

divergence theorem ;

∭
V

∂Q(r , t)
∂ t

dV = −∬
Σ

Q(r , t) v (n⋅k ) dσ .
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The integral over some volume V of the time derivative

of the transported scalar quantity is equal to the 

flux of the associated vector quantity 

through the boundary of V.
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In the case of radiative transfer

specific photons (n , ν)

with individual energy h ν

and  momentum hν
c

n

travelling along n with velocity  c n

N c is given by the photon distribution function

carriers:
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7. Electrodynamical vs. macroscopical picture
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Correspondence between
the specific intensity and the electric field strength

Monochromatic plane wave of  frequency ν0 = 1/T

propagating along n0 = n0(θ0 ,ϕ0)

n0 ≡ x̂ ; x̂ ⊥E ⊥H

[E] = [D ] = [B] = [H ]
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1
c2

∂
2 Ey

∂ t 2 −
∂

2 Ey

∂ x 2 = 0

Ey (x ,t ) = E0 cos (k x − ωt )

The solution of the wave equation

is

From the average over T of W elec ≡
1

8 π
E⋅D

W mag ≡
1

8π
H⋅B .and

=> ⟨W (t )⟩T =
E0

2

8 π
.
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Corresponding specific intensity :

I (ϑ ,ϕ , ν ) = I0 δ (ϑ −ϑ0) δ (ϕ −ϕ0 ) δ (ν −ν0)

[I ] = M T −2 ; [δ (ν − ν0)] = T ; [I 0] = M T −3

From the physical standpoint

⟨W (t)⟩T = u(r , t)

=> I 0 =
c

8 π
E0

2 ,

[I 0] = [c E0
2] = M T −3

uν ≡ u(r ,t ;ν) ≡
1
c ∮ I (r ,t ;n ,ν)d Ω



25/10/17 52

⟨S(t)⟩T =
c

8π
E0

2 n0

∫
0

∞

d ν∮d n I (r , t ; n ,ν) n = I 0 n0 =
c

8 π
E0

2 n0

Fν (r , t) ≡ ∮ I (r ,t ;n ,ν) n d n

is the monochromatic power flux of the radiation field

Electromagnetic counter part of Fν (r , t)

Ey (x ,t ) = E0 cos (k x − ωt ) ; x̂ ⊥E ⊥H ; |E0|=|H 0|

bolometric vector flux



25/10/17 53

Tν (r ,t) ≡
1
c ∮ I (r , t ;n , ν) n n d n

k⋅Tν = (
1
c
∮ I (r , t ; n ,ν) nx (k⋅n) d n

1
c
∮ I (r , t ;n , ν) n y (k⋅n) d n

1
c
∮ I (r ,t ; n ,ν) nz (k⋅n) d n )

Correspondence of the radiative pressure with the

Maxwell stress tensor

p(n ,ν) = (
px

py

pz
) =

hν
c (

nx

ny

nz
) moment carried on by a photon (n , ν)

radiative pressure tensor

∮
1
c

I (r , t ; n ,ν) n j (k ⋅n) d n = (k⋅T ν) j

net flux of pj across  unit area k :

[Tν ] = (M L T −1 ) L −2 flux of momentum
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(n⋅T ν ) j =
1
c ∮ I (r , t ; n ,ν) n j d n =

1
c

( Fν ) j

net transport of  p :

n⋅
1
c

Fν = n⋅∮
h ν

c
f (r , t ;n , ν) cn d n

Let us define

Gν (r , t) ≡
1

c 2 Fν(r ,t )

monochromatic momentum density of the radiation field

[Gν ] = (M T −2) L −2 T 2 = (M L T −1 ) L−3 T
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G ≡ ∫
0

∞

Gνd ν =
1

c 2 ∫
0

∞

Fν d ν =
1

c 2 S

To cut a long story short:

∂(Gν)j

∂ t
=

1

c 2

∂(Fν) j

∂ t
= − ∇⋅ [(Gν) j c n ]

∂
∂ t
∫

0

∞

Gν d ν = − ∇⋅∫
0

∞

T ν d ν

continuity equation

∂G
∂ t

= − ∇⋅T

(M LT −1 ) L−3 T −1

momentum density associated with the electromagnetic field:

∂G em

∂ t
= ∇⋅T M (M LT −1 ) L−3 T −1

G G em<=>

=>
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Finis coronat operam


