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Conformally Equivalent Metrics in Bimetric
General Relativity

Ilija Lukaéeviét
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Space-times conformal to physical space-time are considered, assunung
the nongravitational energy is conservative after the conformal transfor-
mation. Mecessary and sufficient conditions satisRed by the conformal
factor are found for a given Lype of transfermation of the energy tensor.
The weal gravitational field is defined and the coordinate conditions for
the existence of conformal factors in such a field are obtained.

1. INTRODUCTION

Rosen’s bimetric general relativity represents a variant of alternative theo-
ries of gravitation. It is in fact a modification of classical general relativity,
as the space-time is assumed to be of constant curvature in the absence of
any form of energy. Thal assumption is expressed by an addifional term
at the left hand side of the gravitational field equations [1,2). The conse-
quences of that term are important. The law of energy consecvation is no
longer the automatic consequence of Bianchi's identity. [t requires an ad-
ditional condition which ties together the metric tensor of the background
space-time (the universe free of any form of energy) with the metric ten-
sor of the physical space-time, and represents a generalization of the De
Donder condition of classical relativity. |

Among the essential consequences of bimetric general relativity is a
background coordinate system, associated with the universe. Its funda-
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mental elfects in the solar system should not be discernably different from
those of classical general relativily. Its cosmological solutions have models
without a “Big Bang”:{1,2].. The g;ruature ol ordinary stars agrees with
the predictions of classical relativity, with the difference that a configura-
tion in hydrostatic equilibrium exists inside the Schwarzschild sphere in
the case of collapscd stars [3]. In our mihd these consequences of bimetric
general relalivily, with the possible exception of the background coordinate
systemn, recommend 1t as a serious alternative to classical relalivity.

Aller a briel survey of the general resuits of the theory in Seclion 2,
we consider in Scelion 3 the question of Lhe conformally related metrics
satislying Lhe gravitalional field equalions. In Rosen’s bimetric gravita-
tion theory (which is notl to be confused with bimetric general relativity)
conformally equivalent metrics, satislying the gravitational equations, al-
ways exist under sismple conditions [4,5]. In bimelric general relativily the
siluation is quite differenl. First, the nongravitational energy Lensor 1:
cannot be conserved in bollt melrics, unless Lhey are mulually related by
a constanl conformal faclor. We have chosen to investigate the case when
only the conformally transformed melric is conservalive, the conservalion
of nongravitational energy not being, as mentioned, Lhe consequence of an
identity. We have considered the conformally equivalent metric to be as
interesting as the initial one. The conseqnences of that clioice are, first,
a basic relation belween (he physical metric coelMicients and the conflor-
mal lactor, then a peneral relation between the divergences of the initial
and the transformed nongravitational encrgy lensors. Restricling our in-
vestigalion to homogeneously translormed encrgy tensors, we obtain the
necessary and sulficient condilion salisficd by Lhe conlormal factor in the
case of encrgy conservation and a condition on the physical metric result-
ing therefrom. Finally, a few cases of homogeneous transformalions are
considered. |

In Seclion 4 previous resuils are applied to weak fields, defined in a
way analogous to that ol classical relativity. It appears that a necessary
condilion for the existence of a conformal faclor can be fulfilled under
infinitesimal coordinate transformalions suited lo weak felds. Finally,
homogeneously translormed energy tensors in a weak gravitational Reld
are discussed,

2, GENERAL RELATIONS

In bimetric general relativily one considers Lwo line elements
edo® = yopd2® dz” (1)
and
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eds® = gopdz® dz”. {(2)

Element (1) corresponds to a background space-time of constant curvature,
to whicly the physical metric reduces in the absence of any kind of encrgy.
The clement (2) defines the physical metric. The assumptions concerning
the diflerentiability of the physical metric are as usual; g,p is differentiable
C!, C? piccewise.

The gravitational field equations read

1

J o
Ry — EE'{T#P - ﬁf v} = 87T, (3)

1

Rﬂu = 2

One sces that (3) differs fromn the Einstein ficld equations by an additional
term on the left hand side. Hercafter, an underlined index means that. it
is lowered (resp. raised) with the help of Yur- We shall denole by a bar
(1) a covariant derivative with respect to the melric Yuv; by 8 semicolon
() a covariant with respect to the metric g,,; by a comma (,) a partial
derivative,

A basic bimetric formula reads [2]

p} = AL 4T, (1)

where Lhe ChristolTel symbol on the left hand side corresponds to T ey l';’:,,

corresponds to v, and ﬂ"}’:a— has Lhe form

1
ﬂ;‘:,_.- = ‘:.?"Hh(ihrpiv -+ Fovju — g;u.rhn}* [5}

On account of (1) and (5) we have
Ruup = K yp + Pl (6)

Itere Ry, and P, are respectively the curvature Lensors of the metrics
Gap and y,9, so that

1
Pliwp = ;i{'E:T;m - ﬁﬂTﬂﬁ'] (a = const.) (7)

By (5) K*,,, is given by

KA, =400 — A L A°

A A
ppju nelp w"j"r:m — ﬂ:l*ﬁnp' (8)
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This tensor differs {rom 1T,,, in that Lhe partial derivatives are replaced
by y-derivatives. Equation (6) holds for arbilrary curvature tensors instead
of P%,., [1,6].

Let us return to the field equations (3). From (4)-(8), equations (3)
can be written in the form

1.
Hys = Kpy = 5K g0 = ~87T. (9)

The mixed form of the relations (6) allows Lhe curvature tensors, which

depend on different metric tensors, to be simultaneously contracted with

respect to one index. The second conlraction, necessary for oblaining J(,
i b

is done with the help of the physical metric tensor g**.
The conservalion of nongravitational energy reads, as usual [1,2]

T, = 0. (10)

Since the lefl hand side of the gravilalional equations (3) has additional
terms, the covariant divergence does nol aulomalically vanish. So eq. (10)
implies one condition more, thal is

[(a/7)' 2g2") = 0, (11)

g and 7 denoling, as usual, the respeclive deteriminanls of the metrics.
Equation (11) represents a generalizalion of the De Donder condition of
classical relativily.

J. CONTORMAL TRANSFOIIMATIONS

As we already mentioned, in bimmetric gravitation theory metrics, con-
formally equivalent Lo a given metric, always exist under simple condilions.
From the basic sysiem of equations (3}, or (9}, one should expect bimetric
general relativity to have more similarilies with classical general relativily
than wilh bimetric gravitation theory. As we shall see, there are condilions
which notably reduce the possibility of the existence of solutions which are
both conformally equivalent to given ones and conservative,

Il we perform a conformal transformation of the melric

Fop = €% ap, (12)

the left hand side of Lhie gravilational equations will cbviously be modified
in the same way as in classical relativity, and we shall have (Rel. 7, p. 317)

1 1
R;mr - "“R!hm + E'ﬁ';;w - ?rﬁ,pQ",u — Eﬂ;Juﬂﬂr('ﬁ;pf "'" i'ﬁ,ﬁqﬁ,r}

2
. 3 1 oo 7
= I‘_ﬁ'[ﬁw - i!? '”!fjw.} - B?rj.l”‘ []3)
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where T}, is the conformally transformed nongravitational energy ten-

sor. Assuming both T,; and f};p'ﬁﬂﬂﬁﬂl‘?ﬂ-hivﬂ in their respective metrics,
we shall obtain from (10), or equivalently from (11}, formulated in both
metrics, that ¢ must be a constant. Two conformally equivalent metrics,
satisfying (3} and (13) respectlively, can exist and be mutually refated by
a nonconstant factor. Dut only one of Lhem, by the preceding, allows the
conservation of nongravitational energy.

We shall assume, in what [ollows, g,,, and §,. satlistying respectively
(3) and (13), and T}, conscrvative. Let us first write (13) in a form

analogous to (3)

-’r?,lll-" = %‘.lr?ﬁju.r = '_'Bﬂ_f-.#u- (ld]

The condition of conservation of T, in the metric g, is equivalent to

[@/)'?3 ) =0 (1)

just as (10} and (11) are mulually equivalent in the metric g,,. Equalion
(15), explicitly written with the help of (12], yields

{Quﬁgnilﬁ = ‘J",E} (lﬁ)

e

ff",e =

where
Ae f (9/7). '“"-ﬂ-' P gaple- (17)

By (16) the conservation of T[:’ implies that ¢*7g,qg is a gradient.

It is obvious, by (16) and (17), that a metric conformal to the back-
ground metric allows only ¢ =const. The background metric,. being of
constant curvature, is itsell conlormally Mat. The result is that any conser-
vative conformally flat physical metric reduces, through a constant factor,
to the background metric.

The necessary and sullicient condition for the right hand side of (16)
to be a gradient reads, in terms of y-derivatives,

glu{gcﬂﬂlﬁ - g.ﬂﬂ-ll"f} + glﬂgﬂu{glﬂltgmlju - gluhl.ﬁ'p[ln] = (. “-S)

A physical metric, which allows a conlormally equivalent metric in which
nongravitational energy is conserved, does identically satisfy (18).

Consider now the energy tensor on the right hand side of (I-‘t} The
condition of conservation of '1':;, after the substitution of {12) in the re-
spective divergence, reads

Tyep =Ty +4T78, — T, =0 (19)
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where tlie asterisk (#) denotes covariant differentialion withtespect Lo §,..
By (3), after some calculus, one obtains for the covariant divergence
of T3,
3
Bra?(g/r

From this fundamenial formula of bitnebrie relativily result the mutnally
equivalent relations (10) and (11). By (15) and (16) the preceding formula
can be written as

v
T =

J”g {{g-‘fﬂr}lfiyﬂullu' [2{]}

4
"Eﬂ-ﬂzgtﬂ T:"t.-' - G'ﬁ,[ {21:'
so that (19) takes the form
PR 16 L i gy ey
T — Tm“w_ (7% - 76, T)T%, =90, (22)

In the case thal g,. allows a conformally equivalenl metric g,,, which is
a solution of the gravitational equalions, assuming that nongravitational
energy is conserved, the covariant divergence of L Al Ty in Lhe melric
7.0 are mutually related by the linear expression (22).

(a) Let us consider homogeneously Lransformed energy tensors
r]';: — ﬂrllf'?}:- = ?.:;n.r — ﬂ[n'lr?}'ﬂ"]':!'"_ [23}

Such conformal transformations of nongravilalional energy tensors are
physieally simple and consislent. In Lhe case of a pure electromagnetic
field they are (with n = —4) the only ones justified [4,5}.

Let us substilule Ty, from (23) in (13}, then subtract (3) from il; we
shall have

E‘f";ﬂl’ - Eff’.rl'?('.t-r - Eﬂ.r-u!}'“['ﬁ-,af + %'?!’,a fi"’,r} = EF[E{"_H” - 1]1_;:»» (E‘i]

In deriving the above fommla we assumed ¢"+2% o4 1. Dy (23), (19) takes
the form

Ty, +(n+N1¢, -Td, =0. (25)
Substituting, in (25), T and T' from (24) and T}, from (21}, one obtains

2['1 -I- ’1)[]‘;#9]’;1;:‘?5,# = 2[" + I]HL'J¢EAU1{'.F'

ﬁ 11y
— 3‘(“ + ?)!ih‘i',.hﬁi[’,u?ﬁ,p = '{1—?‘[1 = E{n-l-?}q‘!]g.l_ ¢.¢-" = U (gﬁ}



Conforinally Equivalent Metrics in Biinetric General telativity Tav

By {4) and (5), the above equalion reads in terms of y-derivatives

[E{H -+ d}yl"q‘:hw - 2{n + l]y""qh”&::
— '.:ﬂ — E}j}lu lf’,y"’,ﬂ - {“ + ‘1}_!}:“‘ ﬂpdgup|ﬂ¢',ﬂ'

- ;ﬁi([ - E(-H-ﬂ]v&]glﬂ] ¢a=0. (27)

Under the assumption (23), the scalar ¢ salisfies the system (26], resp.
(27). A necessary condition of existence of a nonconstant ¢ implies the
vanishing of the determinant of Lhe coefficients of ¢ , in (27).

Equation (27) is Lhe necessary and sullicient condition, under the as-
sumplion (2]), for the conservalion of T} in the melric g, . To verily, we
first put back (27), with the help of (4} and {5), in the form (26). Then,
assuming ("% £ 1 we Lake Lhe expressions of T and T [rom (24) and,
multiplying them by ¢, and the corresponding numerical coeflicients, we

oblain an expression for Lhe Lerina of (26) involving second order deriva-
bl o

tives of ¢. Then, substituting 70, from (21) in the term finear in ¢, (the
last onc) in {26), we reconstruct (25). Substituling then 'fl': from (23),
we finally obtain the second equality of (19). Ience '}7;': ig conservative by

(27).
Contracting (27) with ¢ ,,, solving with respect to exp[(n +2)¢], then
substituting again in (27), one finally obtains

{ " b 2 4 001
—Un+ 1)g" P8y — (n— 29 b b,
—{(n+ ’”iihrgrxgwfﬂ‘f".x] ~{2(n + 4)9“¢'.ﬂ¢’.d¢il-g_

- 2(n+ I)ﬂ"ﬂ‘f’hrp‘?l',a'f’.g —(n— z}ﬂyp'ﬁ.u‘:ﬁ.p?,‘,u'ﬁ"[rg
~(n+4)9"" 9" gu 0 ﬁﬁ,ré,xiﬁ,a]glﬂ}‘iﬂ'r\ = 0. (28)

Deriving (28) we assumed g""¢ ¢, # 0, i.e. ¢y could not have been a
light-like vector. Substituting ¢, from (16}, (17) in (28), one obtains the
condilion salisfied Ly the melric g,, in the case of energy conservation in
the metric §,,, under the assuniption (23). Further, ¢ , being a gradient,
(18) must be identically satisfied.
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Let us return to the expressions involving Lhe energy tensor. By (21)
and (23} the relation (22) takes the form

4 4 5
15;.: — E(“ -+ rljﬂ'ﬂ!T&p -}- Eﬂﬂjgﬂ,.“T T}u;p‘ = {). {Eﬂ)

The vanishing of the determninant of the expression inside the brackels is,
equivalently with (27), a necessary condition of exislence of a nonconstant
¢, since T cannot be, by (21), conservalive in Lhal cse.

(b} Consider Lhe case of the conformal invariance of Ty, which holds for

n = —2in {23). One has [rom (26) [which is more convenient in Lhis case
than (27))]:

20 daudb + 9" $audp = 0. (30)
Then, puling n = -2 in (24) and contracling with ¢, one has

ﬁfhf?-‘*-,mff’.u - Hluiﬁ,l‘i’,pd’,ﬂ — ﬂlu[’?";lu + ‘%rﬁ,i‘ﬁ,u]d),p = 0. {r“:'
There resuiis from (30) and (31)

g.l.v[q&;}m -+ ‘#’,l'ﬁ,”]*ﬁ,p = 0. [:12]

One possibility is the trivial ¢ = const. The olher one results directly from
(24) for n = —2. Substlituting that solution back in (241) one oblains

E¢;j‘!l-" = Eqﬁ',p"ﬁ,w + ﬂ;l:*gﬁd'ﬁ,p'ﬁ,d = 0. (:IH}

Contracting with ¢ the above equalion, one obiains from it, wilh the
help of (32), equation (30). So, in the case of the conformal invariance
of T, (30) results directly from (24), i.e. from the term by which the
respeclive gravilational equations for the lwo metrics differ. The condition
of conservation is a consequence of (24).

(c) A characteristic case is Lhat of n = —4 in {23). We shall apply it to
an electromagnelic field first. The encrgy lensor of a pure cleciromagnetic
field, given by the skew-symmetric tensor g, rcads

* 1 1 l T4
T = ym (Fug F*P — 1 "ap PP 8. (34)

i

Introducing the conformally related field by

Fap=Fop;  FoP = tpd (35)
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the energy tensor transforms as follows
F, =4
T;: =& 'ﬂ':i'",l:. (35}

The transformation (35) is well-known; it satisfies the requirement that
Maxwell’s equations remain valid after it. As the energy.tensor (34) is
trace-frce, we have, by (25), T)/, = 0. The cleclromagnetic energy is
conservalive bolh before and after the transformation, the result being,
by (21), ¢ = const. Anolher possibility would be to consider Maxweli’s
equations salisfied only after the conformal transforination, which is quite
unrealistic. So, a pure clectromagnelic field allows enly tnvially related
conformally equivalent melrics.

Let us assume, without specilying it physically, that the energy tensor
has a nonvanishing trace T # 0. This could be the case of a charged perlect
fluid, the conformal transformation of T}, being given by (36). Assume the
physical melric g, orthogonai (the metric 7,, is taken to be orthogonal;
RRef. 2). As Lhe nongravitalional energy tensor is conservalive only aflter
the transformation, the vaunishing of the delerminant of (29) yields four
possibililies:

3
4ra?

In the general case there is only one index A for which the above rela-
tion can be salisfied (otherwise the system 7,, would determine all the
remaining metric coeflicients g, ). Therelore only one T;‘:.’p, corresponding
to the index of (37), can be different [rom zero. By (21) the respective
¢4y depends on one variable only. For A = 4, one has a conformal factor
depending only on time, altowing the expansion or the contraction of the
physical metric.

As can be seen from Lhis section, physical melrics, conformally equiv-
alent to a given basic metric and allowing the conservation of nongravi-
tational energy, are subjecl to limitalions stronger than was the case in
classicalgeneral relativity. An immmediate conclusion, resulting from (16}, is
Lhat every conservalive conforinally flat melric reduces, through a constant
conformal factor, lo the background metric y,,.

Another characteristic leature of Lthe behavior of energy under con-
formal transformations results from (21). In the case of ¢ depending on
one variable only, say on time, only one of the four equations (21) has a
right hand side diflerent from zero. Moreover, in the case of the linear
dependence ¢ = at - b, that term reduces to a constant, The same is true
ol the left hand side of (16). Il we restrict ourselves further to an orthog-
onal physical metric, three of the dynamical equations resulting from the

Ty = =5 9% (A=1,2,3,4). (37)



T30 Lukalovidé

condition of energy conservalion in the initial meiric remain unchanged,
the fourth one differing only by the ratio of v44 L0 gaq. Equation (22) also
takes a peculiar form in the case considered. Three componentls of the
divergence of f}f are null, and the fourth one becoines a linear function,

with constant coeflicients, of ‘f}‘;’ and ils trace.

In the case of homogeneously Lransforming Lensors, defined in (n), and
physically realistic al least for simple cases of nongravitational energy, the
value n = —4 leads, for trace-free lensors, T = 0, Lo ¢ = const. by (19)
and (21). The other possibility is the non-conservation of energy.

4. APTLICATION TO A WEAK FIELD

In classical relalivity a weak gravitational ficld dilfers [rom Lhe Min-
kowski metric only by sulliciently small additional terms e55. In bimelric
general relativity it is natural to consider as weak a gravitational ficld
which differs from the curved background mietric by sulliciently small
terms, in the sense of a given definition. So, we put

Jap = Top + €ap + ﬂ(t—) = fn'ﬂ — Tnﬁ — ¢ (ﬂ[f] = 0). (38)

The assumptions contcerning the dillerentialnlity of the melric coeflicients,
made al the beginning of Seclion 1, apply Lo the ¢,5's. We assume Lheir
first derivalives continuous, the second ones admitting juinps. We demand
that their orders of magnitude satisly the requirement

Cap ™~ Caply ™ Copiyi- (39)
Next is the assumption that ¥, ,, and correspondingly T}”', do not exceed,
in the domain considered, some given order of magnilude, so as nol to
influence lhe order of the ¢,z’s when raising or lowering Lheir indices.
That question is related to the choice of Lhe coordinale system. Taking
the background metric in its static form [Rel. 2, eq. (§2)]

2 2
2 __ (1T Ya2_ dr 32 s A gD
edo” = (1 ﬂz)"ﬂ = (% /07) o (df” +sin " dg”) (r < a) (40)

where a is Lthe radius of the emply universe, we restrict ourselves to Lhe do-
main where r,,,. is sufficiently smaller than a and r ., sufficiently greater
than zero, so as not to have a delermining influence on the order of the
terms discarded. The minimal value |0],... has to be chosen accordingly.
When studying a weak ficld, coordinate transformations would allow us to
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include the critical domains implied by the metric form (40). This makes
a notable difference [rom classical relativity, where the basic céordinate
system was Lorentzian, i.e. without inlluence on the metric operations
involving a weak Reld.

By the preceding definitions, we have frorm (16) and (17)

$0 = 3(¢pala — $€oalp) (41)

and by (4), (5), for the second derivalives

By = Bloy — ${ens F sy — €ayp )P

which reduces, by (38) and (41), to

$:03 = Day = $(€00lar = €aaloy)- (42)

The definition of ¢ g implies

fPojay = fyalap- (43)

We shall look for the coordinate conditions under which the right
hand side can be effectively equated fo a gradient. We first subject the
coordinales Lo the infinitesimal Lransformation (Ref. 8, p. 110)

¥

27 =27 | p€° (44)
where
jt = const. ; €™ ~ epy (> € G?, C* piecewise) (45)

£ being otherwise arbitrary. Dy definition, therefore, we have
Yopt 4 €ap = (84 -F “'E::n}{ﬁf‘i -+ .-"E:;:J) (’T:w + €pa). (16)

On the other hand, the infinitesunal transformation of y,, along the vector
field £ reads

Yoo = Yoo + 1Ypa s (47)

After Lhe substitution of (47) one obtdins for (16), by a well-known proce-
dure,

; o #
Cap = Cap + H(ES + E5) (18)
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and therefore ,
CPala = E:'-?E'[E + F(Eﬂiq -+ £|T:,_) [dg}

The covariant differentiation being carried out with respect to the metric
Y, We have the substilution

Elf;?ﬂ = ‘{-’Eﬂ' -} Fap{ﬂ (ﬁlJJ

P,s being obtained by contraclion ftom (27). Then, demanding that £
satisly the equation

B LYY
;1{1—;2: —;I%— E+'E,ﬂ'crlg1 (51)
one finally obtains [rom (49)
Dala = ~Hfap = X 8- (52)

So, under the condition (51) on £2, the quantity EEJQF!:-' represents Lhe gra-
dient of a scalar y. In a suitable class of coordinate systems, obtained
with the help of the vector field u£?, satislying (51), the relation {43) is
identically salisfied.

(a) Assume that T, salisfies (23). Considering that (52) holds and drop-
ping the primes, one can write, by (3), (13), {41) and (42)

1 1
Choler — iﬁﬂ'ﬂjllﬂ' = Tﬂu[fnﬁ[lﬂ_u - Eﬁﬂﬂﬂﬁ) = H#T}m[l - EEHHI-E]*]. (53]

If we linearize, with the help of (38), the left hand side of (9}, thén sub-
stitute in (53) that expression to T}, , we shall have
EEHE‘IEP’ — Eaﬂﬂﬁ' - leutzfﬂﬂ|"-‘3_.a- — (“Ejﬁg:l

2
— —{c(n-l' }"#I —_— lil [E“EEHH + EI:FTHE - {HJIEHE - fﬂulj’]g

= Tpu(fn‘ﬂ.ﬂg_' Enﬁlﬂ_r:r]]‘ {54}

One obtlains from the above relation

l2["5%:1':'4_:}1#I — l] (fngf,ﬂﬂ_ - fuﬂl_ﬂ_ﬂ} = _":](Efu'ﬂlﬁ_{i "= {agl.ﬂ_ﬂ_]' (55}
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If assuming €nq)pp # €aplpe and e+ — 1 of finite order of magnitude
with respect Lo .4, one can write by the above formula

2"i',m:nrlg_n' = Caalpv — T#F{E'Ea,ﬂlﬂ_{t = Engl.ﬂﬂ]

3 2€apipa — €oalip [ N .
= — == = leaaluy + € —
7 Eu,c_rli‘?g" Eu‘#lﬂfg ool peloo ap|ra
— 'El:rt-rlpg - Tlil’(fﬁglﬂﬂ - 'EurﬂIEE}]‘ (56}
In the case of the conformal invariance of T, (n = —2) one immediately

obtains from (H3), resp. (54}

EnEIﬂE - Efﬂ‘ﬁ]‘ﬂ_ﬂ

[ience
Caglur — Ef;m-fgu' = 'i‘*’hw = 0. (57)

The Iatter of the above equntions results from {42).

When considering other cases, one first has to substitute ¢, {rom
(41) in (27). Dy the assumptions made at the beginning of the section it
appears that the lelt hand side of (27) is ~ 0, except for the last term.
¢ = const. would result. Dul the coeflicient 6/a? is very small (a is the
radius of the universe} and exp{(n 4 2)¢] — 1 can be also assumed to be
small, so that it is reasonable to discard the last term in (27). Then, by
the assumption made a=?(n 4 2)¢ ~ |eap| (Lo the linear approximation).
Thus, ¢ is not necessarily constant and lias to be determined so as to
satisly (5H4).

(¢) Anolher possible approach is to weaken Lhe assnmptions (39), so that

€of ~ €aply 7 €aplrs- (58)

We assume the order of magnilude of the terms quadralic in e g5 (with
possible disconlinuities, ¢,5 being of class C*, C? piecewise) non negligible.
We also consider the products of the second derivalives of €¢5p by ¢, as
non negligible. Then (27) reduces, aflter substitution from {41), (42), to

1
[(n +1) €xolan = FEaglan) = (4 1) (capipa

1 1
- Efnu_fﬂg)*ﬁ;] [Elcr|g - E‘Engjl] =0. {59}
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Following the considerations of {a), the last term in (27) has been ne-
glected. This 15 a8 consequence, lirst ol the fact that e is a constant
and keeps its order of magnitude, and secondly of the assumplion that
exp[(n + 2)¢) — 1, although not necessarily “weak”, is sufliciently small,

The assumption (58) is justified only on small “islands” of energy. For
the value n = —5/2, (59) reduces to the equation (¢ ¢ )i = 0.

Bimetric general relalivity is, like every bimelric Lheory, parlicularly
suited to weak gravitational fields. "Thal is Lthe consequence of Lhe [act Lhatl
Lhe choice of the background coordinate system determines the characler
of the solutions of the gravitational ficld equalions, as was remarked in
Rel. 9, § 1.9. As we have seen, the delinition of weak gravitalional ficlds
required Lhe restriction to the domains of the background metric where the
metrical coellicients could exert no influence on the order of magnitude of
the departures e,5. To oblain a simplificd situation, we chose Lhe stalic
coordinate system (40). This system is, ol course, not Lthe only suilable one,
In the domain tn which the order of ¢op 1s prescrved through the operalions
involving the metrical coeflicienls, further lransforimalions are allowed.
With that himitation it is possible to determine Lhe transforimalions (44),
which enable us to establish the classes of coordinate systems in which
has the property (52), i.e. in which the right hand side of (41) represents
a gradient.

Finally, the discussion lollowing (57) led us to decide on the relative
orders of magnitude of a=? (the radius of the universe a is roughly 10%%cin;
Rel. 2), of ¢ and of ¢,5. It was found thal (57) in the case (a) resulted
from the assumption |eqg] ~ e ?[e"*+2)% — 1] (and even from |eqp| >
a~2[e(n+2)% _ 1]; the respective magnitudes could differ by several decimal
orders). Thus, the mulual order of magnitude of the gravitational inelric

departures, of the curvature of the background and of ¢ plays an essenlial
role in the determination ol possible weak ficlds.
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