Određivanje masa crnih rupa u aktivnim galaktičkim jezgrima pomoću polarizacije u širokim emisionim linijama

Đorđe Savić^{1, 2}, René Goosmann², Frédéric Marin², Luka Č Popović¹, Viktor Afanasiev³

> ¹Astronomska opservatorija Beograd ²Observatoire astronomique de Strasbourg ³Special astrophysical observatory, Russia

> > October 30, 2018

- O supermasivnim crnim rupama (SMCR)
- Metode za određivanje masa SMCR
- Aktivna galaktička jezgra (AGJ)
- Reverberaciono mapiranje
- Polarizacija kod AGJ
- Merenje masa SMCR iz polarizacije
- Modelovanje STOKES-om
- Rezultati
- Zaključak

- Tipičan opseg masa $10^6 10^9 \, M_\odot$ (Kormendy & Richstone 1995)
- $E_{
 m bh}/E_{
 m gal}>$ 80 (Fabian 2012)
- Jak uticaj SMCR na okolinu
- Zagrevanje i izbacivanje međuzvezdanog gasa
- Prestanak formiranja zvezda u centralnom ovalu
- Posmatrane korelacije $M_{
 m bh} \sigma_*$, $M_{
 m bh} L_{
 m bulge}$ (Kormendy & Ho 2013)
- Koevolucija SMCR i galaksije domaćina (Heckman & Best 2014)

Metode za određivanje masa SMCR

Direktne

- Kretanje individualnih zvezda oko SMCR (Genzel et al. 2010; Meyer et al. 2012)
- Dinamika gasa (Miyoshi et al. 1995)
- Reverberaciono mapiranje kod AGJ (Blandford & McKee 1982; Bentz & Katz 2015)
- Iz polarizacije u širokim emisionim linijama kod AGJ (Afanasiev & Popovic 2015; Savic et al. 2018)

Indirektne

- Veličine koje su usko korelisane sa masom SMCR
- $M_{\rm bh} \sigma_*$ relacija (Ferrarese & Merritt 2000; Gebhardt et al. 2000a)
- *M*_{bh} *L*_{bulge} relacija (Kormendy & Richstone 1995; Magorian et al. 1998)
- *R L* relacija kod AGJ

Kretanje zvezda oko SMCR

- Metoda za sada moguća samo za našu galaksiju
- Posmatranja dugi niz godina sa Keck-a i VLT-a

•
$$M_{
m bh} = (4.30 \pm 0.20) imes 10^6 M_{\odot}$$

• Genzel et al. 2010; Meyer et al. 2012

- NGC 4258
- Sopstveno kretanje i radijalne brzine individualnih megamaserskih izvora
- Zakrivljen rotirajući disk
- $M_{\rm bh} = (3.82 \pm 0.01) \times 10^7 M_{\odot}$ (Herrnstein et al. 2005)

- Posmatra se disperzija brzine
- $M_{
 m bh} \propto \sigma_*^{5.1}$ (McConnell et al. 2011)
- Stepen zavisi od tipa galaksija
- Posmatranje u jednoj epohi

Aktivna galaktička jezgra

- Karl Sajfert 1943.: Široke visoko jonizovane emisione linije kod nekih galaksija
- Marten Šmit 1963.: 3C273 je objekat sa z = 0.158
- Svega par procenata svih galaksija pokazuje jaku aktivnost u jezgru

NGC 7742

Fizičke karakteristike

- $\bullet\,$ Kompaktni objekti. Zapremina emitujućeg regiona je << $1 \mathrm{pc}^3$
- Visoke luminoznosti: $L \sim 10^{42} 10^{48} \text{ erg/s}$
- Pojačan kontinuum od gama i rentgenskog, do radio-zračenja
- Uočljive široke i uske emisione linije
- Promenljivo zračenje
- Polarizovano zračenje
- Mnogo različitih tipova

NGC5548 Peterson et al. (2002)

- U centru je supermasivna crna rupa oko koje se vrši akrecija.
- Širokolinijski i uskolinijski regioni.
- Torus od prašine.
- Mlazevi.
- U zavisnosti od pravca posmatranja, vidimo različite objekte.
- Antonucci 1993; Urry & Padovani 1995

Optički pektar Sajfertovih galaksija

- Spiralne galaksije, izrazito sjajno jezgro.
- Najčesće tipa Sb ili SBb.

Posmatranja u polarizaciji

- Široke linije u polarizacionom spektru objekta NGC1068 (Antonucci & Miller 1985)
- Pogled kroz periskop u polarizovanom spektru.

 BLR nije zaklonjen - tip-1 objekti, široke + uske emisione linije

• BLR je zaklonjen - tip-2 objekti, samo uske emisione linije

< 47 ▶

Reverberaciono mapiranje AG

- Matematički aparat Blandford & McKee (1982)
- Emisija BLR-a reaguje na emisiju kontinuuma
- Merenje vremenskog kašnjenja
- Jedna od najtačnijih metoda

$$M_{BH} = f \frac{c\tau V^2}{G}$$

Ekvatorijalna i polarna polarizacija

Polarizacija kod objekata tipa-1

- Rotacija polarizacionog pozicionog ugla φ kao dokaz ekvatorijalnog rasejanja za objekte tipa-1
- Diskoliki BLR sa dominantnim Keplerovskim kretanjem
- Koplanarni rasejavajući region
- Slaba polarizacija, tipično nekoliko procenata

Polarizacija kod objekata tipa-1

Polarizacija u širokim emisionim linijama

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Određivanje masa SMCR iz polarizacije

- Afanasiev & Popovic (2015)
- Diskoliki BLR
- Aproksimacija jednog rasejanja

< □ > < □ > < □ > < □ > < □ > < □ >

 $M_{\rm BH-kep} = 1.53 \times 10^8 \,\rm M_{\odot}$

Određivanje masa SMCR iz polarizacije

イロト イヨト イヨト イヨト

Određivanje masa SMCR iz polarizacije

- Posmatranja u jednoj epohi.
- Dobro slaganje sa reverberacionim mapiranjem.
- Katalog od 30 objekata Afanasiev et al. 2018.
- Dobro slaganje sa $M_{
 m bh}-\sigma_*$ relacijom.
- Primena na linije u drugom spektralnom opsegu.

- Proveriti mogućnosti i granice metode.
- Četiri generička modela sa zadatim masama: $10^6, 10^7, 10^8, 10^9 M_{\odot}$.
- Direktno modelovanje za NGC 4051, NGC 4151, 3C 273 i PG0844+349 sa posmatračkim podacima.
- Poređenje sa rezultatima iz posmatranja.

Modelovanje programom STOKES

- 3D MonteCarlo prenos zračenja sa kinematikom.
- Različite geometrije za emisione rasejavajuće regione.
- Polarizacija usled višestrukih rasejanja na elektronima (Tomsonovo) i prašini (Mievo).
- Goosmann & Gaskell (2007); Marin et al. (2012, 2015); Rojas et al. (2018)

< ロト < 同ト < ヨト < ヨト

< □ > < □ > < □ > < □ > < □ > < □ >

- Tačkasti izvor izotropnog zračenja u kontinuumu, $F_{
 u} \propto
 u^{-2}$.
- $\bullet~$ Ugao poluotvora za BLR i SR su 15° and 35° respektivno.
- Unutrašnji radijus za BLR iz reverberacije u optičkom (Peterson et al. 2004, Kaspi et al. 2005, Bentz et al. 2006).
- Spoljašnji radijus za BLR usled sublimacije prašine $R_{out}^{BLR} = 0.2 L_{bol,46}^{0.5}$. Bolometrijska korekcija iz Runnoe et al. (2012).
- Unutrašnji radijus za SR iz reverberacije prašine (Kishimoto et al. 2011, Koshida et al. 2014).

Modelovanje programom STOKES

- 14 AGJ sa poznatim masama, unutrašnjim i spoljašnjim radijusom BLR and SR.
- Relacija masa-radijus kao stepeni zakon.

Mass	$r_{\rm in}$ (BLR)	$r_{\rm out}$ (BLR)	$R_{\rm in}$ (SR)	$R_{\rm out}$ (SR)
M_{\odot}	ld	ld	ld	ld
10 ⁶	1.597	4.385	13.968	20.262
10^{7}	7.681	16.076	51.372	74.277
10 ⁸	36.944	58.934	188.939	272.288
10^{9}	177.700	216.043	694.893	998.170

- Korišćen klaster Fermi na AOB sa 120 procesora.
- Mesocenter, za HPC u Strazburu, oko 30 procesora.

Generički model za $10^6 M_{\odot}$.

• • • • • • • •

Generički model za $10^6 M_{\odot}$.

Uticaj međusobnog rastojanja između BLR i SR

Image: A matrix and a matrix

Uticaj međusobnog rastojanja između BLR i SR

Uticaj radijalnih priliva

< 4 ₽ >

Uticaj verikalnih oticanja

Uticaj verikalnih oticanja

• • • • • • • •

- Spektropolarimetrija sa 6 m-skim teleskopom na SAO RAS sa montiranim SCORPIO spektrografom (see Afanasiev & Moiseev 2005, 2011).
- Obračunat uticaj međuzvezdane polarizacije Afanasiev & Amirkhanyan (2012)

イロト イヨト イヨト イヨト

A D N A B N A B N A B N

э

イロト イヨト イヨト イヨト

PG0844+349 - model

A D N A B N A B N A B N

Object	$\theta(^{\circ})$	$\log(M_{\rm MOD}/M_{\odot})$	$\log(M_{\rm POL}/M_{\odot})$	$\log(M_{\rm REV}/M_{\odot})$
	25.01	7.2 ± 0.2		
NGC 4051	32.46	6.92 ± 0.09	6.69 ± 0.21	6.24 ± 0.13
	38.62	6.78 ± 0.06		
	25.01	7.56 ± 0.07		
NGC 4151	32.46	7.40 ± 0.03	7.21 ± 0.27	7.12 ± 0.05
	38.62	7.27 ± 0.04		
	25.01	8.94 ± 0.09		
3C 273	32.46	8.90 ± 0.09	8.85 ± 0.27	8.83 ± 0.11
	38.62	8.87 ± 0.08		
	25.01	8.00 ± 0.08		
PG0844+349	32.46	7.95 ± 0.06	7.70 ± 0.23	7.85 ± 0.21
	38.62	7.88 ± 0.06		

< E

Image: A matrix and a matrix

2

- Prost model za rešavanje prenosa zračenja
- Ispraćeno keplerovsko kretanjeu u profilima polarizacionog ugla
- Dobijene mase su nešto veće, ali se slažu sa postojećim vrednostima

Za budući rad

• Testirati metodu za druge široke linije npr Mg II 2800Å (u progresu)

Hvala na pažnji

æ