Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Seminar Katedre za astronomiju

Brankica Kubátová (Šurlan)

brankica.kubatova@asu.cas.cz

Department of Stellar Physics Astronomical Institute of the CAS

Beograd, 30. mart 2021.

- SPECTRAL TYPE OB-type Massive stars in short-lived transition phase (WR, LBVs, BSGs, and B[e]SGs)
- EXTREMELY LUMINOUS $L \gtrsim 10^3 [L_{\odot}]$
- **HOT** $T_{\rm eff} \gtrsim 10\,000$ [K]
- MASSIVE $M \gtrsim 8 [M_{\odot}]$
- SHORT LIFETIMES $\sim~10^6\,{\rm yr}$
- END IN SUPERNOVA EXPLOSION
- STRONG WIND (MASS LOSS) Mass-loss rate $- \dot{M} \sim 10^{-6} [M_{\odot}/yr]$ Terminal velocity $- v_{\infty} \sim 10^2 - 10^3 \text{ km/s}$

The nebula M1-67 around Wolf-Rayet star WR 124 Credit: ESA/Hubble & NASA

The Orion's Belt including the Flame Nebula (left) and Horsehead Nebula (lower left) Credit: Digitized Sky Survey, ESA/ESO/NASA

Brankica Kubátová (Šurlan)

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

The role of mass loss

- Influences massive stars evolution
- Changes final fate of massive stars and its remnants (neutron star or black hole)
- The largest sources of uncertainty in the simulation of massive star evolution

The nebula M1-67 around Wolf-Rayet star WR 124 Credit: ESA/Hubble & NASA

The Orion's Belt including the Flame Nebula (left) and Horsehead Nebula (lower left) Credit: Digitized Sky Survey, ESA/ESO/NASA

Brankica Kubátová (Šurlan)

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Astronomický

ústav

STELLAR

- Influences massive stars evolution
- Changes final fate of massive stars and its remnants (neutron star or black hole)
- The largest sources of uncertainty in the simulation of massive star evolution

The importance of massive stars

- Can be seen at large distances
- Enrich ISM with heavier elements (metals)
- Heat-up, ionize, or facilitate chemical reactions in ISM
- Provide kinetic energy and momentum
- Trigger, regulate and terminate star formation in stellar clusters
- The most likely source for re-ionizing the universe

The nebula M1-67 around Wolf-Rayet star WR 124 Credit: ESA/Hubble & NASA The Orion's Belt including the Flame Nebula (left) and Horsehead Nebula (lower left) Credit: Digitized Sky Survey, ESA/ESO/NASA

Brankica Kubátová (Šurlan)

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Astronomický

ústav

STELLAR

- Hot massive stars emit their peak radiation in the UV wavelength region
- Wien's displacement law

 $\lambda_{\max} T = b$

for b = 0.29 cm K; $T = 30\,000 \text{ K} \Rightarrow$

 $\lambda_{\rm max} = 960 \,\text{\AA}$

10⁸ the Sun (5800 K) 10⁶ 3000 K star 1041 10² 290 K planet 10⁰ 102 104 10¹ 103 105 wavelength (nm) -ultraviolet

Credit: https://www.chegg.com

Spectra in UltraViolet (UV) band – Merged spectrum of Copernicus and IUE UV highresolution observations of the supergiant ζ Puppis (Pauldrach et al., 1994)

Astronomický

ústav AV ČR

STELLAR PHYSICS DEPARTMENT

Processes for line formation in winds

- Line scattering (e.g. P-Cygni UV resonance lines of C IV. N V. Si IV. O VI)
- Line emission by recombination (e.g., H_{α})
- Line emission from collisional-excitation or photo-excitation
- Pure absorption
- Resonance line scattering line transition from the ground state of the atom

The principle of radiatively driven winds

STELLAR

PHYSICS

DEPARTMENT

Astronomický

ústav

AV ČR

- P-Cygni profile signature of an expanding stellar atmosphere
- Doppler effect!

Astronomický

ústav AV ČR

STELLAR PHYSICS DEPARTMENT

physical process: Coulomb collisions

Astronomický

• •	
The principle of radiatively driven winds	
Hot star winds are accelerated via a two-step process:	
1. The photons are scattered in lines of ions of heavier elements (e.g., ions of C , Ne , P , S , Ni , Fe-group elements etc.)	, N , O , Si ,
physical process: momentum and energy transfer by absorption and scatterin	g
The outward accelerated ions transfer their momenta to the bulk plasma of th (hydrogen and helium - mostly passive component)	ie wind
physical process: Coulomb collisions	
• CAK model - the first hydrodynamical solution of the line driven wind (Castor, /	Abbott & Klein,

1975)

• **Standard wind model assumptions** - stationary, homogeneous, spherically symmetric with uniform flow, and free of magnetic field

Astronomický

STELLAR

MASS-LOSS RATE

- The key parameter of hot, massive stars (see e..g., Puls et al., 2008)
- Mass loss is inexorably linked to evolution for massive stars
- Stellar evolution calculations must adopt prescriptions for mass-loss rates as input

MASS-LOSS RATE

- The key parameter of hot, massive stars (see e..g., Puls et al., 2008)
- Mass loss is inexorably linked to evolution for massive stars
- Stellar evolution calculations must adopt prescriptions for mass-loss rates as input

GLOBAL WIND PARAMETERS - \dot{M} , v_{∞} and $\bar{\rho}$ (the average mass density)

- for stationary and spherically symmetric wind \Rightarrow

$$\dot{M} = 4\pi r^2 \rho(r) v(r) = \text{const.}$$

$$\bar{\rho} = \frac{\dot{M}}{4\pi \,\mathrm{R}_*^2} v_{\infty}$$

LOCAL WIND PARAMETERS - $\rho(r)$, v(r), and T(r)

Astronomický

STELLAR PHYSICS DEPARTMENT STELLAR Astronomický ústav AV ČR

MASS-LOSS RATE

- The key parameter of hot, massive stars (see e..g., Puls et al., 2008)
- Mass loss is inexorably linked to evolution for massive stars
- Stellar evolution calculations must adopt prescriptions for mass-loss rates as input

"OBSERVED" wind parameters - the result of diagnostic techniques based on theoretical modeling (determination relies on stellar atmosphere models)

MASS-LOSS RATE

- The key parameter of hot, massive stars (see e..g., Puls et al., 2008)
- Mass loss is inexorably linked to evolution for massive stars
- Stellar evolution calculations must adopt prescriptions for mass-loss rates as input

"OBSERVED" wind parameters - the result of diagnostic techniques based on theoretical modeling (determination relies on stellar atmosphere models)

non-LTE model atmosphere + given v(r) and $\rho(r) \Rightarrow$ Synthetic spectrum

 \Rightarrow comparison with observation

 \dot{M} and v_{∞} are treated as fitted parameters

Astronomický

- QUANTITATIVE SPECTROSCOPY spectroscopic analyses using non-LTE model atmosphere codes CMFGEN (Hillier & Miller, 1998); PoWR (Gräfener et al., 2002, Sander et al., 2015, 2017); FASTWIND (Puls et al., 2005); METUJE (Krtička & Kubát, 2017)
- Unified non-LTE model atmosphere stellar and wind parameters are derived simultaneously and consistently

- QUANTITATIVE SPECTROSCOPY spectroscopic analyses using non-LTE model atmosphere codes - CMFGEN (Hillier & Miller, 1998); PoWR (Gräfener et al., 2002, Sander et al., 2015, 2017); FASTWIND (Puls et al., 2005); METUJE (Krtička & Kubát, 2017)
- Unified non-LTE model atmosphere stellar and wind parameters are derived simultaneously and consistently
- Current state-of-art wind models are based on:
 - the standard wind model assumptions
 - non-LTE
 - v(r) and $\rho(r)$ are derived from hydrodynamic calculations or using the β velocity law and equation of continuity

$$v(r) = v_{\infty} \left(1 - \frac{b}{r} \right)^{\beta}$$
$$\rho(r) = \frac{\dot{M}}{4\pi r^2 v(r)}$$

Astronomický

STELLAR

PHYSICS

- QUANTITATIVE SPECTROSCOPY spectroscopic analyses using non-LTE model atmosphere codes - CMFGEN (Hillier & Miller, 1998); PoWR (Gräfener et al., 2002, Sander et al., 2015, 2017); FASTWIND (Puls et al., 2005); METUJE (Krtička & Kubát, 2017)
- Unified non-LTE model atmosphere stellar and wind parameters are derived simultaneously and consistently

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda r/R_{\star}

Astronomický

STELLAR PHYSICS DEPARTMENT

• THEORETICAL wind parameters – from the hydrodynamical calculations

INPUT PARAMETERS

- R_{*} stellar radius
- M_{*} stellar mass
- L_{*} stellar luminosity
- F(v) radiation at the lower boundary of the wind
- chemical composition

OUTPUT PARAMETERS

- v(r) velocity \Rightarrow v_{∞}
- $\rho(r)$ density $\Rightarrow dM/dt = \dot{M}$
- T(r) temperature

- THEORETICAL wind parameters from the hydrodynamical calculations
- "OBSERVED" wind parameters from the observations

PROBLEM!

- Discrepancy between theoretical (predicted) and "observed" mass-loss rates (e.g., Bouret et al., 2003, Martins et al., 2005, Puls al., 2006)
- Different mass-loss diagnostics result in different mass-loss rates (e.g., Bouret et al., 2003, 2005; Fullerton et al., 2006; Puls et al., 2006)
 - ρ dependent \dot{M} diagnostic (using the UV resonance lines)
 - ρ^2 dependent \dot{M} diagnostic (using the recombination H_{α} , IR emission, or radio emission lines)

Credit: ESA/XMM-Newton (Carreau/Nezé et al.)

- Stationary
- Homogeneous
- Spherically symmetric

- Time-dependent
- Clumping (clumps+porosity) small-scale structure (stochastic)
- Rotation, pulsation, magnetic fields large-scale structure

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Theoretical evidence

LINE DRIVING INTRINSICALLY UNSTABLE

 Creation of two-component-like structures

WIND CLUMPING

 small-scale wind structures with different density (i.e., clumps) and velocity (i.e., porosity) than the surrounding wind matter

Runacres & Owocki (2002)

Observational evidence

LINE PROFILE VARIABILITY

- Small-scale stochastic LPVs
 - related to accelerated wind clumping moving outwards
- Cyclical LPVs
 - usually connected with the magnetic field of the star
- Strictly periodic LPVs
 - usually connected with the rotational period of the star

He II λ 4686 from ζ Pup (Eversberg et al. 1998)

Diagnostic evidence

QUANTITATIVE SPECTROSCOPY

- Electron scattering wings
- Shapes of saturated P Cygni profiles
- Presence of X-ray emission
- UV resonance doublet ratios
- Different diagnostics result in different \dot{M}
- Disagreement in the theoretical and "observed" \dot{M}

X-ray diagnostics of massive star winds (Oskinova 2016)

3D PHENOMENON

- Full 3D time-dependent (M)RHD wind simulation still missing (account for clumping + spatial and velocity-field porosity)
- Need for developing simplified assumptions and parameterized methods which can be implemented into existing global NLTE model atmosphere codes

Sundquist, Owocki & Puls 2018

MACROCLUMPING

- Arbitrary optical thickness of clumps
- Void inter-clump medium
- Non-monotonic velocity field
- Implemented into the PoWR code

Oskinova, Hamann & Feldmeier, 2007

3D description of clumping

- Arbitrary optical thickness of clumps + porosity in physical and velocity space
- The ionisation structure and underlying photospheric spectrum from PoWR code
- 3D MCRT code Calculates only resonance lines

Šurlan, Hamann et al., 2012, 2013

"EFFECTIVE OPACITY"

- Arbitrary optical thickness of clumps + porosity in physical and velocity space
- Implemented into the FASTWIND code

Sundquist & Puls, 2018

Resolve discrepancies in different mass-loss rates diagnostics and better constrain clumping properties

STELLAR PHYSICS DEPARTMENT

More realistic properties of clumps

- Depth dependent clumping factor (Puls et al. 2006)
- Onset of clumping (Bouret et al. 2003, Sundqvist et al. 2010)
- Interclump medium density (Zsargó et al. 2008)
- Shape of clumps

Clumping introduces additional complexities into the RT

- Due to Doppler shift, opacity and emissivity are not isotropic
- Clumping requires 3D radiative transfer (RT)
- The real size, shape, and distribution of clumps are unknown \rightarrow we have to use approximations
- Clumps can be optically thick (own ionization structure)
- Clumps can shield other clumps
- Clumped wind may be non-spherical

Monte Carlo Radiative Transfer (MCRT) Code – basic concept (Šurlan et al. 2012)

Brankica Kubátová (Šurlan)

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

- SMOOTH region $r_{\min} < r < r_{cl}; r_{\min} = R_*$
- CLUMPED region (r_{cl} < r < r_{max})
- Two density components: ICM and CLUMPS
- Cartesian coordinates
- r_{\min} the lower boundary of the wind
- r_{cl} the onset of clumping
- r_{\max} the outer boundary of the wind

- SMOOTH region $r_{\min} < r < r_{cl}; r_{\min} = R_*$
- CLUMPED region (r_{cl} < r < r_{max})
- Two density components: ICM and CLUMPS
- Cartesian coordinates
- r_{\min} the lower boundary of the wind
- r_{cl} the onset of clumping
- r_{\max} the outer boundary of the wind

- SMOOTH region
 - $r_{\min} < r < r_{cl}; r_{\min} = R_*$
- CLUMPED region (r_{cl} < r < r_{max})
- Two density components: ICM and CLUMPS
- Cartesian coordinates
- r_{\min} the lower boundary of the wind
- r_{cl} the onset of clumping
- r_{\max} the outer boundary of the wind

$$L_0 = 1$$
 D=10 d=0

Šurlan et al. 2012

STELLAR PHYSICS DEPARIMENT Astronomický ústav AV ČR

STELLAR PHYSICS DEPARIMENT Astronomický ústav AV ČR

3D description of clumping

STELLAR PHYSICS DEPARIMENT Astronomický ústav AV ČR

3D description of clumping

Brankica Kubátová (Šurlan)

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Beograd, 30. mart 2021. 5 | 10

RESEARCH GOALS

• To check whether detailed 3-D description of wind clumping may resolves discrepancy between H α and P v mass loss diagnostics

Microclumping vs. Macroclumping (Oskinova et al. 2007)

Astronomický

ústav AV ČR

STELLAR PHYSICS DEPARTMENT

RESEARCH GOALS

Clumping parameters used in the 3D MCRT code

- Clumps may be either optically thin or thick
- Clumping separation parameter (number of clumps)
- Onset of clumping (radius at which clumping set-up)
- Clumping factor (density inside clumps)
- Inter-clump medium density
- Velocity deviation parameter (velocity inside clumps)

• Fit P v line profiles using the same \dot{M} rats derived from H α diagnostic

STELLAR

• To derive some global properties of O-star wind clumping

Astronomický

• 5 O-type Galactic supergiants

Star	Other	Spec.
	name	
HD 66811	ζPup	O4I(n)fp
HD 15570		O4If+
HD 14947		O5If+
HD 210839	λ Cep	O6lf(n)p
HD 192639		O7lb(f)

Table: Spectral types are taken from Sota et al. (2011), while the photometry is taken from the GOC catalog Maiz et al. (2004), and reddening is taken from Bouret et al. (2012).

• OPTICAL SPECTRA

- CCD SITe ST-005 800×2000 pix camera (Ondřejov observatory)
- $6254 6764 \text{ Å} \text{H}\alpha \text{ region } (R = 13\,600)$
- 4656 4908 Å + He II 4686 Å (R = 19400)
- 4754 5005 Å region (R = 20000)
- 4269 4522 Å region (R = 17600)
- Zeta Pup ...

• ULTRAVIOLET SPECTRA

- High-resolution FUV spectra (960 to 1190 Å)
 - Far Ultraviolet Spectroscopic Explorer (FUSE) taken from MAST
- Low-resolution NUV spectra (1200 to 2000 Å) - International Ultraviolet Explorer (IUE) taken from INES Archive Data Server
- COPERNICUS ... for Zeta Pup

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Number of clumps

One-component wind – dens clumps and void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\min} = 1$
Outer boundary of the wind	$r_{\max} = 100$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5, 0.3, 0.2, 0.1$
Clumping factor	D = 10
Interclump medium density factor	d = 0
Set-up of clumping	$r_{cl} = 1$
Velocity deviation	$v_{ m dis}/v_{m eta}=0.2$
Velocity at the photosphere	$v_{\rm min}{=}10[{\rm kms^{-1}}]$
Doppler velocity	$v_{\rm D} = 20 \; [{\rm km s^{-1}}]$

Number of clumps

One-component wind – dens clumps and void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\min} = 1$
Outer boundary of the wind	$r_{\max} = 100$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5, 0.3, 0.2, 0.1$
Clumping factor	D = 10
Interclump medium density factor	d = 0
Set-up of clumping	$r_{cl} = 1$
Velocity deviation	$v_{ m dis}/v_{m eta}=0.2$
Velocity at the photosphere	$v_{\sf min}{=}10[{ m kms^{-1}}]$
Doppler velocity	$v_{\rm D} = 20 \; [{\rm km s^{-1}}]$

 $L_0 = 0.5 (n_{cl} = 1.13 \cdot 10^4) L_0 = 0.3 (n_{cl} = 5.17 \cdot 10^4) L_0 = 0.2 (n_{cl} = 1.75 \cdot 10^5)$

 $L_0 = 0.5 (n_{\mathsf{cl}} = 1.13 \cdot 10^4) \ L_0 = 0.3 (n_{\mathsf{cl}} = 5.17 \cdot 10^4) \ L_0 = 0.2 (n_{\mathsf{cl}} = 1.75 \cdot 10^5)$ $L_0 = 0.1 (n_{\mathsf{cl}} = 1.40 \cdot 10^6)$

 $L_0 = 0.5 (n_{\rm cl} = 1.13 \cdot 10^4) \ L_0 = 0.3 (n_{\rm cl} = 5.17 \cdot 10^4) \ L_0 = 0.2 (n_{\rm cl} = 1.75 \cdot 10^5)$ $L_0 = 0.1 (n_{\rm cl} = 1.40 \cdot 10^6) \text{ smooth wind}$

Conclusion (one-component wind)

- 10^6 and more clumps
- Even with such large number of clumps neither the strength of the emissions nor depth of absorption cannot be achieved
- Additional matter is needed to be add to satisfactorily reproduce observed line profile

Inter clump medium density

One-component wind – dens clumps and non-void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\min} = 1$
Outer boundary of the wind	$r_{\max} = 100$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5$
Clumping factor	D = 10
Interclump medium density factor	d = 0
Set-up of clumping	$r_{\sf cl} = 1$
Velocity deviation	$v_{\sf dis}/v_{m eta}{=}0.2$
Velocity at the photosphere	$v_{ m min}{=}10[{ m kms^{-1}}]$
Doppler velocity	$v_{\rm D} = 20 \; [{\rm km s^{-1}}]$

$$f_v = \frac{1-d}{D-d}$$

-

Inter clump medium density

One-component wind – dens clumps and non-void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\min} = 1$
Outer boundary of the wind	$r_{\max} = 100$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5$
Clumping factor	D = 10
Interclump medium density factor	d = 0, 0.1, 0.2, 0.25
Set-up of clumping	$r_{\sf cl} = 1$
Velocity deviation	$v_{ m dis}/v_{m eta}=0.2$
Velocity at the photosphere	$v_{{ m min}}{=}10[{ m kms^{-1}}]$
Doppler velocity	$v_{\rm D}{=}20[{\rm kms^{-1}}]$

$$f_v = \frac{1-d}{D-d}$$

-

d = 0, d = 0.1, d = 0.25

Conclusion (two-component wind)

- Two-component wind is more realistic
- Inter-clump medium density is a necessary ingredient of the wind
- Different combinations of L_0 and d may give equally good agreement with observation
- Inter-clump medium cannot be void!!!

Šurlan et al. 2013

 $L_0 = 0.5 (n_{\rm cl} 1.13 \cdot 10^4), r_{\rm cl} = 1.1$ — P V 3p²P - 3s²S — - HD 14947 -1.5 Relative flux 1.0 0.5 0.0 1100 1110 1120 1130 1140 d = 0, d = 0.1

 $L_0 = 0.5 \ (n_{\rm cl} 1.13 \cdot 10^4), \ r_{\rm cl} = 1.1$

d = 0, d = 0.1, d = 0.25

 $L_0 = 0.5 \ (n_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.3$

 $L_0 = 0.5 \ (n_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.3$

 $L_0 = 0.5 \ (n_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.3$

d = 0, d = 0.1, d = 0.25

 $L_0 = 0.5 \ (n_{\sf cl} = 1.13 \cdot 10^4), \ d = 0.25$

 $r_{\rm cl} = 1, \ r_{\rm cl} = 1.1, \ r_{\rm cl} = 1.3$

Conclusion

- In case of one-component wind clumping has to set-on from the surface of the star
- Wind clumping may start farther from the surface of the star only if inter-clump medium is not void
- Inter-clump medium density is needed in order to fit line profiles
- Different combination of r_{cl} and d may give very similar agreement with observations

Šurlan et al. 2013

Najveći izazovi u teoriji vetrova vrelih masivnih zvezda

Summary – O-type stars

- Macroclumping (both optically thin and thick clumps exist) resolves discrepancy between H α and P v \dot{M} rates
- We do not need to lower $\mathsf{P}\,v$ abundance
- We do not need extreme clumping factor D
- Inter-clump medium is needed to achieve satisfactory agreement with observed P v line profiles
 - number of clumps the higher the inter-clump medium density is, the lower is the number of clumps
 - onset of clumping clumping may start farther from the surface of the star only if inter-clump medium is not void
- Velocity dispersion inside clumps is important to model outer part of the wind

Šurlan et al., 2013

Astronomický

Summary - WR 136 star

- Macroclumping has impact on the formation of resonance lines
- A smooth wind cannot reproduce the observed P $\rm v$ line profile, when the mass-loss rate is adopted according to the emission-line spectrum
- The porosity seems to be pronounced (only \approx 200 clumps within 100 R_*)
- The interclump density remains unconstrained
- The results are not sensitive to the velocity dispersion within each clump (" vorosity"), except of an additional blue-shift of the P-Cygni absorption edge
- We intend to study a larger sample of WR stars in order to better understand the inhomogeneous structures of their winds Kubátová et al., in preparation

Šurlan et al., 2015

Astronomický

ULLYSES + XSHOOTER

Hubble UV Legacy Library of Young Stars as Essential Standards

https://ullyses.stsci.edu/

B. Kubátová – Point of Contact for WG4 (Wind Structures)

ULLYSES + XSHOOTER

- Uniformly sample the fundamental astrophysical parameter space for each mass regime including spectral type, luminosity class, and metallicity for massive OB stars
- Spectral types O2-B1.5, supergiants B2-B9, 11 WR stars (4 close binary systems)
- LMC (Z=0.2 $\rm Z_{\odot}),~SMC$ (Z=0.5 $\rm Z_{\odot}),~NGC$ 3109 (Z=0.1-0.2 $\rm Z_{\odot}),~and~Sextans~A$ (Z=0.1 $\rm Z_{\odot})$
- HST (FUV: 937-1792 Å+ archive data; NUV: 1607-3119 Å; OPT: 2900-5700 Å; NIR: 5240-10270 Å)
- XSHOOTER (UVB: 300-559.5 nm; OPT: 559.5-1024 nm; NIR:1024-2480 nm

HVALA NA PAŽNJI!

.