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Summary. A numerical analysis of the viscous dissipation influence on the thermal
instability of a medium with thermal conduction and heatingdzcooling fanction without any
gravitation and magnetic field is presented. For the condensation and wave modes the effects
of viscosity on the dependence k(w) and scale of maximum instability are distinguished. It
is found that these effects are significantly larger for the wave mode.

T. Angelov: UTICAT VISKOZNOSTI NA TOPLOTNU NESTABILNOST - Daje se
numericka analiza uticaja viskozne disipacije na ‘toplotnu nest.ahﬂnmt sredine sa toplotnim
provodjenjem i funkcijom zagrevanja i hladjenja, bez g:amta-:mnﬁ sile 1 magnetnog polja. Za
kondenzacione i talasne mode, izdvajaju se efekti viskoznosti na zavisnost k(w) i na skalu
maksimuma nestabilnosti. Pokazuje se da su ovi efekti znatno vedi za talasnu modu.

1. INTRODUCTION

In an_earlier paper (Angelov, 1988) the-thermal instability of a-viscous-
medium without any gravitation and magnetic field was considered. For small
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perturbations of the type exp(wi + ik . 7) and for V x V = 0 (a weak viscosity
influence on the length A) the following characteristic equation was obtained

2 - A+ Biz—D; =0 (1)
where
N . L3 _‘f.)
r= i A== (Zafrp): ©
For purely real solutions of (1) — the condensation instability mode (i = 1),
_ k &k  kr 1 k ﬁ)
B1-1+E(E+k).D1—T(A+kF+k (3a)

and for Re(z) of its conjugate-complex solutions ~ the wave instability mode
{i = 2),

I
Ba = &{AI + Bl}: Dy = E{ABI -_ Dl] (3b)
In {2), (3a), (3b) the wavenumbers are introduced
b= KCp, kp= K2Co ko= 52, by = —85 (4)
T Kk 4
T -+ 3™

with K = (v—1)u/Rc, where R, p, ¢, T are the gas constant, the mean molecular
weight, the density and the temperature, respectively, ¥ = cp/ey, ¢ = (yp/2)*/?
— the adiabatic speed of sound, x and 5;, 72 — thermal conduction coefficient
and both viscosity coefficients; £,, L are the partial derivatives of the function
L(2, Ty in g and T. The latter function is defined as energy losses minus energy
gains, per gram of materjal per second. All quantities from (4) are calculated
in the basic state of the medium which is homogeneous, being in mechanical
and thermal equilibrium.

For k£ € Re the medium is unstable in the domain D; > 0, whereas the
perturbations-with k > k., are stabilized by the dissipation processes. If k,
and kr are small,

T

v =1

er = {ka(ke = br)}, Rop = { ~ke——T— (5)
14+ —— =
=1 k,

for the condensation and wave modes, respectively.

In this paper a more detailed analysis of the viscous dissipation influence
on the dependence k(w) within an unstable region (Sect. 2), as well as on the
maximum instability {Sect. 3}, is presented.
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2. CHARACTER OF PERTURBATION STABILIZATION

Let the dependence k{w) in a given medium be Cﬂl‘lﬁlliETEti By introducing
dimensionless quantities

w= (k) &= kr/ko, Be = kofke, B = kofky, (6)
the characteristic equation (1) 5;5 transformed into the form
a;u” + byu® + cpu + d; = 0. (7)
The coefficients in {7) are
ay =0, by = B /7,

ci ziﬁn + -ﬂr}zz + {1 + “ﬁr }I + [:ﬂ - I}IIFTI
dy =z°(z + a) (8a),

for the condensation mode (i = 1), where = w/ck, and
a2 =(Bx + By)BeBu,
by =2((Be +B.) + BuBYE + 1;—1,3,; + [+ (28, + BB,

cr =8(f + )6 + 2+ (28, + 30, + o, + =12,

dy =26(2£ + 2)?, (8b)

for the wave mode (i = 2), where § = Re{w/ck,). Note that quadratic part of
(7) for a non-viscous medium (8, = 0) was analysed by Field {1965).

For a dissipationless medium (8: = 8, = 0) the solution of (7) is u = —d;/¢;
and 0 < & < oo for

—

D<zr<

o _ (1-1)a~1 1
(< 1), e 0<EL 5 (urf: ——_*1) (9)

for i =1, i = 2, respectively. In a dissipative medium (3., 8, # 0) the unstable
wavenumbers domain is 0 < k < k,; where

i
1 - ﬁ 2 =
kep =k, ( 3 ) , kea =k, TT 1 (10)
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Fig. 1 = Viskosaity influence on unstable domain of condensation mode
(y=5/3, a=1/2): 5, =0,1 for each §. = 0.01,0.1,1.

The expressions yielding k.; are obtained from (7) for z =0, i.e. £ =0 or
directly from (5) with the aid of (6). The value k # 0 for the marginal instabil-
ity of the wave mode is equal to k. » from (10) only in the linear approximation
of the real root «!/? of the equation

uguz + bgﬂ + Ca = {],
when 8, and 8, are small quantities. The roots u!/%(z) and u}/?*(§) of equ. (7),

which is quadratic in u for the condensation mode and cubic in « for the wave
mode, are presented in Figs. 1-2 for given +,«, 8 and S..

Pa=0.01 Fu=0.1 fa=1

T |
e T T NG q

3
\L a.'nu.‘-,1

L e

k/E,

Fig. 2 - Viscosty influence on unstable wave-mode domain
(y=5/3, a=-2): 8, =0,001 for each g, =0.01,0.1,1.

30



T. Angelov: Influence of viscosity on the thermal instability

3. SCALE OF THE MAXIMUM INSTABILITY

It is seen from Figs. 1-2 that a maximum of instability is present for
z = Zm, 1.&. £ = &,. These values, for B.,8. # 0, are obtained from the
condition that equ. (7) has one double root. For the condensation mode, =z,
and um,,; = u(zy,) are determined from

cf - 4b1tf1 = ()
201Um 1+ ¢ =10 (11}
For the wave mode £, and 2 = u{f,,) are solutions of the system
4p° +27¢° =0, Uma—(q/2)? +b2/3az =10

(p and g are coefficients of the normal form of the cubic (7)), i.e. they are
obtainable from

b;ugﬂ + 2eattm 3 + 3ds =0
3azul, 5 + Wbaum 2+ ¢z = 0. (12)

By solving (11), i.e. (12), with coefficients dependent of 2., i.e. &, one
obtains the equations

Piym) = Y > Eije(r,a,B)Biyk, =0, (13)
k=0 §

Qi(tm) =YY Fijelv,e, )8k ; =0, (14)
k=0 j -

for unkown quantities y, and um ;, where (i,n,y,) is (1,4, z,,) for the conden-
sation mode, i.e. (2,6,£,) for the wave mode. The coefficients in (13) and
{14} depend on the medium parameters {v,a,8. and 8 = 8,/8.) only, but it
is unnecessary to give their expressions here (some of them vanish, but some
of them are very clumsy). In any case the form of the coefficients (as polyno-
mials in §.) makes possible examinations of the solution behaviour within the
domain of small 8, (large u,, ), which is the most frequent case in praxis. Let
the approximative dependence in this domain be

Um,i = gilfe ", i=1,2 (15)
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Fig. 3a - Normalized w values at maximum instability for the
condensaton mode (y = 5/3 ,a = 1/2), from (13), for § = 0,10, 100.
Asymtotic z,, value from (9).
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Fig. 3b — Normalized k values at maximum instability for the
condensation mode (7 = 5/3,a = 1/2), from (14), for # =0, 10, 100.
Asymtotic dependence from (19).

where g; and L are real, positive, constants (for §. <1, ¥ strives to the
limiting values zp, i.e. £, from (9) for short wavelengths). The general term
in {14) is then F;;zg*3%, with s; = j — ki;, and the dominant terms of the
polynomial Q:(5,), B<-1, are those with s; = 8; i,. For s; = 0, the dominant
part of (14) is-

Fioo+9iFi12=0 (16)
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where

1—a\ 14 (y~1)e 1
Fipo=— , Fip= = 17a
1,00 ( ” ) p" Lz = 2 (17a)

1 —a jI,fl~—~';|-';Ix:|t-~—I v -1
Fapo= - y Frpp=——+0 17h
2,00 ( " ) " 2,12 » (175)

for the condensation mode and wave mode, respectively, and

Iizjfk*:rln, i=1,2 (18)

for both of them. From the solution of (15) with the aid of (18) one obtains
ki = k,GiB7M4, i=1,2 (19)

where G; = gi/*. From (16) and (17a), (17b),

- 112
Grlr,0) = (17“) {1+ (7= Da}/ (20a)
114
— ai — vl —
Galy, e, 8) = (1 ” ) -y’ : (206)

7(1:l+ﬁ)
Y

The effect of viscosity on normalized w and & is presented in Figs. 3a,b
and in 4a,b for the condensation and wave mode, respectively. It is seen that
at the maximum instability both w and k decrease when the total dissipation
increases (in accordance with the way of reduction of unstable domains in
Figs. 1-2). Depending on 8. {3 is a free parameter), both wn,; and knm;
are variable within the domain 8. < B.:, where 8, is determined by the
condition kn; =0 ie. 3; Fjofi ; = 0 from (14). For the condensation mode,
Be1=1l4(y—-Delfve” > 1 (for vy =5/3, a = 1/2, fc1 = 3.2) e, B =1
is the real limitation for the thermal conductivity influence. An analogous
consideration for the wave mode yields

Brz = (21)

(for y=5/3, a==2: .. =0.05/8).
By using (10) and (20a), (20b), ky, ; from (19) is

a 1f4
km.1={<l_—“) +al"T“} (koke )2, (22a)

7
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| —a 1j2
km,g = ("'T—) (koke2)' /2. (22b)
For 8 « 1, G; and k., ; for the wave mode can be written as

1
4
where G} is G, from (20b) for # = 0 and kI, ; is km2 from (22b) with k.
from (10}, for § = 0. In any case for the purpose of approximative calculating

it remains ki & (kok;)'/?, for both instability modes (Field, 1965) — the
correction applied to k., with respect to a non-viscous medium, is small.

G2 = G3f(8), kma =k f(B); F(B)m1- -T—}iﬁ, (23)

saymptotic -}
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Fig. 4a — Normalized w values at maximum instability for the wave mode
(¥ = 5/3,0 = =2), from (13}, for § =10,1, 10,
Asymtotic value from (9).
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Fig. 4b - Normalized £ values at maximum instability for the wave mode
{v=5/3, 0 = =2), from (14}, for 8 =10, 1, 10.
Asymtotic dependences from (19).

4. CONCLUSION

The subject of the present paper is a small viscous dissipation influence
on the thermal instability of 2 medium. In such a model a redistribution of
perturbations due to viscosity takes place, but the marginal instability of the
condensation mode is unaffected (the limiting wavelength is determined by
thermal conduction effect only). The influence of the viscous dissipation on
the wave mode is stronger — it reduces the marginal instability domain and
stabilizes the perturbations completely already at 8, = [(1 - ¥)a = 1]/ve? (in
the numerical example treated here: vy = 5/3,a = -2, the wave instability
mode exists solely for 3, < 0.05). In the case of small thermal conductivity
influences (B, < 0.01) the maximum-instability scale of the condensation mode
1s practically unaffected for g, < f,, but becomes significantly reduced for
the wave mode (up to 50% compared to a non-viscous medium). The relative
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deviation of the asymtotic solution for &, from the exact one within the domain
Be < 0.01,8, < By, is less than 10% for the condensation mode and less than
30% in the wave-mode case.

This work is part of the research project supported by the Fund for
Scientific Research of the S.R. Serbia.
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