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Preface

Traveller, there are no paths.
Paths are made by walking.
Antonio Machado (1875–1939)

The present book is devoted to the mathematical analysis of evolution, information
and complexity. The time evolution of systems or processes is a central question
in science and covers a broad range of problems including diffusion processes,
neural networks, quantum theory and cosmology. Analysis of information is need-
ed in data compression, channel encoding, cryptography and often in the analysis
of information processing in the computer or in the brain. Finally, the analysis of
complexity is important for computer science, in particular algorithms, but more
generally also for the investigation of complex and chaotic systems.

Since 2004 the University of Ulm has operated a graduate school dedicated to
the field of Mathematical Analysis of Evolution, Information and Complexity. This
program brings together scientists from the disciplines of mathematics, electri-
cal engineering, computer science and physics. Our rather unique school address-
es topics that need a unified and highly interdisciplinary approach. The common
thread of these problems is mathematical analysis demonstrating once more the
newly emerging notion of mathematics as technology.

Our book highlights some of the scientific achievements of our school and there-
fore bears its name Mathematical Analysis of Evolution, Information and Complexity.
In order to introduce the reader to the subject we give elementary and thus accessi-
ble introductions to timely themes taken from different parts of science and tech-
nology such as information theory, neuro-informatics and mathematical physics.

Each article in the book was prepared by a team in which at least two differ-
ent disciplines were represented. In this way mathematicians have collaborated on
a chapter with physicists, or physicists have worked with electrical engineers and
so on. Moreover, we have installed the rule that with every senior scientist there
would be a graduate student working on this article. We hope that this rule has led
to easily understandable contributions.

Mathematical Analysis of Evolution, Information and Complexity does not only rep-
resent the program of our school and has become the title of the book but has
also served as the guiding principle for its organization. Indeed, we have chosen
the three pillars “evolution”, “information” and “complexity” of the school as titles
for the three parts of the book. For each one we have identified one or two major
themes as shown in Table 0.1.
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Table 0.1 Organization of the book outlining its three pillars

with their themes. The number above each topic indicates the

chapter.

Evolution Information Complexity

Spectral analysis Networks Pattern
recognition

Signal
analysis

Algorithms

1
Weyl’s law

4
biological neural
networks

7
speech
recognition:
remote access

12
Shannon’s
theorem

15
Shor algorithm

2
differential
equations

5
gene regulation

8
speech
recognition:
machine
learning

13
codes

16
quantum and
classical
algorithms

3
cosmology

6
quantum graphs

9
cluster analysis
in genomics

14
signal
processing in
the brain

17
sorting
algorithms

10
image analysis
in computer
science and
cosmology

11
data analysis
and learning

We have taken the liberty to assign each article to one of these themes. However,
in many instances the contributions could have also been attributed to another
theme. This feature is certainly a trade mark of an interdisciplinary article. These
articles form the individual chapters of the book.

The topics addressed in each pillar range from quantum physics via bio-
informatics to computer science and electrical engineering. The common element
linking all chapters is mathematical analysis. To quote Galileo Galilei:

“Egli [il libro che è l’universo] è scritto in lingua matematica.”

(“The book which is the universe is written in mathematical language.”)

In order to bring out most clearly the interconnections between the chapters of
the book, we now briefly summarize the essential ideas of each contribution. We
start with the pillar “evolution” consisting of the two themes of spectral analysis
and networks.

Weyl’s law describes the asymptotic distribution of the eigenvalues of the Lapla-
cian. It has played an important role in the development of quantum theory. Chap-
ter 1 gives a comprehensive summary of the history of Weyl’s law, its generalization
based on trace formulae, its application in quantum chaos, as well as a modern
proof. A review and comparison of different methods of solving systems of linear
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ordinary differential equations is the topic of Chapter 2. Applications and exten-
sions to partial differential equations such as the heat equation or the Schrödinger
equation are given. The theme on evolution concludes in Chapter 3 with an in-
troduction into general relativity with an alternative approach based on the scalar-
tensor theory and the Higgs potential.

The theme of evolution in networks addresses biological neural networks, gene
regulation and quantum graphs. For example, Chapter 4 provides an overview over
models describing biological and computational neural networks. Here the central
topic is the specific model developed in Ulm using neural populations as asso-
ciative memories. Another example of a network of signalling compounds with-
in the kernel of a cell is summarized in Chapter 5. The mathematical model of
Boolean networks describes the gene regulation in living organisms. Quantum
graphs, the topic of Chapter 6, represent yet another network. They are a toy model
for a Schrödinger operator on a thin, quasi-one-dimensional network. The article
studies the symmetries that emerge in such quantum networks.

A major portion of the book is dedicated to the mathematical analysis of infor-
mation. Here the topics range from speech recognition via cluster analysis to signal
processing in the brain. Usually speech recognition is implemented on powerful
computers. In Chapter 7 tools are developed which allow remote access, for ex-
ample, using cellular phones. Here, the Ulm technology of associative memories
plays an important role. Spoken language dialogue systems are interactive, voice-
based interfaces between humans and computers. They allow humans to carry out
tasks of diverse complexity such as the reservation of tickets or the performance
of bank transactions. Chapter 8 describes different appproaches for the categoriza-
tion of caller utterances in the framescope of a technical support dialog system,
with special focus on categorizers using small amounts of labeled examples. Func-
tional genomics aim to provide links between genomic information and biological
functions. One example is the connection between gene patterns and tumor status.
Cluster analysis generates a structure of data solely exploring distances or similar-
ities. A special feature of Chapter 9 is the demonstration that already sparse ad-
ditional information leads to stable structures which are less susceptible to minor
changes. Image analysis tries to detect complex structures in high-dimensional
data. Chapter 10 compares and contrasts approaches developed in computer vi-
sion and cosmology. We conclude the theme of pattern recognition by discussing
in Chapter 11 the fundamental method of classification in data analysis. Unfortu-
nately, the true concept of classification is often not known. A method of combining
several such concepts, called boosting, which leads to highly accurate classifiers, is
described here.

Another important theme in the part on information is represented by signal
analysis covering the topics of Shannon’s sampling theorem, codes and signal pro-
cessing in the brain. The sampling theorem shows how a signal can be reproduced
by a finite number of measurements. Chapter 12 gives a historical overview and
provides two proofs. Coding theory tells us how, by adding redundancy and cor-
recting errors, information can be transmitted accurately. An overview of codes
with emphasis on algebraic geometric codes is given in Chapter 13. This section
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concludes with Chapter 14 describing a model of how the human cortex process-
es its sensor signals. Mathematically this model consists of a system of coupled
nonlinear ordinary differential equations whose long time behavior is discussed.

The last part addresses the topic of complexity focusing on classical as well as
quantum algorithms. A central task in computer science is to find efficient algo-
rithms. Chapter 15 lays the foundation of this chapter by explaining the famous
Shor algorithm to factor numbers from a physics point of view. In the same vein
Chapter 16 describes the state of the art of two famous problems, integer factoriza-
tion and the graph isomorphism problem. It points out similarities and differences
between these two problems when approached by classical or quantum computing.
The QuickSort algorithm is a most efficient sorting method. It relies on dividing
the sequence into parts of smaller lengths. In Chapter 17 the complexity of the
method is studied with a special emphasis on varying the random source which
governs the division.

We would like to take the opportunity to thank the authors for their contribu-
tions, enthusiasm and reliability in producing this volume. Moreover, we are most
grateful to Robin Nittka for his competent help in putting this book together. Final-
ly, we appreciate the support of the Ministerium für Wissenschaft, Forschung und
Kunst, Baden-Württemberg in the framework of the Promotionskolleg Mathemati-
cal Analysis of Evolution, Information and Complexity.

Ulm, August 2008 Wolfgang Arendt
Wolfgang Schleich
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Prologue

Milestones of Evolution, Information and Complexity
Wolfgang Arendt, Delio Mugnolo and Wolfgang Schleich

The modern world, our world of triumphant rationality,
began on November 10, 1619, with a revelation and
a nightmare. On that day, in a room in the small Bavarian
village of Ulm, René Descartes, a Frenchman, twenty-three
years old, crawled into a wall stove and, when he was
well-warmed, had a vision. It was not a vision of God, or of
the mother of God, or of the celestial chariots, or of the New
Jerusalem. It was a vision of the unification of all science.

Philip J. Davis and Reuben Hersh, Descartes’ Dream,
Penguin, London 1986

René Descartes laid the foundation of modern science not only by his natural phi-
losophy, but also by his mathematical contributions. For example, he addressed
the tangent problem, which was only solved in its entirety 50 years later by Leib-
niz and Newton. For this purpose both of them invented mathematical calculus.
In 1637 Descartes in his essay Discours de la méthode brought to light the physics
of diffraction. He was the first to explain the most beautiful spectral phenomenon,
the rainbow.

Δ Δ Δ

Since then, spectral analysis has come a long way. It has developed into one of
the most fruitful concepts in natural sciences and technology. The overtones of
an instrument, such as a tambourine or an organ pipe, and even the bodywork
of a Mercedes limousine, exhibit a spectrum. Also in the microscopic world the
concept of spectrum is useful. For example, the energy levels of the electron in
a hydrogen atom form a spectrum. This fact turned out to be a crucial stepping
stone for the development of quantum theory (Chapter 1).

Cosmic microwave background radiation was discovered in 1965 by Arno Pen-
zias and Robert Wilson. In accordance with the Big Bang Theory, it fills the whole
universe and is currently considered to be the major evidence for an expanding uni-
verse. For this discovery, Penzias and Wilson received the Nobel Prize in Physics
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in 1978 (Chapter 10). Such a microwave radiation possesses a spectrum which is
characteristic of a so-called black body. Black bodies have been first considered by
Gustav Kirchhoff in 1859 when he laid the foundation of the theory of thermal radi-
ation. Fourteen years earlier he had already introduced two famous laws describing
the time evolution of voltages and currents in electric circuits. In this way Kirchhoff
single-handedly established modern electrical engineering.

Black bodies have also played a central role in the creation of quantum mechan-
ics. Indeed, motivated by the problem of designing efficient lightbulbs, Max Planck
in 1900 discovered that the energy of oscillators is quantized. Building on Planck’s
insights, Albert Einstein, born in Ulm in 1879, could explain the photoelectric ef-
fect. This explanation together with his discovery of the momentum of the light
quantum opened the door to the development of quantum mechanics. For these
achievements he was awarded the Nobel Prize in 1921. Moreover, his groundbreak-
ing work on relativity, deeply rooted in Riemann’s geometric theory, completely
changed our understanding of the time evolution of the universe and marked the
birth of modern cosmology (Chapter 3).

Δ Δ Δ

To a large degree today’s electrical engineering lives off the spectral analysis of sig-
nals, for example, making cell phones work. It was Claude Shannon who in 1949
discovered that a finite number of samples suffices to capture a wave (Chapter 12).
Here he could build on the concept of the Fourier transform, which was introduced
by Joseph Fourier in 1822 in his Théorie analytique de la chaleur. Shannon’s sam-
pling theorem provides the basis for the technology of digitalising and eventually
perfectly reconstructing a signal. Moreover, in the very same paper entitled Com-
munication theory of secrecy systems, Shannon laid the mathematical foundation of
cryptography.

Still, signal processing faces a major theoretical limitation: The shorter a pulse in
time, the less well defined the frequency. Bounds of this kind are intimately related
to Shannon’s investigations collected in his seminal paper A mathematical theory of
communication from 1948. In this article he introduced the concept of information
entropy, a measure of the information contained in a random message. Today this
article is commonly considered to have initiated information theory.

Δ Δ Δ

Also at the end of the 1940s, Donald Hebb was completing his most influential
study, The organization of behavior. Therein he proposed a quantitative approach to
the process of learning, thus giving birth to modern neuropsychology. Hebb was
the first to analytically investigate the dual nature of the brain – biological tissue as
well as source of perception – combining traditional behavioral studies and mod-
ern electrophysiology. His theory of learning suggested that synaptic connections
are strengthened or weakened in order to achieve more efficient apprehension.
Hebb’s work introduced the notion of synaptic plasticity and paved the road for the
interpretation of the brain as an ever-changing computing system.
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Shortly before, in 1943, the first artificial neural networks had been introduced by
Warren McCulloch and Walter Pitts in their article entitled A logical calculus of the
ideas immanent in nervous activity. It soon became clear that boolean logic could be
implemented in these theoretical devices, thereby enabling them to perform com-
plex computations. Unfortunately, the early neural networks lacked any form of
adaptation or learning features. It was Hebb’s research that filled this gap. Even
today Hebb’s laws in their mathematical formulation are among the favorite theo-
retical tools when setting up and tuning an artificial neural network (Chapters 4, 7
and 14). They allow one to translate learning phenomena into the time evolution
of a system of differential or difference equations (Chapter 2).

Δ Δ Δ

The spectrum of a wave can be viewed as a band of eigenfrequencies determined by
the Helmholtz equation. This distribution of eigenvalues provides us with a deeper
insight into the behaviour of light and matter and is described by Weyl’s law, proven
by Hermann Weyl in 1911. Surprisingly, there is a close analogue in number theory.
The prime numbers are intimately related to Riemann’s �-function whose non-
trivial zeros look very much like a spectrum encountered in atomic physics. In
this context Marcus de Sautoy talks about the music of primes, which is the title of
his book on the Riemann �-function. Much is known about the distribution of the
primes but the related Riemann’s hypothesis on the zeros of the �-function is still
a mystery. First formulated by Bernhard Riemann in 1859, it is probably the biggest
open problem in mathematics today – in fact, it has been dubbed a Millennium
Problem, whose solution would be rewarded with a $1 000 000 prize by the Clay
Mathematics Institute (Chapter 1).

Prime numbers and their distribution have fascinated mathematicians for gener-
ations. Today they serve us as a mathematical technology in cryptography. A mod-
ern life necessity is to transmit secret data, for example, for online banking purpos-
es. It is counterintuitive that encryption can be made safer and more efficient by
the use of public keys. In fact, cryptographic keys had to be kept strictly secret un-
til the 1970s. However, even codes based on secret keys are not secure. The most
prominent example is the Enigma code used by the Germany military in World
War II and broken by Alan Turing in 1943. Public keys constituted a breakthrough
and a radical change of the paradigm of secrecy. They were first proposed in 1976
in a famous paper by Whitfield Diffie and Martin Hellman entitled New directions
in cryptography. In Diffie’s and Hellman’s words, “each user of the network can,
therefore, place his enciphering key in a public directory. This enables any user of
the system to send a message to any other user in such a way that only the intend-
ed receiver is able to decipher it.” The actual realization of their project is due to
Ronald Rivest, Adi Shamir, and Leonard Adleman, who in 1978 developed the RSA
cryptographic system. This work won them the Turing Award in 2002. It is surpris-
ing that the long awaited solution of the most famous and originally thought to
be useless problem, the proof of Fermat’s Last Theorem by Andrew Wiles in the
1990s, also provided us with new tools for cryptography such as elliptic curves. In
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fact, their use for enciphering and deciphering was already implicitly contained in
the work of Diffie and Hellman (Chapter 16).

Efficient cryptography is just one problem of modern signal theory. Another one
is to find a language which permits error-free transmission of information in a pro-
cess called coding/encoding. And it is again number theory, but also Fourier anal-
ysis, that gives us the right tools to perform this task with enormous efficiency
(Chapter 13). Again, Shannon’s sampling theorem plays a decisive role in this con-
text.

Δ Δ Δ

Quantum theory, even though formulated in a quite abstract mathematical lan-
guage, has reached a state of broad technological applications. In 1965, Richard
Feynman received the Nobel Prize in Physics for his work on quantum electrody-
namics. Seventeen years later he was one of the first to recognize the potential of
a quantum computer. In all digital computers, starting from the Zuse Z3 and the
ENIAC of the early 1940s to modern miniaturised devices, the logic is based on
memory devices which store either a 0 or a 1, forming a bit of information. In
a quantum computer this on/off dichotomy is replaced by the possibility of a quan-
tum bit being in a superposition state. Abecedarian forms of such a quantum device
exist to date in research labs only. Nevertheless, they have already been studied ex-
tensively at a theoretical level.

Once available, a quantum computer would substantially simplify large data
analysis. Applications known today include, but are not limited to, the determi-
nation of shortest paths in networks or even the factorization of large numbers,
for instance, by means of the algorithm discovered by Peter Shor in 1994 (Chap-
ter 15). For this work he was awarded the Gödel Prize in 1999. It is remarkable that
Shor’s algorithm, implemented on a reasonably large quantum computer, could
easily break common cryptographic techniques, including both RSA and methods
based on elliptic curves. Possible remedies are random number generators based
on Riemann’s �-function. A fascinating relation between elliptic curves and the �-
function is suggested by the Birch and Swinnerton–Dyer conjecture, formulated
in the 1960s. It is still open and represents another of the Millennium Problems
named by the Clay Institute.

However, not even quantum computers have an infinite potential. They may be
exponentially faster when confronted with certain tasks, but they are not inherently
more powerful than today’s computers. Whenever we have to solve a problem with
the help of a machine, even an ideal one such as a universal Turing machine, we have
to use an algorithm which should be optimized. To quantify the intrinsic efficiency
of algorithms to be implemented on computers is the goal of algorithmic complexity
theory, founded by Juris Hartmanis and Richard Stearns in 1965. Their paper On
the computational complexity of algorithms earned them the Turing Award in 1993.

Δ Δ Δ

Obviously, to determine the explicit solution of a problem in a short time, such
as factoring of a large number, or to check whether given data indeed solve the
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problem, for example whether the product of a given set of primes yields the orig-
inal large number, represent two different tasks. The problems which are solvable
by a fast algorithm constitute the class P, whereas NP consists of those problems
which allow for a fast algorithm that is able to check whether a given possible
answer is indeed a solution of the problem. Here an algorithm is called fast if it can
be performed in a time which grows at most polynomially with the input size.

While algorithms for finding prime numbers were already known to the ancient
Greek, checking whether a given number is actually a prime seems to be demand-
ing. Nevertheless, it is only a P-problem as shown by Manindra Agrawal in 2002
after his post-doc stay at the University of Ulm. This stunning discovery won him
the Clay Research Award in the same year and the Gödel Prize (together with his
coauthors) in 2006. Another example of the P vs. NP question is the prime fac-
torization of large numbers (Chapters 15 and 16). Today most of the cryptography
devices rely upon the belief that factorization into primes, which is clearly an NP
problem, is not a P problem. Still, all attempts to prove this hypothesis have re-
mained unsuccessful. In 1956, Gödel conjectured in a letter to von Neumann that,
in general, it should be possible to replace trial and error approaches by efficient
algorithms – as for example done for various problems in number theory – thus
implicitly suggesting that P = NP. Still, more than fifty years later we do not yet
know the answer to the P vs. NP problem.

While it is clear that each P problem is also NP, most computer scientists firm-
ly believe that the converse is not true, that is P =/ NP. This question represents
a major research field of theoretical computer science and is also one of the seven
Millennium Problems of the Clay Institute.

Δ Δ Δ

Consider the task of coloring a geographical map under the constraint that no two
adjacent countries can have the same color. To decide for a given map whether it is
possible to complete this task using only three different colors is at least as difficult
as any NP problem, whereas it is a P problem to find a four-coloring of the map.
The latter task is closely related to the four-color-theorem, stating that each map can
in fact be colored with a maximum of four colors. This theorem was first proposed
as a conjecture in 1852 and proven only in 1976 by Kenneth Appel and Wolfgang
Haken. Their proof is the first one ever to rely in an essential way upon computer
aid, rather than human thought, and has therefore started an everlasting debate in
the philosophy of science. The four-color-theorem represents the zenith of the in-
terplay between mathematics, logic and theoretical computer science. In contrast,
Kurt Gödel’s incompleteness theorem from 1931 was this interplay’s nadir. It was
a great enlightment to the scientific community to learn from Gödel that no auto-
matic, computer-based mathematics will ever be possible.

Coloring problems belong to graph theory, a field studying properties of discrete
structures. Also based on graph theoretical objects is a recent proof of the long
standing Horn conjecture on the distribution of eigenvalues of a sum of matrices.
This question was addressed by Weyl in 1912 but was not proven until the 1990s.
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One of the key elements of the proof are surprising connections between ideas
from discrete and continuous mathematics as well as from quantum mechanics.
For his contributions to the solution of the Horn conjecture, the Clay Research
Award was assigned to Terence Tao in 2003. He was also awarded the Fields Medal
in 2006 for his results in the arithmetic of prime numbers. It is remarkable that the
once abstract graph theory has also found useful applications in algorithmic com-
puter science, especially in data clustering (Chapters 8 and 9), sequencing (Chap-
ter 5), classification (Chapter 11), and sorting (Chapter 17).

Δ Δ Δ

In spite of its limitations in large data analysis, the most efficient system for infor-
mation processing and computing is still a natural one – the brain. Hermann von
Helmholtz was the first to suggest and eventually prove in 1852 that thoughts – or
rather neural transmissions – have a finite speed, in fact as slow as 30 m/s. In the
year of von Helmholtz’s discovery Santiago Ramón y Cajal, the father of modern
neurobiology, was born. To him we owe the insight that the nervous system is a fine
network consisting of neurons which communicate by means of synapses. For this
work, based on a biochemical technique developed by Camillo Golgi, both Golgi
and Ramón y Cajal were awarded the Nobel Prize in Medicine in 1906. In 1952
Alan Hodgkin and Andrew Huxley proposed a mathematical model for the propa-
gation of electrical pulses inside individual neurons. They were able to show that
the neural transmission happens by means of an ionic current, which can also be
modeled as a diffusion process and propagates as a wave. Their model won them
the Nobel Prize in Medicine in 1963 (Chapter 4).

The theory of diffusion was originated in 1822 by Fourier in his studies on heat
conduction. Eventually, thirty-three years later Adolf Fick formulated the law of dif-
fusion as a partial differential equation involving time as a variable. Such laws are
called evolution equations. Already Fick recognized that his model was not limited
to thermodynamics but had many more fields of application ranging from chem-
istry to finance. In fact, Fick’s law also agrees up to nonlinear correction terms
with Hodgkin’s and Huxley’s differential equations. Moreover, the signalling across
synapses is a chemical phenomenon that is partially based on diffusion. Further
Nobel Prizes in Medicine have been awarded for related discoveries in 1936, 1963,
and 1970, in a crescendo that was made possible by the development of electron mi-
croscopy. A hundred years after Ramón y Cajal, diffusion processes still belong to
the core of computational neuroscience – in a braid of chance, linear determinism,
and chaos.

Δ Δ Δ

In 1887, Henri Poincaré won a contest sponsored by the King of Sweden asking
for the solution of the famous three-body problem in celestial mechanics. In fact,
Poincaré did not present the solution, but rather indicated a major problem in the
mainstream approach to celestial mechanics itself. He pointed out that even a per-
fect deterministic theory would not yield a useful result, since usually the initial
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state of a system is not known with perfect accuracy. In 1908 he founded mod-
ern chaos theory in his book Science et méthode by suggesting that “it may happen
that small differences in the initial conditions produce very great ones in the fi-
nal phenomena”. Probably Albert Einstein was the first to come into touch with
the question of whether chaos plays a role in the realm of quantum mechanics, in
1917. However, a systematic approach towards the chaotic behavior in atomic and
subatomic systems was only initiated by Eugene Wigner in 1951. A striking connec-
tion between the eigenvalues of the Schrödinger operator and classical dynamics
had been observed by Martin Gutzwiller in 1971. Nowadays, a promising develop-
ment of the study of quantum chaos rests on simplified one-dimensional models
where the familiar evolution equations of quantum mechanics and Kirchhoff’s cir-
cuit laws are united to describe the time evolution of quantum graphs (Chapter 6).

Δ Δ Δ

What about the realization of Descartes’ vision of unification of all sciences, al-
most four hundred years after his nightmare and his revelation? Mathematics has
become the common language of all natural sciences. Still, abstract mathematics
and applied sciences have attracted and repelled each other many times over the
last centuries, following the alternation of rushing theoretical developments and
real-world applications. May this book contribute to this everlasting interplay.
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Weyl’s Law: Spectral Properties of the Laplacian

in Mathematics and Physics
Wolfgang Arendt, Robin Nittka, Wolfgang Peter,1) Frank Steiner

1.1

Introduction

Weyl’s law is in its simplest version a statement on the asymptotic growth of the
eigenvalues of the Laplacian on bounded domains with Dirichlet and Neumann
boundary conditions. In the typical applications in physics one deals either with
the Helmholtz wave equation describing the vibrations of a string, a membrane
(drum), a mass of air in a concert hall, the heat radiation from a body in ther-
mal equilibrium, the fluctuations of the gravitational field in cosmology, or the
Schrödinger equation of a quantum system which may be a simple quantum bil-
liard, an atom, a molecule or a compound nucleus. While Weyl’s seminal work
was provoked by the famous black body radiation problem, i.e. an electromagnetic
cavity problem, in particular by a conjecture put forward independently by Som-
merfeld and Lorentz in 1910, Weyl’s law has its roots in music and, respectively,
acoustics. Already in 1877, Lord Rayleigh had, in his famous book, “The Theory of
Sound” treated the overtones of a violin or piano string and the natural notes of an
organ pipe or the air contained within a room. For a room of cubical shape he de-
rived the correct asymptotic behavior for the overtones. The trick used by Rayleigh
to count the vibrational modes was to reduce the problem to a three-dimensional
lattice-point problem from which he could derive that the number of overtones with
frequency between ν and ν + dν grows at high frequencies, ν → ∞, asymptotically
as V ·ν3 (Weyl’s law!), where V is the volume of the room or analogously of an organ
pipe. In 1900, Rayleigh realized that the same formula can be applied to a physical-
ly completely different, but mathematically equivalent problem: the heat radiation
from a body in thermal equilibrium with radiation, the importance of which had
been pointed out already in 1859 by Kirchhoff. The amount of energy emitted by
a body is determined by the high-frequency spectrum of standing electromagnetic
waves and that spectrum should be essentially the same as for the high overtones
of an organ pipe, say.

1) Corresponding author.
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In the crucial black body radiation experiments carried out in the 1890s, which
led Planck, in 1900, to the famous radiation law named after him and to the dis-
covery of quantum theory, one measures the energy density emitted rather than
the energy itself, i.e. the energy divided by the volume V. Thus it follows from
Rayleigh’s asymptotic result V · ν3, derived for a cubical geometry, that the volume
factor is canceled if one considers the energy density, in accordance with the ex-
pectations using physical arguments and, very importantly, in complete agreement
with the experimental findings. It was realized, however, and emphasized by Som-
merfeld and Lorentz in 1910 that there arises the mathematical problem to prove that
the number of sufficiently high overtones which lie between ν and ν + dν is inde-
pendent of the shape of the enclosure and is simply proportional to its volume. It was
a great achievement when Weyl proved in 1911 that, by applying the Fredholm–
Hilbert theory of integral equations, the Sommerfeld–Lorentz conjecture holds!
From then on, Weyl himself and many other mathematicians and physicists have
studied and generalized Weyl’s law by deriving corrections or even complete ex-
pressions for the remainder term.

The Weyl asymptotics as discussed above in the three-dimensional case is par-
ticularly striking if considered as an inverse spectral problem, which became quite
popular after Kac’s talk in 1966 entitled “Can one hear the shape of a drum?”.

Subsequently, several partially affirmative answers to this question have been
given. But, on the other hand, a particularly striking counterexample by Gordon,
Webb and Wolpert from 1992 shows that not all geometric information about the
domain is contained in the spectrum.

This chapter is organized as follows. In Section 1.2 we give a historical account
of Weyl’s law. The following two chapters are devoted to Weyl’s law with remain-
der term and the statistical behavior of the latter using trace formulae. We discuss
the Laplacian on the torus in Section 1.3 and the Laplace–Beltrami operator on
Riemann surfaces in Section 1.4. Then two generalizations of Weyl’s law to Robin
boundary conditions and for unbounded quantum billiards are presented in Sec-
tion 1.5. In Section 1.6 we provide a self-contained proof of Weyl’s law for bounded
Euclidean domains and Dirichlet boundary conditions; the case Weyl himself treat-
ed in his first article on this topic. However, we follow a different, very fruitful, ap-
proach based on heat kernels. In Section 1.7 we give an account on what is known
today about Kac’s question. In particular we show under which precise regularity
assumptions one can hear whether a body is a ball.

1.2

A Brief History of Weyl’s Law

1.2.1

Weyl’s Seminal Work in 1911–1915

In February 1911, David Hilbert presented to a meeting of the Royal Academy of
Sciences of Göttingen a short note [1] written by Hermann Weyl. This note contains
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for the first time a rigorous proof of the asymptotic behavior of the eigenvalues λn

of the two-dimensional (scalar) Helmholtz wave equation

(Δ + λ) u(x) = 0 (x ∈ Ω) (1.1)

satisfying the Dirichlet boundary condition

u(x) = 0 (x ∈ ∂Ω) , (1.2)

where Ω ∈ R2 is an arbitrary bounded domain with area |Ω|, boundary ∂Ω, and

Δ =
∂2

∂x2
1

+
∂2

∂x2
2

denotes the Laplacian on Ω. The “membrane problem” (1.1, 1.2) has nontrivial
solutions u only for a discrete set of eigenvalues

{
λn
}
n∈N. The corresponding eigen-

functions {un}n∈N provide an orthonormal basis of L2(Ω), and we may enumerate
the eigenvalues in increasing order 0 < λ1 u λ2 u . . .

Note that the eigenvalues λn can have different physical interpretations. In the
case of a vibrating membrane with clamped edge, where u describes the transversal
vibrations of the membrane, one has λn = k2

n, where kn = (2π/c) νn is the wave num-
ber which is proportional to the eigenfrequency νn, i.e. to the pure tones which the
membrane is capable of producing. The constant c is the sound velocity depend-
ing on the physical properties of the membrane, i.e. on the mass density and the
tension under which the membrane is held. In the case of quantum mechanics,
where u is the wave function having the meaning of a probability amplitude, Equa-
tion (1.1) is the time independent Schrödinger equation of a freely moving particle
with mass m, and λn =

(
2m/�2

)
En is proportional to the quantal energy levels En.

(� denotes Planck’s constant.)
Since explicit analytical expressions for the eigenvalues are known only for a few

membranes with simple shape (for example equilateral triangles, rectangles, cir-
cles) and their numerical computation for large n is very difficult for general do-
mains, it is natural to study their asymptotic distribution as n → ∞. Applying the
Fredholm–Hilbert theory of linear integral equations, Weyl proved that

lim
n→∞

n
λn

=
|Ω|
4π

. (1.3)

Defining the counting function N(λ) := #
{
λn u λ

}
, (1.3) is equivalent to the asymp-

totic behavior

N(λ) =
|Ω|
4π

λ + o(λ) (λ → ∞) . (1.4)

These results are now called Weyl’s law. Shortly afterwards, Weyl submitted three
papers [2–4] which contain the details of his proof, a generalization of (1.4) to the
three-dimensional scalar wave equation (Ω ⊂ R3),

N(λ) =
|Ω|
6π2 λ3/2 + o(λ3/2) (λ → ∞) , (1.5)
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and the extension to the vector Helmholtz wave equation describing the vibrations
of the electric field E in an empty cavity Ω with perfectly reflecting walls ∂Ω. As
we shall discuss in more detail in Sections 1.2.3–1.2.8, it is exactly this electro-
dynamic cavity problem, studied extensively in those years by theoretical physi-
cists, which was one of the open problems that provoked Weyl to start his seminal
work.

The electromagnetic cavity problem requires of the electric field vector boundary
conditions which are more involved than the simple boundary condition (1.2). In
his first papers [2,4] on this problem, Weyl considered some nonphysical boundary
conditions; following a suggestion of Levi–Civita, in his subsequent paper [5] the
correct boundary conditions E ~ n = 0 and ∇E = 0 on ∂Ω were taken into account.
However, the Gauss law ∇E = 0 on Ω i.e. throughout the interior of the cavity, was
still discarded.

In his paper [5] Weyl went even one step further and conjectured the existence of
a second asymptotic term

N(λ) =
|Ω|
4π

λ ∓ |∂Ω|
4π

√
λ + o

(√
λ
)

(λ → ∞) (1.6)

for the two-dimensional problem (1.1), where |∂Ω| denotes the length of the cir-
cumference of the membrane and the (–) sign refers to the Dirichlet boundary
condition (1.2) and the (+) sign to the Neumann boundary condition (∂u/∂n = 0,
x ∈ ∂Ω), and

N(λ) =
|Ω|
6π2 λ3/2 ∓ |∂Ω|

16π
λ + o (λ) (λ → ∞) (1.7)

for the three-dimensional case, where |∂Ω| now denotes the surface area of ∂Ω. The
formulae (1.6) and (1.7) became known as Weyl’s conjecture. It was justified (under
certain conditions on Ω) by Ivrii [6] and Melrose [7] only in 1980.

In 1915, Weyl concluded his work on the asymptotic behavior of eigenvalues with
a study [8] of the elastic vibrations u of a homogeneous body with volume |Ω| which
are determined by the solutions of the differential equation

BΔu + A grad div u + λu = 0 . (1.8)

Here λ is related to the frequency ν by λ = (2πν)2, and A, B are positive constants
(related to the Lamé coefficients characterizing the elastomechanical properties of
the body). Imposing the boundary conditions∇u = 0 and n ~ u = 0 on the boundary
∂Ω of the body, Weyl proved for arbitrary shapes of the body

N(λ) =
|Ω|
6π2 Fλ3/2 + o

(
λ3/2
)

(λ → ∞) , (1.9)

where F is a function of the elastic constants, F = 2/c3
T + 1/c3

L with cT =
√

B the
transverse and cL =

√
A + B the longitudinal sound velocity.

The Weyl formulae (1.3)–(1.7) and (1.9) are very striking since they tell us that
the coefficient of the leading asymptotic term is determined only by the area, resp.,
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the volume of the domain and is independent of its shape. That is one can “hear”
the area of a drum (a membrane, held fixed along its boundary) or the volume of
a cavity following Marc Kac’s [9] acoustic rephrasing of the problem. We refer to
Sections 1.2.8, 1.3.6, 1.3.7 and 1.7 for more details on Kac’s problem.

In his papers [1, 2], Weyl mentions that his asymptotic formulae “provide in par-
ticular the solution to a problem the importance of which has recently been empha-
sized by Sommerfeld and Lorentz” (here and in the following citations, we employ
free translations from the original German).

1.2.2

The Conjecture of Sommerfeld (1910)

In September 1910, Arnold Sommerfeld delivered a talk at the “82. Naturforscher-
Versammlung” in Königsberg [10]. In this talk he studied the solution of the inho-
mogeneous differential equation in one, two and three dimensions

(ΔΩ + λ) υ = f (1.10)

describing forced vibrations. For this purpose, he introduced the resolvent kernel
(called the “Green function”)

GΩ(x, y; λ) :=
∑

m

um(x)um(y)
λ – λm

(
x, y ∈ Ω

)
, (1.11)

where um(x) are the eigenfunctions of (1.1). In addition to the Dirichlet boundary
condition (1.2), Sommerfeld also considered Neumann boundary conditions and,
“as in the theory of heat conduction”, Robin boundary conditions (h1u + h2 (∂u/∂n) =
0 on ∂Ω, h1, h2 constant or arbitrary functions on ∂Ω). A formal application
of the operator (ΔΩ + λ) to GΩ(x, y; λ) (acting on the first argument x) gives
(ΔΩ + λ) GΩ(x, y; λ) =

∑
m

um(x)um(y), and Sommerfeld remarks that this expression

is zero for x =/ y, but is infinite for x = y. He calls this expression “Zackenfunk-
tion” (“spike function”), the physical interpretation of it is a “unit source” (point
source). This is, of course, an early attempt to introduce the Dirac delta distribu-
tion, since the above expression is nothing other than the completeness relation of
the orthonormal eigenfunctions um ∈ L2(Ω)∑

m

um(x)um(y) = δ(x – y) . (1.12)

The solution of the inhomogeneous problem (1.10) then reads

υ(x) =
∫
Ω

GΩ(x, y; λ)f (y)dy . (1.13)

This result is quite remarkable since it allows one to reduce the problem (1.10)
of the forced vibrations on Ω to the problem (1.1) of the free vibrations on the
same domain Ω. “As some material is fully characterized by its spectral lines i.e.
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by its free vibrational frequencies, so is also the behavior of a domain for arbitrary
vibratory motions completely determined by the spectrum of its free vibrational
possibilities.” [10]

Sommerfeld [10] then discusses the convergence of the series (1.11): “In the
one-dimensional case the series (1.11) is absolutely convergent, in the two- and
three-dimensional case only conditionally convergent. In the first case the growth
of the denominator λ – λm is sufficient for convergence, since [. . . ] the denomina-
tor becomes infinite, as m2. In the latter cases, will λm,n, resp. λm,n,l, equally well
always approach infinity quadratically in m, n, resp. l, as I do not doubt (1). How-
ever, such a growth is not sufficient, as is well known, to render the double sum
over m, n resp., the triple sum over m, n, l, convergent. Rather, here the change
of sign of the nominator um,n(x)um,n(y) plays an essential role as it is guaranteed
in its natural ordering by the oscillatory character of the series.” In the above foot-
note (1) Sommerfeld adds: “The general and rigorous proof of this asymptotic be-
havior of the eigenvalues seems to me an important and grateful mathematical
problem.”

Here we have Sommerfeld’s conjecture which was one of the motives for the pio-
neering work of Weyl.

Sommerfeld considers, as an application of his method, the “problem of acous-
tics of rooms” (using Neumann boundary conditions on the walls), and he empha-
sizes that his “method is fundamentally different from the classical method intro-
duced in mathematical physics by Fourier”, whereby he refers to Fourier’s famous
work “Théorie [analytique] de la chaleur” from 1822.

Here two remarks are in order. i) In his conjecture, Sommerfeld takes for grant-
ed that the eigenvalues depend for example in the three-dimensional case on three
integers (“quantum numbers”) (m, n, l) i.e. λm,n,l, “which each run from 0 to ∞ and
have the meaning of the number of divisions of the domain by nodal surfaces with
respect to the three dimensions. (One may think of the known cases of the paral-
lelepiped or the sphere.)” Consequently, he considers the sum in Equation (1.11)
as a triple sum running over m, n, and l. It is known, however, that the situation
envisaged by Sommerfeld holds in general only for domains for which the wave
equation (1.1) is separable in coordinates

(
q1, q2, q3

)
i.e. where the particular solu-

tions can be written as a product um,n,l = um(q1)υn(q2)wl(q3). In the generic case,
however, i.e. for a cavity with arbitrary shape, the eigenvalues depend on a sin-
gle positive integer only, which just counts the eigenvalues in increasing order, as
assumed in (1.11). ii) Sommerfeld points out that the Green function (1.11) “degen-
erates (G = ∞)” at the points λ = λm “according to the general resonance principle,
except at special positions of the point source, if, for example, um(x) = 0, and there-
fore the critical eigenvibration is not excited.” In the physics literature, the Green
function (1.11) is considered as a distribution by adding a small positive imaginary
part (ε > 0) to λ ∈ R, i.e. one considers the kernel of the regularized resolvent
operator (λ + iε + Δ)–1. We refer also to Sections 1.3.4, 1.4 and 1.6 where expres-
sions similar to (1.11) are given for the Green’s function, for example for the heat
kernel.
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1.2.3

The Conjecture of Lorentz (1910)

At the end of October 1910, i.e. one month after Sommerfeld’s talk, Hendrik An-
toon Lorentz delivered six lectures at Göttingen under the title “Old and new prob-
lems of physics” published [11] from notes taken by Max Born and talked over with
Lorentz. See also the letter dated October 28, 1929, sent by Max Born to Einstein,
together with Born’s comment to this letter from 1969 [12].

Lorentz, who had already received in 1902 the second Nobel prize in physics,
was at that time probably the most famous living theoretical physicist. He was
invited to Göttingen by the Wolfskehl commission of the Göttingen Academy
which was to confer a prize for proving Fermat’s last theorem. As long as the
prize was not awarded, the proceeds from the principal should be used to invite
eminent scientists to lecture at Göttingen. (Paul Wolfskehl (1856–1906), original-
ly a physician, fell ill with multiple sclerosis and then became a mathematician
working mainly on number theory; he taught at the Technical University of Darm-
stadt. The first Wolfskehl lecture was given by Poincaré in 1908 and later lectures
were given, among others, by Einstein and Planck; in 1922 Niels Bohr delivered
his legendary Wolfskehl lectures on his theory of the atom which later became
known as the “Bohr-Festspiele”. In 1997 the Wolfskehl prize was given to Andrew
Wiles.)

In his last three lectures, Lorentz discussed “the phenomenon of radiating heat”.
The end of the fourth lecture reads as follows. “In conclusion there is a mathemat-
ical problem worth mentioning which perhaps will arouse the interest of math-
ematicians who are present. It originates in the radiation theory of Jeans. In an
enclosure with a perfectly reflecting surface there can form standing electromag-
netic waves analogous to tones of an organ pipe; we shall confine our attention only
to the very high overtones. Jeans asks for the energy in the frequency interval dν.
To this end he first of all calculates the number of overtones which lie between the
frequencies ν and ν + dν and then multiplies this number by the energy which be-
longs to the frequency ν, and which according to a theorem of statistical mechanics
is the same for all frequencies. In this manner he gets, indeed, the correct law of
the radiation at long wavelengths.”

“It is here that there arises the mathematical problem to prove that the number
of sufficiently high overtones which lie between ν and ν + dν is independent of the
shape of the enclosure and is simply proportional to its volume. For several simple
shapes, for which the calculation can be carried out, this theorem will be verified in
a Leiden dissertation. There is no doubt that it holds in general even for multiply
connected spaces. Analogous theorems will also hold for other vibrating structures
like elastic membranes and air masses etc.”

Weyl, who was present at Lorentz’s lectures, writes in a footnote of his second
paper [2]: “Lorentz has stated the theorem proven here in Section 1.6 as a plausi-
ble conjecture on physical grounds. The simplest cases, for which the proof can
be achieved by a direct computation of the eigenvalues, are treated in the Leiden
dissertation of Fräulein Reudler.” Actually Johanna Reudler verified [13] that the
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asymptotic number of modes depends only on the volume for three special cases,
the parallelepiped, the sphere, and the cylinder.

There is an apocryphal report that Hilbert predicted that the theorem would not
be proved in his lifetime [9]. Well, as we have seen, he was wrong by many, many
years.

Forty years after Lorentz’s lectures, Weyl came back to the “eigenvalue prob-
lem” [14]: “H.A. Lorentz had impressed upon the mathematicians the urgency for
physics of a settlement of this question. For a pupil of Hilbert around 1910 it was
natural to visualize the question as one concerning integral equations.” In the next
section of this paper [14] Weyl draws attention to a more difficult problem by say-
ing: “The physicist will not be satisfied with a knowledge of the asymptotic behav-
ior of the eigenvalues alone; that of the eigenfunctions should also be investigated.”
And Weyl mentions in this connection Carleman’s law, see Section 1.4.3.

Further on in this paper we read the following sentences: “I feel that these infor-
mations about the proper oscillations of a membrane, valuable as they are, are still
very incomplete. I have certain conjectures on what a complete analysis of their
asymptotic behavior should aim at; but since for more than 35 years I have made
no serious attempt to prove them, I think I had better keep them to myself.”

1.2.4

Black Body Radiation: From Kirchhoff to Wien’s Law

The study of the heat radiation from a body in thermal equilibrium with radiation
has played an eminent role in the history of physics and mathematics for it led
Planck in 1900 to the discovery of the quantum theory and Weyl in 1911 to a first
proof of the eigenvalue asymptotics. (There are several historical studies on this
subject. Here we rely on the excellent account given by Pais [15] who, however,
does not discuss the aspects concerning Weyl’s law.) The importance of the heat
radiation problem was realized already in 1859 by Gustav Kirchhoff [16]. Let the
radiation energy which a body absorbs be converted to thermal energy only, not to
any other energy form, and denote by Eν dν the amount of energy emitted by the
body per unit time per cm2 in the frequency interval dν. (Actually, Kirchhoff uses
the wavelength λ instead of the frequency ν.) Furthermore, let Aν be its absorption
coefficient for frequency ν. Kirchhoff showed that the ratio Eν/Aν is a universal
function which depends only on ν and the equilibrium (absolute) temperature T
and is independent of the shape and any other properties of the body i.e.

Eν

Aν
= J(ν, T ) . (1.14)

A general proof of (1.14) was given much later by Hilbert using the theory of linear
integral equations and his “axiomatic method” [17–19].

Kirchhoff called a body perfectly black or just black for short if Aν = 1. Thus J(ν, T )
is the emitted power of a black body which can be measured if we assume (with
Kirchhoff) that a perfect black body can be realized by “a space enclosed by bod-
ies of equal temperature, through which no radiation can penetrate” [16], i.e. by
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an enclosure with perfectly reflecting walls. Kirchhoff challenged theorists and ex-
perimentalists alike: “It is a highly important task to find this function J. Great
difficulties stand in the way of its experimental determination; nevertheless, there
appear grounds for the hope that it can be found by experiments because there is
no doubt that it has a simple form, as do all functions which do not depend on the
properties of individual bodies and which one has become acquainted with before
now.” [16]

It is worthwhile to mention that Kirchhoff reports in the same paper about his
experiments carried out with sunlight, interpreted as heat radiation of very high
temperature produced in the atmosphere of the sun, and about his discovery of
sodium there. He concludes: “Thus a way is found to ascertain the chemical nature
of the atmosphere of the sun, and the same way promises also some information
on the chemical nature of the brighter fixed stars.” [16]

It will be seen later that Kirchhoff’s statement about the shape-independence of
J(ν, T ) implicitly implies part of Weyl’s law (1.7) stating that the leading term of
the counting function is proportional to the volume V := |Ω| of the cavity by which
the black body is realized. At this point it is convenient to express J in terms of the
spectral energy density ρ(ν, T ) which gives the energy per unit volume of the heat
radiation in thermal equilibrium at temperature T for frequency ν:

J(ν, T ) =
c

8π
ρ(ν, T ) (1.15)

(c is the velocity of light in vacuo.) It was conjectured by Josef Stefan on experimen-
tal grounds in 1879 and proved theoretically by Ludwig Boltzmann in 1884 [20]
that the mean total energy 〈E 〉(T ) radiated by the black body is given by the Stefan–
Boltzmann law

〈E 〉(T ) = V

∞∫
0

ρ(ν, T )dν = VσT 4 , (1.16)

where σ is a universal constant (now called the Stefan–Boltzmann constant, whose
universal value could only be calculated after the discovery of Planck’s law). Boltz-
mann’s proof involves thermodynamics and the electromagnetic theory of Maxwell
according to which the mean radiation pressure

〈
p
〉

obeys the equation of state〈
p
〉

=
1
3
〈E 〉
V

.

Important progress was made by Wilhelm Wien who proved in 1893 that ρ(ν, T )
has to be of the following form (Wien’s displacement law) [21]

ρ(ν, T ) = ν3f (ν/T ) . (1.17)

Thus the heat radiation problem was reduced to determining, instead of J(ν, T ),
the universal function f (x) of the single scaling variable x = ν/T. (Obvious-
ly, from (1.17) one immediately derives the Stefan–Boltzmann law (1.16) with
σ =

∫ ∞
0 x3f (x)dx.) Over the years, many proposals for the correct form of f have

appeared, see for example the four different forms discussed in [22]. Still, 20 years
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later, Einstein wrote in 1913: “It would be edifying if we could weigh the brain sub-
stance which has been sacrificed by the theoretical physicists on the altar of this
universal function f; and the end of these cruel sacrifices is not yet in sight!” [23]

In 1896 Wien proposed [24] the exponential form fW(x) := αe–�x (α, � positive
constants), that is (Wien’s law)

ρW(ν, T ) = αν3e–�ν/T . (1.18)

At the same time, Friedrich Paschen carried out precise measurements [22, 25] in
the near-infrared (for wavelengths λ = c/ν = 1–8 μ m, T = 400–1600 K) which were
in such a good agreement with Wien’s law (1.18) that he concluded: “It would seem
very difficult to find another function of the two variables ν and T [Equation (1.18)]
that represents the observations with as few constants.” [25]. Thus it appeared that
Wien’s law was the final answer to the black-body problem.

1.2.5

Black Body Radiation: Rayleigh’s Law

In June 1900, that is several months before Planck’s revolutionary discovery, Lord
Rayleigh made another proposal [26] which for the first time introduces into the
black body radiation problem the density of states D(ν), that is the density of the
vibrational modes of a black body cavity. This step played an important role since
Rayleigh’s proposal relies on an assumption which 10 years later led to the conjec-
tures of Sommerfeld and Lorentz, and finally to Weyl’s law (as already discussed in
Sections 1.2.1–1.2.3).

Rayleigh’s starting point is the observation that Wien’s law (1.18) “viewed from
the theoretical side [. . . ] appears to me little more than a conjecture . . . ”, and “. . .
the law seems rather difficult of acceptance, especially the implication that as the
temperature is raised, the radiation of given frequency approaches a limit.” [26] In-
deed, one obtains from (1.18) lim

T→∞
ρW(ν, T ) = αν3. He continues: “the question is

one to be settled by experiment; but in the meantime I venture to suggest a modi-
fication of (1.18), which appears to me more probable a priori.” [26]

Without further explanation, Rayleigh assumes, first of all, that the equilibrium
distribution ρ is proportional to the density of the vibrational modes of the cavity
per unit volume, that is ρ(ν, T ) ~ D(ν)/V, where

D(ν) :=
dN
dν

with N(ν) := N
(
(2π/cν)2

)
and N(λ) denotes the leading asymptotic term of the counting function expressed
in terms of the frequency ν. Secondly, he assumes according to the “Boltzmann–
Maxwell doctrine of the partition of energy” (that is the equipartition theorem) that
“every mode of vibration should be alike favored . . . ”. Thus he assumes that “the
energy should be equally divided among all the modes. . . . Since the energy in
each mode is proportional to T” (that is proportional to kBT in modern notation,
where kB denotes Boltzmann’s constant, introduced actually only later by Planck!),
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Rayleigh’s assumption amounts to ρ(ν, T ) ~ (D(ν)/V) · T. As an “illustration” he
first considers “the case of a stretched string vibrating transversely” and derives
the correct Weyl asymptotics N(λ) ~

√
λ, that is N(ν) ~ ν and thus D(ν) = constant

(“when ν is large enough”). Then he continues: “When we pass from one di-
mension to three dimensions, and consider for example the vibrations of a cubic
mass of air, we have (‘Theory of Sound’, paragraph 267) as the equation for ν2,
ν2 = p2 + q2 + r2, where p, q, r are integers representing the number of subdivisions
in the three directions. If we regard p, q, r as the coordinates of points forming a cu-
bic array, ν is the distance of any point from the origin. Accordingly the number
of points for which ν lies between ν and ν + dν, proportional to the volume of the
corresponding spherical shell, may be represented by ν2 dν, and this expresses the
distribution of energy according to the Boltzmann–Maxwell law, so far as regards
the wavelength or frequency. If we apply this result to radiation, we shall have,
since the energy in each mode is proportional to T, Tν2 dν . . . .” [26] Thus Rayleigh
obtains (apart from the numerical coefficient) the correct Weyl asymptotics for
a three-dimensional cavity, that is N(λ) ~ Vλ3/2, see (1.5), which leads to N(ν) ~ Vν3

or D(ν)/V ~ ν2, and thus to

ρREJ(ν, T ) = c1ν2T , (1.19)

which is commonly known as the Rayleigh–Jeans law but which should rather be
referred to as the Rayleigh–Einstein–Jeans law. (We shall discuss below Einstein’s,
Rayleigh’s second, and Jeans’ derivation of (1.19) which includes also the explicit
expression for the coefficient c1.)

Here several remarks are in order. i) It is obvious that Rayleigh did not worry
about the fact that he used the scalar wave equation in his derivation of the mode
asymptotics, by referring to his famous book on acoustics [27], instead of the vector
Maxwell equations, which were studied only later by Weyl [2, 4, 5]. ii) In deriving
the vibrational mode asymptotics for a cubical box, Rayleigh takes for granted that
the result N(ν) ~ Vν3 holds for any shape of the cavity and thus concludes that
D(ν)/V is independent of the shape. In other words, Rayleigh assumes to be true
what 10 years later was formulated as a conjecture by Sommerfeld and Lorentz.
iii) Although his derivation of D(ν)/V ~ ν2 holds only asymptotically for ν → ∞, he
derives from this result the law (1.19) stating that it may have the proper form when
ν/T is small! iv) Rayleigh observes that (1.19) is of the general scaling form (1.17)
(with fREJ(x) = c1/x), and he regards this “as some confirmation of the suitability
of (1.19).” v) Without further comment, Rayleigh writes in his paper [26]: “If we
introduce the exponential factor, the complete expression will be

ρR = c1ν2Te–c2ν/T .” (1.20)

It is this expression which became known as the Rayleigh law. vi) There is no
doubt that Rayleigh must have realized that (1.19) is entirely unacceptable since the
quadratic dependence of ν leads to a physically meaningless divergence (later called
“ultraviolet catastrophe” by Ehrenfest) of the total radiation energy (see (1.16)). Of
course, by multiplying with the exponential “convergence factor” taken over from
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Wien’s law (1.18), the divergence is avoided and the Stefan–Boltzmann law (1.16)
holds with σ = 2c1/c3

2.
At the end of his paper Rayleigh writes [26]: “Whether (1.20) represents the facts

of observation as well as (1.18) I am not in a position to say. It is to be hoped
that the question may soon receive an answer at the hands of the distinguished
experimenters who have been occupied with this subject.”

We can assume that Rayleigh was well informed about the two teams working in
Berlin on black body radiation experiments. The first of these, Otto Lummer and
Ernst Pringsheim, had already shown in February 1900 that Wien’s law (1.18) fails
in the wavelength region λ = 12–18 μm (for T = 300–1650 K) [28]. The second team,
Heinrich Rubens and Ferdinand Kurlbaum, presented their measurements in the
even further infrared (λ = 30–60 μm, T = –188–1500 ◦C) to the Prussian Academy
on October 25, 1900 [29]. In a famous figure, they plotted ρ as a function of T at
the fixed wavelength λ = 51.2 μm and compared their data with some theoretical
curves. One of these was the Wien curve, another the Rayleigh curve. Both curves
did not work! But then we read in the paper [29] that they had compared their data
with a “fifth formula, given by Herr M. Planck after our experiments had already
been concluded . . . ” and which “reproduces our observation within the limits of
error.”

1.2.6

Black Body Radiation: Planck’s Law and the Classical Limit

According to Pais [15], Planck probably discovered his law in the early evening of
Sunday, October 7, 1900, Rubens and his wife had called on the Plancks on the
afternoon of that day. In the course of conversation, Rubens mentioned to Planck
that he had found ρ(ν, T ) to be proportional to T for small ν. Planck went to work
after the visitors left and found an interpolation between his results and Wien’s law,
Equation (1.18). He communicated his formula by postcard to Rubens the same
evening and stated it publicly [30] in a discussion remark on October 19, following
the presentation of a paper by Kurlbaum. Expressed in notations introduced by
Planck two months later, Planck’s law reads:

ρP(ν, T ) =
8πhν3

c3

1
ehν/kBT – 1

, (1.21)

where h denotes Planck’s constant and kB is Boltzmann’s constant.
Let us consider two limits of Planck’s law. First, in the high-frequency or low-

temperature regime, which is now identified as the quantum limit in which the
photon energy hν is much larger than the thermal energy kBT, that is hν/kBT >>
1, we recover Wien’s law (1.18) with α = (8πh)/c3 and � = h/kB. This explains
why Paschen’s experiments [22, 25], for which hν/kBT W 15 holds, were in such
a good agreement with Wien’s law, as already mentioned. At the other extreme of
low frequency or high temperature, hν/kBT << 1, which is obtained from Planck’s
law in the formal limit when Planck’s constant approaches zero, h → 0, and is
now identified as the semiclassical limit, we recover the Rayleigh–Einstein–Jeans



1.2 A Brief History of Weyl’s Law 13

law (1.19)

ρP(ν, T ) =
8πν2

c3 (kBT )
[
1 + O(h)

]
(h → 0) . (1.22)

A comparison with (1.19) gives the correct value for the constant c1 left undeter-
mined by Rayleigh, that is

c1 =
8πkB

c3 =
8π
c3

R
NA

, (1.23)

which does not depend on h, and where R is the gas constant and NA is Avogadro’s
number.

Since our main interest here is to understand the role played by Weyl’s law, we
are not discussing at this point the arguments using “resonators” which led Planck
to his formula. (Planck’s original derivation does not refer to the vibrations of the
cavity and thus does not involve the density of states.) Using the fact that the correct
formula for the radiating heat, that is Planck’s formula, in the classical limit exactly
takes the form of the Rayleigh–Einstein–Jeans law, we can interpret the latter in
purely classical terms by making the general ansatz (valid only for h = 0!)

ρclass(ν, T ) := lim
V→∞

(
Dem(ν)

V

)
kBT , (1.24)

where Dem(ν) denotes the density of states of the electromagnetic vibrations in
a cavity of volume V. Furthermore, we have taken care of the fact that the predic-
tions of thermodynamics involve the so-called thermodynamic limit V → ∞. Here

Dem(ν) :=
dNem(ν)

dν
with Nem(ν) = 2N(ν) = 2N

(
(2π/cν)2

)
,

where N(λ) denotes the two asymptotic terms of the counting function (1.7) for the
three-dimensional case, and the factor 2 comes from the two polarizations of the
photon. We then obtain

Nem(ν) = V
8π
3c3 ν3 + O|∂Ω|(ν2) (1.25)

which leads to

lim
V→∞

(
Dem(ν)

V

)
=

8π
c3 ν2 (1.26)

since lim
V→∞

(|∂Ω| /V) = 0, where |∂Ω| denotes the surface area of the cavity.

In his famous book, originally published in 1928 in German under the title
“Gruppentheorie und Quantenmechanik” [31, p. 103–104 and p. 402] Weyl treats
the black-body radiation and proves that it “is mathematically equivalent to a sys-
tem of infinitely many oscillators.” He then states, without proof: “For high fre-
quencies ν there are approximately V

(
8πν2 dν/c3

)
modes of oscillation in the fre-

quency interval ν, ν + dν. We are interested above all in the limiting case of an
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infinitely large cavity; the spectrum then becomes continuous and our formula for
the density of frequencies becomes exact.” In a footnote he adds: “This result is
easily obtained by elementary methods for a rectangular parallelepiped. For the
general proof see H. Weyl [4, 5, 8].” It is clear that the limit V → ∞ is an idealiza-
tion which can never be realized in a physical experiment. Rather the “assumption
must always hold that the linear dimensions of all cavities considered and also the
curvature of the radii of all surfaces considered must be large compared with the
wavelengths of the radiation. Then we are allowed, without making a noticeable
error, to neglect the influences of the form of the boundaries caused by diffrac-
tion.” [32, p. 2]

Inserting (1.26) into (1.24), one obtains

ρclass(ν, T ) =
8πkB

c3 ν2T (1.27)

which is precisely the Rayleigh–Einstein–Jeans law (1.19) with the correct power
behavior in ν and the same coefficient (1.23) as obtained from the exact Planck
formula. It is thus seen that heat radiation (in the classical limit) is indeed inde-
pendent of the shape of the cavity due to Weyl’s law and the performance of the
thermodynamical limit.

As shown above, Planck’s radiation law (1.21) from October 1900 can be consid-
ered as a simple interpolation formula which smoothly interpolates between the
Rayleigh–Einstein–Jeans law (1.27) and Wien’s law (1.18). In fact, it differs from
Wien’s law only by the –1 in the denominator. It has rightly been said [15], that
even if Planck had stopped after October 19, he would forever be remembered as
the discoverer of the radiation law. It is a true measure of his greatness that he went
further. He wanted to interpret (1.21). That made him to discover the quantum
theory. Already on December 14, 1900, Planck presented a theoretical derivation of
his formula to the German Physical Society in Berlin [33] and shortly afterwards
(7 January 1901) submitted his famous paper [34]. More and more precise mea-
surements carried out during the following years established Planck’s formula as
the correct phenomenological law of black body radiation. It is thus quite astonish-
ing to learn that several excellent theoretical physicists, in particular Lorentz, Lord
Rayleigh, and Jeans, worked on alternative theories leading to formulae different
from Planck’s. Ironically, since Planck’s derivation does not rely on the density of
states, the origin of Weyl’s law lies just in these alternative approaches. Therefore,
a history of Weyl’s law without a discussion of these differing theories would be
incomplete.

1.2.7

Black Body Radiation: The Rayleigh–Einstein–Jeans Law

First of all, one should understand why some theorists were seeking for different
theories of black body radiation despite the great empirical success of Planck’s for-
mula. The explanation is quite obvious: they realized that Planck’s radiation theory
was not satisfactory from a theoretical point of view; in fact, it was inconsistent! As
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the above quotation from Einstein [23] shows, the problem still existed in 1913; the
ultimate derivation of Planck’s formula was only provided in 1924 using the correct
Bose–Einstein quantum statistics.

In 1903, Lorentz [35] derived (1.19) in the low-frequency limit together with the
value c1 =

(
16πα/3c3

)
for the coefficient c1 where α is a constant such that αT

represents the mean kinetic energy of a molecule of a gas. Comparing (1.19) with
the low-frequency limit of Planck’s formula (1.21), he obtained α = (3/2)kB (see
also (1.23)) and states: “Now the mean kinetic energy of a molecule of a gas would
be (3/2)kT according to Planck . . . there appears therefore to be full agreement be-
tween the two theories in the case of long waves, certainly a remarkable conclusion,
as the fundamental assumptions are widely different.”

The year 1905 is one of the most amazing ones in the history of science: it marks,
first of all, Einstein’s annus mirabilis with his five seminal papers, where only the
first one on the famous light quantum hypothesis [36] concerns us here, since
it deals with the radiation problem, and, secondly, the series of papers published
by Rayleigh [37, 38] and Jeans [39–42] on the radiation problem using the Weyl
asymptotics.

From reading these papers it becomes clear that Einstein is the only one who
takes Planck’s formula serious since it “agrees with all experiments to date” [36].
But in Section 1.1 of this paper entitled “On a difficulty concerning the theory of the
« black radiation »” [36] he implicitly expresses his doubts on Planck’s derivation by
showing that Planck should have obtained (1.27) instead of his formula (1.21)! The
argument is very simple. Planck’s starting point in his derivation is the formula

ρ(ν, T ) =
8πν2

c3 〈E 〉(ν, T ) , (1.28)

where 〈E 〉(ν, T ) is the average energy of a Planck resonator of frequency ν at the
joint equilibrium of matter and radiation at temperature T. Furthermore, the equi-
librium energy of a one-dimensional resonator is according to the equipartition
theorem given by 〈E 〉(ν, T ) = kBT, and inserting this into (1.28), Einstein ob-
tains (1.27). We thus see that the radiation law (1.27), commonly known as the
Rayleigh–Jeans law, ought to be called the Rayleigh–Einstein–Jeans law [15]. Many
years later Einstein said: “If Planck had drawn this conclusion, he probably would
not have made his great discovery, because the foundation would have been with-
drawn from his deductive reasoning.” [43]

Years later Planck himself presented two derivations of (1.27) in his famous book
“Theorie der Wärmestrahlung” [32] and concluded: “It is not too much asserted if
we say in generalizing: The classical theory leads of necessity to Rayleigh’s radiation
law.”

Einstein’s paper [36] was submitted on 17 March 1905, and thus is the earliest
among the above mentioned papers by Rayleigh and Jeans. (Rayleigh’s first pa-
per [37] was submitted on 6 May 1905; Jeans’ first paper on radiation [39] on 20 May
1905.)

As discussed in Section 1.2.5, Rayleigh was the first [26] to have already count-
ed in 1900 “the number of modes corresponding to any finite space occupied by
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radiation” [37] and to obtain the law (1.19), however, without determining the coef-
ficient c1. “Elicited by the very clear statement of his view which Mr. Jeans gives in
NATURE of April 27 (1900) [44]”, he repeats the arguments of his former paper [26]
“with an extension designed to determine the coefficient as well as the law of radia-
tion” [37]. By counting the modes within a cube of length l (Weyl’s law), he obtains
again (1.19) “as probably representing the truth when ν is small.” He remarks that
this formula agrees with Planck’s in the limit when ν is small apart from the fact
that his value for c1 “is eight times as large as that found by Planck.” Rayleigh adds:
“A critical comparison of the two processes would be of interest, but not having
succeeded in following Planck’s reasoning I am unable to undertake it. As apply-
ing to all wavelengths, his formula would have the greater value if satisfactorily
established. On the other hand, the reasoning leading to (1.19) is very simple, and
this formula appears to me a necessary consequence of the law of equipartition as
laid down by Boltzmann and Maxwell. My difficulty is to understand how another
process, also based on Boltzmann’s ideas, can lead to a different result.” [37]

Two days after Rayleigh’s letter [37] Jeans submitted a short letter [39] in reply
to Rayleigh. His main point was “the general question of the applicability of the
theorem of equipartition to the energy of the ether” as opened up by Rayleigh. He
takes up “Lord Rayleigh’s example of a stretched string, say a piano wire” and then
discusses the “vibrations of the ether in a finite enclosure”. He writes: “It is eas-
ily seen that the number of slow vibrations is approximately proportional to the
volume of the enclosure, so that roughly the energy of ether must be measured
per unit volume in order to be independent of the size of the enclosure.” He then
arrives at (1.19), but without determining the value for c1. On June 7, Jeans adds
a “postscript” to his paper [40] and calculates again “the number of degrees of free-
dom of the æther” by referring to Rayleigh’s book [27](!). From this he obtains the
radiation law (1.19) together with the correct value (1.23) for the coefficient c1. “This
is one-eighth of the amount found by Lord Rayleigh, but agrees exactly with that
given by Planck for large values of λ. It seems to me that Lord Rayleigh has intro-
duced an unnecessary factor 8 by counting negative as well as positive values of his
integers p, q, r.” (See the discussion before equation (1.19).) A month later, Rayleigh
replies to Jeans [38]: “In NATURE, May 18, I gave a calculation of the coefficient
of complete radiation at a given absolute temperature for waves of great length
on principles laid down in 1900, and it appeared that the result was eight times
as great as that deduced from Planck’s formula for this case. In connection with
similar work of his own, Mr. Jeans has just pointed out that I have introduced a re-
dundant factor 8 by counting negative as well as positive values of my integers p, q,
r – I hasten to admit the justice of this correction. But while the precise agreement
of results in the case of very long waves is satisfactory so far as it goes, it does not
satisfy the wish expressed in my former letter for a comparison of processes. In
the application to waves that are not long, there must be some limitation on the
principle of equipartition. Is there any affinity in this respect between the ideas of
Prof. Planck and those of Mr. Jeans?”

On July 27, Jeans published another letter [41]: “On two occasions (NATURE,
May 18 and July 13) Lord Rayleigh has asked for a critical comparison of two the-
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ories of radiation, the one developed by Prof. Planck and the other by myself, fol-
lowing the dynamical principles laid down by Maxwell and Lord Rayleigh. It is with
the greatest hesitation that I venture to express my disagreement with some points
in the work of so distinguished a physicist as Prof. Planck, but Lord Rayleigh’s
second demand for a comparison of the two methods leads me to offer the fol-
lowing remarks, which would not otherwise have been published, on the theory of
Prof. Planck.” Jeans then criticises Planck’s concept of the “entropy of a single res-
onator” given by the formula S = kB log W+constant by saying: “The function W, as
at present defined, seems to me to have no meaning. Planck (in common, I know,
with many other physicists) speaks of the ‘probability’ of an event, without spec-
ifying the basis according to which the probability is measured. This conception
of probability seems to me an inexact conception, and as such to have no place in
mathematical analysis.” [41]

Jeans’ critique of Planck’s derivation is fully justified as one can infer from Ein-
stein’s “laudatio” for Planck written in 1913: “This [that is Planck’s] calculation
which, due to the not sufficiently sharp definition of W, could not be performed
without arbitrariness, led to the radiation formula (1.21) . . . ” [23].

Jeans then continues [41] by criticising Planck’s introduction of his famous con-
stant h via the fundamental relation ε = hν. “Here ε is a small quantity, a sort of
indivisible atom of energy, introduced to simplify the calculations. We may legiti-
mately remove this artificial quantity by passing to the limit in which ε = 0 . . . The
relation ε = hν is assumed by Planck in order that the law ultimately obtained
may satisfy Wien’s ‘displacement law’ i.e. may be of the form (1.17). This law is
obtained by Wien from thermodynamical considerations on the supposition that
the energy of the ether is in statistical equilibrium with that of matter at a uniform
temperature. The method of statistical mechanics, however, enables us to go fur-
ther and determine the form of the function f (v/T ); it is found to be 8πkB(T/ν),
so that Wien’s law (1.17) reduces to the law given by expression (1.27). In other
words, Wien’s law directs us to take ε = hν, but leaves h indeterminate, whereas
statistical mechanics gives us the further information that the true value of h is
h = 0. Indeed, this is sufficiently obvious from general principles. The only way
of eliminating the arbitrary quantity ε is by taking ε = 0, and this is the same as
h = 0. – Thus it comes about that in Planck’s final law (1.21) the value of h is left
indeterminate; on putting h = 0, the value assigned to it by statistical mechanics,
we arrive at once at the law (1.27). . . . I carry the method further than Planck, since
Planck stops short of the step of putting h = 0. I venture to express the opinion that
it is not legitimate to stop short at this point, as the hypotheses upon which Planck
has worked lead to the relation h = 0 as a necessary consequence. Of course, I am
aware that Planck’s law is in good agreement with experiment if h is given a value
different from zero, while my own law, obtained by putting h = 0, cannot possibly
agree with experiment. This does not alter my belief that the value h = 0 is the only
value which it is possible to take.” [41]

Although Jeans’ conclusion [41] that Planck should have arrived at the radiation
law (1.27) instead of his formula (1.21) agrees with the conclusions drawn earlier
by Einstein [36] and Rayleigh [37, 38]; his belief that the value h = 0 is the only
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value which Planck’s constant can possibly take shows that he did not realize the
importance of the equation ε = hν (neither did Planck nor Rayleigh!). It was Ein-
stein’s revolutionary light-quantum paper [36] (the only contribution he himself
called revolutionary) which gave a deep meaning to this equation and thus paved
the way towards a quantum theory. Einstein put forward the following “heuristic
view” [36]. “Monochromatic radiation of low density (within the domain of valid-
ity of Wien’s radiation formula) behaves in thermodynamic respect as if it would
consist of mutually independent energy quanta of magnitude R�ν/NA [== hν using
� = h/kB]. – If, in regard to the volume dependence of the entropy, monochromatic
radiation (of sufficiently low density) behaves as a discontinuous medium, which
consists of energy quanta of magnitude [hν], then this suggests an inquiry as to
whether the laws of the generation and conservation of light are also constituted as
if light were to consist of energy quanta of this kind.”

1.2.8

From Acoustics to Weyl’s Law and Kac’s Question

In the previous sections we have discussed how the heat radiation problem was
at the origin of Weyl’s famous work. Furthermore, we have seen that the idea of
expressing the spectral energy density ρ(ν, T ) of the black body radiation in terms
of the density of states D(ν) goes back to Rayleigh [26] who in turn reduced the
problem to the “vibrations of a cubical mass of air”. Thus Weyl’s law actually
has its roots in acoustics. In view of the fact that Rayleigh was a leading expert
in acoustics and the author of the famous book “The Theory of Sound” [27], first
published in 1877, it is not surprising that he realized that the radiation problem
can be related to the number of vibrational modes of a black body cavity. All the
more reason that it is strange to observe that he had difficulties in obtaining the
correct value for the constant c1 in his radiation law (1.19). The problem was of
course a question of the correct boundary conditions in the electromagnetic case.
In his book, Rayleigh writes: “Some of the natural notes of the air contained within
a room may generally be detected on singing the scale. Probably it is somewhat
in this way that blind people are able to estimate the size of rooms.” [27] And in
a footnote he adds: “A remarkable instance is quoted in Young’s Natural Philoso-
phy, II. p. 272, from Darwin’s Zoonomia, II. 487. “The late blind Justice Fielding
walked for the first time into my room, when he once visited me, and after speak-
ing a few words said, ‘This room is about 22 feet long, 18 wide, and 12 high’; all
which he guessed by the ear with great accuracy.” And then Rayleigh continues:
“In long and narrow passages the vibrations parallel to the length are too slow
to affect the ear, but notes due to transverse vibrations may often be heard. The
relative proportions of the various overtones depend upon the place at which the
disturbance is created. In some cases of this kind the pitch of the vibrations, whose
direction is principally transverse, is influenced by the occurrence of longitudinal
motion. . . . ”

These remarks on acoustics lead us directly to Kac’s famous question: “Can one
hear the shape of a drum?” [9], which will be discussed in Sections 1.3.6 and 1.3.7,
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and the more general question: “Can one hear the periodic orbits of a drum?” to be
discussed in Section 1.3.7.

1.3

Weyl’s Law with Remainder Term. I

1.3.1

The Laplacian on the Flat Torus T2

In special cases it is possible to derive exact formulae for the counting function
N(λ) which contain in addition to the Weyl term (and possible higher order terms)
an explicit expression for a remainder function. The most elegant way to derive
these formulae is based on trace formulae; a famous example is the Selberg trace
formula [45–47] to be discussed in Section 1.4. To illustrate the method in a sim-
ple case, we consider the eigenvalue problem –ΔT2 u = λu, where ΔT2 denotes the
Laplacian on a flat torus T2 := S1

L ~ S1
L = R2/(LZ ~ LZ) characterized by a length scale

L > 0. T2 can be represented by the fundamental domain Ω = [0, L] ~ [0, L] ∈ R2 i.e.
by a square with side L, where opposite sides are glued together. Obviously, all of
R2 is covered by the Γ-translates of Ω where Γ is the translation group (LZ)2. This
produces a tessellation of R2 and leads to the periodic boundary conditions

u(x1 + μ1L, x2 + μ2L) = u(x1, x2), (x1, x2) ∈ Ω, (μ1, μ2) ∈ Z2 .

Note that T2 is a smooth, compact manifold with area |Ω| = L2 (but with no
boundary). It is easy to see that (em)m∈Z2 =

(
e2πi(m·x)/L

)
m∈Z2

is an orthonormal ba-
sis of L2(Ω) consisting of eigenvectors of –ΔT2 with discrete eigenvalues (λm)m∈Z2 =(
(4π2)/L2

(
m2

1 + m2
2

))
(m1,m2)∈Z2

.

Let r(n) = #
{
(m1, m2) ∈ Z2, n = m2

1 + m2
2

}
, n ∈ N0, with r(0) = 1, i.e. r(n) denotes

the number of representations of n ∈ N0 as a sum of two squares of integers.
Obviously, the distinct eigenvalues of –ΔT2 ,

(λ̄n)n∈N0 =
(

4π2

|Ω| n
)

n∈N0

,

occur with multiplicity r(n). Then the counting function on the torus reads

N(λ) =
∑
λ̄nuλ

r(n) =
∑

0unu(|Ω|/4π2)λ

r(n) . (1.29)

The very irregular (“valde irregulariter” [48]) number theoretical function r(n) had
already been studied by Gauss [48] who derived the formula r(n) = 4(d1(n) – d3(n)),
n v 1, where d1(n) and d3(n) are the number of divisors of n of the form 4m + 1 and
4m + 3, m ∈ N0, respectively. The first values are r(0) = 1, r(1) = 4, r(2) = 4, r(3) = 0,
r(4) = 4, r(5) = 8. If n == 3(mod 4) then r(n) = 0. For large n one has r(n) = O(nε) for
every ε > 0; r(n) = O

(
(log n)δ

)
is false for every δ. The average order of r(n) is

r̄ := lim
x→∞

1
x

∑
0unux

r(n) = π
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(Gauss resp. the Weyl law, see (1.31)). For further information about r(n), see [49,
pp. 241].

1.3.2

The Classical Circle Problem of Gauss

Let

ν(x) :=
∑

0unux

r(n) =
∑

m2
1+m2

2ux
(m1,m2)∈Z~Z

1 , (1.30)

then

N(λ) = ν
(
|Ω|
4π2 λ

)
and the derivation of Weyl’s law is reduced to a lattice point problem, since ν(x) has
a simple geometric interpretation as the number of lattice points in the interior and
on the boundary of a circle with center (0, 0) and of radius

√
x. The problem of cal-

culating the leading asymptotic behavior of ν(x) for x → ∞ was already considered
by Gauss in 1834 [48] (see also [50, pp. 32–39]). He realized that ν(x) is approxi-
mately given by the sum of the areas of all squares of unit side length which are
inscribed in the circle of radius

√
x, and thus ν(x) is in first approximation equal to

the area of the circle π
(√

x
)2

= πx. Actually, Gauss proved

lim
x→∞

ν(x)
x

= π , (1.31)

which implies Weyl’s law

lim
λ→∞

N(λ)
λ

=
|Ω|
4π

(1.32)

for the counting function (1.29). Based on his result (1.31), Gauss considered ν(x)/x
as an approximation method to calculate π. To this purpose, he thought about the
error one makes at finite x. Again, by geometrical intuition, one sees that the error
should not be larger than the combined area of those squares that are cut by the
boundary of the circle i.e. those contained in an annulus of width 2

√
2, and thus is

approximately given by 2
√

2 times the perimeter of the circle 2π
√

x, and, indeed,
Gauss was able to prove

ν(x) = πx + O
(√

x
)

(x → ∞) ,

which implies

N(λ) =
|Ω|
4π

λ + O
(√

λ
)

(λ → ∞) .

Defining a remainder term P(x),

ν(x) = πx + P(x) ,
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we are led to the classical circle problem, a famous problem in analytic number theo-
ry [51, pp. 181–308]: estimate the remainder function P(x) as accurately as possible.
In particular, determine α0 = inf α in the estimate

P(x) = O(xα) (x → ∞) .

In Figures 1.1 and 1.2 we show plots of ν(x) and P(x), respectively, from which it
becomes clear that P(x) – due to the erratic behavior of r(n) – is a very irregular
function wildly fluctuating about zero. It is therefore no big surprise that to deter-
mine the actual size of P(x), and thus the remainder to Weyl’s law, is a difficult
problem. Considering the difference ν(n + 1/2) – ν(n), n ∈ N, it is easy to see that
P(x) = o(1) is false, and thus 0 u α0 u 1/2. An important result showing that P(x)
is much smaller than the classical result α0 u 1/2 is due to Sierpiński who proved
α0 u 1/3 in 1906 [52, pp. 73–108]. A famous conjecture by Hardy from 1915 states
that α0 should be 1/4, i.e. P(x) = O

(
x1/4+ε

)
for every ε > 0 [53, 54]. Actually, Hardy

proved α0 v 1/4.
During the last 100 years, the values for α0 decreased only by a tiny amount:

α0 u 37/112 = 0.330 . . . (van der Corput 1923 [55]), α0 u 12/37 = 0.324 . . . (Wen-Lin
Yin 1962 [56]), α0 u 7/22 = 0.318 . . . (Iwaniec and Mozzochi 1988 [57]). The best
bound known today is due to Huxley who proved in 1992 that

P(x) = O
(
x23/73 (log x

)315/146
)

;

note that 23/73 = 0.315 . . . is still far away from 1/4! (For a review, see [58].)
Since P(x) is a wildly fluctuating function, it might be that some very rare spikes
exceeding the conjectured x1/4-behavior make it extremely difficult to improve the
best existing bound. In order to “tame” these spikes, one can consider moments
of P(x) and hope that the spikes are being washed out. We shall come back to this
idea in Section 1.3.9 making use of the trace formula for ν(x) which we shall now
derive.

Note added in proof: in a recent unpublished paper [59] it is claimed to present
a proof of Hardy’s conjecture.

1.3.3

The Formula of Hardy–Landau–Voronoï

The counting function ν(x) can be rewritten as

ν(x) =
∑
m∈Z2

θ
(
x – m2

)
,

where θ(x) denotes the Heaviside step function. Instead of θ(x–m2), let us consider
a function g(m) with

– g : R2 → C, continuous
– g(x ) = O

(
1/(‖x‖2+ε)

)
for ‖x‖2 = x2

1 + x2
2 → ∞, ε > 0,

and let us study the sum
∑

m∈Z2
g(m). Using the Poisson summation formula, we obtain∑

m∈Z2

g(m) =
∑
l∈Z2

g̃(l ) , (1.33)
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where g̃ denotes the Fourier transform of g:

g̃(l) =
∫
R2

g(x)e–2πi(l·x) d2x . (1.34)

To apply this to the circle problem, we make the further assumption that g(x) is
a radial function which depends only on ρ = ‖x‖, i.e.

g(x) = g(x1, x2) = φ
(
x2

1 + x2
2

)
= φ
(
ρ2
)

.

Thus

g̃(l) = g̃(l1, l2) =

∞∫
–∞

∞∫
–∞

φ
(
x2

1 + x2
2

)
e–2πi(l1x1+l2x2) dx1 dx2

=

∞∫
0

ρφ
(
ρ2
) 2π∫

0

e–2πi‖l ‖ρ cosϕ dϕdρ = 2π

∞∫
0

ρφ
(
ρ2
)
J0(2π‖l‖ρ)dρ.

Here we have introduced polar coordinates in R2, x1 = ρ cosϕ, x2 = ρ sinϕ, 0 u ϕ u
2π, and have used the integral representation

J0(z) =
1

2π

2π∫
0

e–iz cos ϕ dϕ

for the Bessel function J0(z). Now the Poisson summation formula (1.33) reads

∑
m∈Z2

φ
(
m2
)

= 2π
∑
l∈Z2

∞∫
0

ρφ
(
ρ2
)
J0(2π‖l ‖ρ)dρ ,

or, by introducing the multiplicity r(n) and ρ =
√

x, x v 0:

∞∑
n=0

r(n)φ(n) = π
∞∑

n=0

r(n)

∞∫
0

φ(x)J0

(
2π

√
nx
)
dx . (1.35)

This is the theorem due to Hardy [54, 60, 61], Landau [51, pp. 189] and Voronoï [62].

1.3.4

The Trace Formula on the Torus T2 and the Leading Weyl Term

We recall that the distinct eigenvalues on the torus T2 are given by λ̄n = (2π/L)2 n =
p2

n with pn := (2π/L)
√

n, n ∈ N0, and multiplicities r(n). Introducing in the theo-
rem (1.35) the spectral function h((2π/L) ρ) := φ

(
ρ2
)

with

• h : R→ C, continuous

• h even i.e. h(–p) = h( p) (1.36)

• h( p) = O

⎛⎜⎜⎜⎜⎜⎜⎝ 1∣∣∣p∣∣∣2+ε

⎞⎟⎟⎟⎟⎟⎟⎠ ,
∣∣∣p∣∣∣→ ∞, ε > 0,
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we arrive at the trace formula on the torus T2

∞∑
n=0

r(n)h
(

pn
)

=
|Ω|
2π

∞∫
0

ph( p)dp + |Ω|
∞∑

n=1

r(n)ĥ
(
L
√

n
)

, (1.37)

where ĥ(x) denotes the Fourier–Bessel (or Hankel) transform of h( p):

ĥ(x) :=
1

2π

∞∫
0

ph( p)J0( px)dp .

(In deriving the first term on the right-hand side of (1.37), we have used r(0) = 1 =
J0(0) and L2 = |Ω|.) Note that the left-hand side of (1.37) can be written as the trace
of the trace class operator

h
(
(–ΔT2 )1/2

)
: L2(Ω) → L2(Ω)

with

h
(
(–ΔT2 )1/2

)
f =
∑
m∈Z2

h
( √

λm

) (
em | f ) em , for f ∈ L2(Ω) ,

i.e.

∞∑
n=0

r(n)h
(

pn
)

= Tr h
(
(–ΔT2 )1/2

)
,

which explains why (1.37) is called a trace formula.
Due to the conditions (1.36) on the spectral function h( p), the operator

h
(
(–ΔT2 )1/2

)
is actually a Hilbert–Schmidt operator with kernel Gh(x, y) = Ḡh(y, x) ∈

L2(Ω ~ Ω) satisfying, for f ∈ L2(Ω),

(
h
(
(–ΔT2 )1/2

)
f
)

(x) =
∫
Ω

Gh(x, y) f (y)d2y . (1.38)

Furthermore, Gh(x, y) has the uniformly convergent expression in terms of the or-
thonormal eigenfunctions em ∈ L2(Ω) (Mercer’s theorem)

Gh(x, y) =
∑
m∈Z2

h
( √

λm

)
em(x)ēm(y) , (1.39)

which expresses the fact that em is an eigenfunction of the operator h
(
(–ΔT2 )1/2

)
with eigenvalue h

( √
λm

)
. From this one immediately derives the pre-trace formula

Tr h
(
(–ΔT2 )1/2

)
=
∫
Ω

Gh(x, x)d2x . (1.40)
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Pre-trace formulae of this type are the starting point for the derivation of trace
formulae in the general case, for example in quantum mechanics, where the right-
hand side of (1.40) is expressed by the volume of the classical phase space and the
classical actions evaluated along the periodic orbits of the corresponding classical
system [63].

An alternative way to write the left-hand side of (1.37) is

∞∑
n=0

r(n)h( pn) =

∞∫
0

h
(√

λ
)
dN(λ) ,

where N(λ) is the counting function, and the integral is understood as a Stieltjes
integral. Rewriting in a similar way the first term on the right-hand side of (1.37)

|Ω|
2π

∞∫
0

ph( p)dp =:

∞∫
0

h
(√

λ
)
dN(λ) ,

one obtains dN(λ) = |Ω| /(4π)dλ and thus, immediately, the smooth term

N(λ) =
|Ω|
4π

λ , (1.41)

which turns out to be exactly the leading Weyl term of N(λ), see (1.4) and Sec-
tion 1.3.6.

1.3.5

Spectral Geometry: Interpretation of the Trace Formula

on the Torus T2 in Terms of Periodic Orbits

While the left-hand side of the trace formula (1.37) has a simple spectral interpreta-
tion (being just the sum over the “frequencies” pn =

√
λ̄n of the eigenvibrations on

T2, evaluated on a large class of spectral functions h( p), see Equation (1.36)), the
infinite series on the right-hand side has a simple geometrical interpretation as can
be seen by rewriting (1.37) as follows

∞∑
n=0

r(n)h( pn) = |Ω| ĥ(0) + |Ω|
∞∑

n=1

∞∑
k=1

r
(
k2l2n
)

ĥ (kln) . (1.42)

Here
{
ln
}
n∈N denotes the primitive length spectrum on T2 with

ln = L
√

m2
1 + m2

2 = L
√

n ,

where n is a square-free integer with r(n) =/ 0. ln is the geometrical length of a prim-
itive periodic orbit (closed geodesic) of the classical geodesic flow on T2. The non-
primitive periodic orbits have lengths kln, k v 2, where k counts the kth traversal of
the corresponding primitive periodic orbit with length ln. The trace formula (1.42)
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displays a beautiful relation in spectral geometry relating the spectrum of the Lapla-
cian to the length spectrum of the geodesic flow. The torus T2 is a compact Riemann
surface of genus 1 and Gaussian curvature K = 0. A generalization to surfaces of
higher genus is given by the famous Selberg trace formula [45, 46] which has been
much studied in the field of quantum chaos (see for example [47,64–66]) and string
theory (see for example [67, 68]) and will be discussed in Section 1.4.4.

1.3.6

The Trace of the Heat Kernel on d-Dimensional Tori and Weyl’s Law

The trace formula (1.37), respectively (1.42), has the typical structure of a trace for-
mula and is in some sense a “meta formula” since it allows one to derive an infinite
number of relations depending on the special choice of the spectral function h( p)
satisfying the conditions (1.36). As a first example, let us calculate the trace of the
heat kernel, which is obtained for the choice h( p) = e–p2t, t > 0. With

ĥ(x) =
1

2π

∞∫
0

pe–p2tJ0( px)dp =
1

4πt
e–x2/4t

we get (t > 0)

ΘT2 (t) := Tr etΔ
T2 =

∞∑
n=0

r(n)e–(4π2/|Ω|)nt =
|Ω|
4πt

+
|Ω|
4πt

∞∑
n=1

r(n)e–(|Ω|/4)tn

=
|Ω|
4πt

+
|Ω|
4πt

∞∑
n=1

∞∑
k=1

r
(
k2l2n
)
e–k2l2n/4t.

(1.43)

For t → 0+ one thus obtains the correct |Ω| /(4πt)-term (and no higher order terms

of the type
∞∑

n=–1
antn/2 as occurring in the general case), which yields the correct

Weyl term, and an exponentially small remainder term behaving as O
(
t–1e–L2/4t

)
.

It is thus seen that the Weyl term corresponds to the “zero-length contribution”
in the periodic orbit sum i.e. to the term obtained for l0 := 0, while the exponen-
tial remainder term is determined by the shortest primitive periodic orbit on T2

having the length l1 = L. As to physical applications, let us point out that the func-
tion ΘT2 (t) is for t ~ 1/T, where T denotes absolute temperature, identical to the
partition function in statistical mechanics, and thus the Weyl term determines the
high-temperature limit of the corresponding thermodynamical system.

Note that the trace of the heat kernel rewritten as f (q) :=
∞∑

n=0
r(n)qn with q = eiπτ,

τ = i (4π/ |Ω|) t, plays the role of a generating function of the arithmetic func-
tion r(n). f (q) was already introduced by Jacobi in 1829 who derived

f (q) =

⎛⎜⎜⎜⎜⎜⎝∑
m∈Z

qm2

⎞⎟⎟⎟⎟⎟⎠2 = (θ3(0|τ))2
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for Im τ > 0 in terms of the elliptic theta function θ3. Using the transformation
formula θ3(0 | τ) = (–iτ)–1/2θ3(0 | –1/τ) derived by Poisson in 1823, one obtains
again relation (1.43).

It is not difficult to generalize the result (1.43) to d-dimensional flat tori Td :=
Rd/Γ with Γ = (LZ)d. The translation group Γ has a natural embedding as a lattice
in Rd. To Γ there is associated a uniquely defined dual lattice Γ∗ (called a reciprocal
lattice in physics): Γ∗ =

{
γ∗ ∈ Rn : γ · γ∗ ∈ Z for all γ ∈ Γ

}
. With γ = Ln, n ∈ Zd,

γ∗ = 1/Lm, m ∈ Zd, the eigenvalues of –ΔTd are given by
(
λγ∗
)

γ∗∈Γ∗ = 4π2
∥∥∥γ∗∥∥∥2

with eigenvectors
(
eγ∗
)

γ∗∈Γ∗ =
(
e2πi(γ∗·x)

)
. Furthermore, the length spectrum of the

classical periodic orbits on Td is given by
(∥∥∥γ∥∥∥)

γ∈Γ
. Using the Poisson summa-

tion formula as in the case d = 2, it is straightforward to derive a trace formu-
la on Td from which one obtains, for example, for the trace of the heat kernel
(t > 0)

ΘTd (t) := Tr etΔ
Td =

∑
γ∗∈Γ∗

e–4π2‖γ∗‖2 t =
|Ω|

(4πt)d/2

∑
γ∈Γ

e–‖γ‖2/4t

=
|Ω|

(4πt)d/2
+ O
(
t–d/2e–L2/4t

)
(t → 0+). (1.44)

Here the first term on the right-hand side corresponding to the identity element
I ∈ Γ with ‖I‖ = 0 yields via the Tauberian theorem of Karamata (see Theorem 1.1
in Section 1.6) Weyl’s law for Td (λ → ∞)

N(λ) =
|Ω|

(4π)d/2Γ(1 + d/2)
λd/2 + O

(
λd/2
)

, (1.45)

but the trace formula yields, in addition, an exact expression for the remain-
der term in the same way as discussed in detail for T2 in Section 1.3.9 be-
low.

The case d = 3 has important applications in several fields. For example, in solid
state physics, chemistry and crystallography, one identifies the lattice Γ with the
atomic structure of crystals. Furthermore, the reciprocal lattice Γ∗ is very useful
in analyzing diffraction phenomena in light and neutron scattering off crystals. In
cosmology it has been proposed that the spatial section of our Universe is given by
a 3-torus whose fundamental domain is a cube with side length L � 5 ~ 1026 m �
5.6 ~ 1010 light years [69].

Finally we would like to mention that the case d = 16, i.e. the tori R16/Z16 have
played an important role in the attempts to answer Kac’s question [9], since it had
already been noticed by John Milnor in 1964 that the tori T16 give examples of
nonisometric compact manifolds with the same spectrum of the Laplacian [70].
The construction of these lattices for d = 16 had already been found by Witt in
1941 [71].
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1.3.7

Going Beyond Weyl’s Law: One can Hear the Periodic Orbits

of the Geodesic Flow on the Torus T2

Let us consider another admissible spectral function h( p) in the trace formu-
la (1.42) which is slightly more general than the one used in the previous section
for the heat kernel:

h( p) := J0( ps)e–p2 t , s ∈ R, t > 0 .

With

ĥ(x) =
1

2π

∞∫
0

pJ0( ps)e–p2tJ0( px)dp =
1

4πt
e–(s2+x2)/4tI0

( sx
2t

)
(1.46)

(I0(z) is the modified Bessel function) we arrive at the trace formula (s ∈ R, t > 0)

G(s, t) := Tr
(
J0

(
s(–ΔT2 )1/2

)
etΔ

T2
)

=
∞∑

n=0

r(n)J0

(
s
√

λ̄n

)
e–λ̄nt

=
|Ω|
4πt

e–s2/4t +
|Ω|
4πt

∞∑
n=1

∞∑
k=1

r
(
k2l2n
)

e–(s2+k2l2n)/4tI0

(
skln
2t

)
. (1.47)

Since I0(0) = 1, it follows that (1.47) coincides in the limit s → 0 with the trace
of the heat kernel (1.43), G(0, t) = ΘT2 (t). Performing on the other hand for fixed
s > 0 the limit t → 0+ i.e. eliminating the “regulator” t, one obtains the remarkable
relation (s > 0)

G(s, 0) =
∞∑

n=0

r(n)J0

(
s
√

λ̄n

)
=
|Ω|
2π

∞∑
n=1

∞∑
k=1

r
(
k2l2n
)

kln
δ(s – kln) , (1.48)

which is to be understood as an identity in the sense of distributions. Here we have
used the asymptotic expansion (valid for z → +∞)

I0(z) =
1

√
2πz

ez
(
1 + O

(
1
z

))
and the delta-sequence

1

2
√

πt
e–x2/4t → δ(x) (t → 0+) .

Relation (1.48) tells us that the formal trace G(s, 0) = Tr J0

(
s(–ΔT2 )1/2

)
yields a well-

defined distribution whose singular support is given for s > 0 by

singsupp G(s, 0) =
{
kln
}
, k ∈ N ,

i.e. by the primitive length spectrum
{
ln
}

of the geodesic flow on the torus and
the nonprimitive length spectrum

{
kln
}
, k v 2. Thus the eigenvalues

{
λ̄n

}
of the
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Laplacian on T2 together with their multiplicities
{
r(n)
}

“know” the length spectrum
of the closed geodesics of the classical motion on T2, i.e. one can hear the periodic
orbits of the torus! Since the torus is uniquely given by its area |Ω| and its length
spectrum

{
ln
}
, we can conclude that the complete shape of the torus is audible.

A slightly different operator has been studied by Chazarain [72], Colin de
Verdière [73, 74], and Duistermaat and Guillemin [75, 76], where the Bessel func-
tion J0 is replaced by cos

(
s(–Δ)1/2

)
respectively exp

(
is(–Δ)1/2

)
.

1.3.8

The Spectral Zeta Function on the Torus T2

Define for s ∈ C, Re s > 1, the spectral zeta function on T2:

�T2 (s) := Tr′ (–ΔT2 )–s =
∞∑

n=1

r(n)

λ̄s
n

=
|Ω|s

(2π)2s

∞∑
n=1

r(n)
ns , (1.49)

where the prime at the trace denotes that the eigenvalue λ̄0 = 0 has been omitted.
(Zeta functions of this type for general Laplace–Beltrami operators were introduced
in [77, 78] following a suggestion of Weyl. See also [14].) With the help of

1
ns =

1
Γ(s)

∞∫
0

τs–1e–nτ dτ, n > 0, Re s > 0 ,

we obtain for Re s > 1

Γ(s)�T2 (s) =

1∫
0

ts–1 [ΘT2 (t) – 1
]

dt +

∞∫
1

ts–1 [ΘT2 (t) – 1
]

dt . (1.50)

Hence �T2 (s) is the Mellin transform of ΘT2 (t) with the eigenvalue zero omitted.
Since

ΘT2 (t) = 1 + O
(
e–(4π2/|Ω|)t

)
for t → ∞ ,

the second integral has an analytic continuation to the whole complex s-plane as
an entire function. Inserting in the first integral for ΘT2 (t) the expansion (1.43), we
obtain for Re s > 1

�T2 (s) =
|Ω| /(4π)

s – 1
+ F(s) , (1.51)

where F(s) is an entire function. Thus we can extend the Dirichlet series (1.49)
meromorphically to all s ∈ C having only one simple pole at s = 1 with residue
|Ω| /(4π), which is given by the area of the torus. This pole is a direct consequence
of the leading Weyl term in the expansion (1.43). It thus follows that the Dirichlet

series
∞∑

n=1
r(n)/ns diverges for Re s u 1, but is convergent for Re s > 1, which will be

important in the explicit formula for the remainder term in Weyl’s law. Note that
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there exists the following closed expression, which can be considered as another
generating function of r(n) (see for example [79, pp. 265])

∞∑
n=1

r(n)
ns = 4�(s)L(s)

in terms of the Riemann zeta function �(s) and the Dirichlet L-series L(s) := 1 –
1/3s + 1/5s – . . . with L(1) = π/4, which has an entire extension.

The result (1.51) holds in general for a large class of eigenvalue problems; see for
example reference [47] for the Laplace–Beltrami operator on compact Riemannian
surfaces of genus g v 2. In the case of the Dirichlet Laplacian acting on a smooth
bounded open set Ω ⊂ Rd one can show [80] that �Ω(s) := Tr

(
–ΔD

Ω

)–s
possesses

a meromorphic analytic continuation into the complex s-place with a leading sim-
ple pole at s = d/2 and residue |Ω| /

(
(4π)d/2 Γ(d/2)

)
. In particular, s = 0 turns out to

be a regular point such that the first derivative at s = 0, �′Ω(0) , is well defined. This
fact is then used to regularize the functional determinant of –ΔD

Ω by [80]

det
(
–ΔD

Ω

)
:= exp

(
–�′Ω(0)

)
.

This method was introduced into physics by Stephen Hawking [81] as a convenient
way to compute the determinants arising in the Feynman path integral approach
to quantum field theory and quantum gravity. For applications of this method, see
for example [82, pp. 37–43] in the case of quantum mechanics, and [67] in the case
of string theory.

1.3.9

An Explicit Formula for the Remainder Term in Weyl’s Law

on the Torus T2 and for the Circle Problem

To derive N(λ) from the trace formula (1.37), we choose the function h( p) =
θ
(
λ – p2

)
, λ > 0. We then obtain with

1
2π

∞∫
0

ph( p)dp =
1

2π

√
λ∫

0

pdp =
λ

4π

and

ĥ(x) =
1

2π

√
λ∫

0

pJ0( px)dp =

√
λ

2πx
J1

(√
λx
)

the relation

N(λ) =
|Ω|
4π

λ +
L

2π

√
λ

∞∑
n=1

r(n)
√

n
J1

(
L
√

nλ
)

. (1.52)
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This equation was found for the first time in Hardy’s paper [54] who writes in
a footnote: “The form of this equation was suggested to me by Mr. S. Ramanujan,
. . . ”. (As we shall see below, the sum in (1.52) is not absolutely convergent since
the function h( p) used in the derivation is not continuous. Relation (1.52) can be
derived, however, by using an appropriate smoothing [65, 83].)

In order to study the asymptotic behavior of the remainder term, we employ the
asymptotic formula

J1(x) =

√
2

πx
cos
(
x –

3π
4

)
+ O
(

1
x3/2

)
(x → ∞) ,

and obtain in the limit λ → ∞

Nfl(λ) = λ1/4 1
π

√
L

2π

∞∑
n=1

r(n)
n3/4 cos

(
L
√

λn –
3π
4

)
+ O

⎛⎜⎜⎜⎜⎜⎝ 1
λ1/4

∞∑
n=1

r(n)
n5/4

⎞⎟⎟⎟⎟⎟⎠ , (1.53)

where we have defined the “fluctuating part” of the counting function by Nfl(λ) :=
N(λ) –

(|Ω| /(4π)
)

λ. Nfl(λ) describes the fluctuations of N(λ) about the mean be-
havior N(λ) :=

(|Ω| /(4π)
)

λ given by Weyl’s law, see (1.41). In Figure 1.1 we show
a plot of N(λ) for L = 2π (which implies N(λ) = ν(λ) and P(λ) = Nfl(λ) for the re-
mainder term in Gauss’ circle problem) for small values of λ == x (0 u x u 50).
Weyl’s law is indicated as a straight line. One observes that the Weyl term does
indeed describe the mean behavior of the staircase function ν(x) very well, even at
small values of x. The fluctuating part P(x) is shown in Figure 1.2 for small values
(0 u x u 50) and for large values (1011 u x u 1011 + 107) of x and shows a very
erratic behavior fluctuating about zero. In order to understand this behavior, one
has to study the series in (1.53), which is a trigonometric series and therefore more

difficult to control than a Fourier series. (Since
∞∑
1

r(n)/n5/4 < ∞, see Section 1.3.8,

the second term in (1.53) is bounded by λ–1/4, and thus can be neglected.) Due to

the divergence of the sum
∞∑
1

r(n)/n3/4, the trigonometric sum is only conditionally

convergent, explaining the difficulty in proving Hardy’s conjecture which amounts
to the bound O (λε) for every ε > 0 for this sum. (It is possible, however, to re-
place the sharp counting function N(λ) by a smooth counting function depending
on a smoothness parameter which leads to better convergence properties, see [65]
and [83].)

In order to quantify the numerical observation that Nfl(λ) oscillates about zero,
let us calculate the mean value of P(x) (= Nfl(x) for L = 2π):

P̄(x) :=
1
x

x∫
0

P(y)dy .

We then obtain from (1.52) using

x∫
0

√
yJ1
(
2π

√
ny
)

dy =
x

π
√

n
J2

(
2π

√
nx
)
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Figure 1.1 The counting function ν(x) for the Gaussian circle

problem (respectively for a torus with L = 2π). The straight line

shows the leading term πx (Weyl’s law).

and the asymptotics of the Bessel function (x → ∞)

P̄(x) =
1
π

∞∑
n=1

r(n)
n

J2

(
2π

√
nx
)

=
x–1/4

π

∞∑
n=1

r(n)
n5/4 cos

(
2π

√
nx –

5π
4

)
+ O
(
x–3/4

)
, (1.54)

which implies, since the sums in (1.54) are now absolutely convergent, lim
x→∞

∣∣∣P̄(x)
∣∣∣ =

0 [51, pp. 206]. A method to smooth possible spikes in P(x), which originates in
a paper by Cramér in 1922 [84], is to study higher moments of P(x)

Mk(x) :=
1
x

x∫
0

∣∣∣P(y)
∣∣∣k dy (1.55)

for k > 0 and

mk(x) :=
1
x

x∫
0

(
P(y)
)k dy (1.56)

for k = 1, 3, 5, . . .. (Note that m1(x) = P̄(x)). The following results are known [85]

Mk(x) → Ckxk/4, k ∈ [0, 9]
mk(x) → ckxk/4, k = 3, 5, 7, 9.

(x → ∞) (1.57)
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Figure 1.2 The remainder term P(x) of the Gaussian circle

problem (respectively the fluctuating part of the torus problem

with L = 2π) is shown in different intervals.

(C2 = 1/(3π2)
∞∑

n=1
r(n)2/n3/2 [84]). It follows that the moments (1.57) are consistent

with Hardy’s conjecture, P(x) = O
(
x1/4+ε

)
, since this implies

(
mk(x)

)1/k = O
(
x1/4
)

resp.
(
Mk(x)

)1/k = O
(
x1/4
)
, but of course they do not prove it. Nevertheless it seems

justified to say that the “mean” behavior of P(x) is proportional to x1/4 for x → ∞.

1.3.10

The Value Distribution of the Remainder Term in the Circle Problem

In the preceding section we saw that the remainder term P(x) in the circle problem
(respectively the fluctuating part Nfl(λ) in Weyl’s law for the torus problem) is a very
irregular function fluctuating about zero (see Figures 1.1 and 1.2). It thus appears
natural to consider P(x) as a random function of x and to study its statistical proper-
ties in the limit x → ∞, like its moments as in Equations (1.55) and (1.56), its limit
distribution (if it exists), correlations etc., rather than to estimate its magnitude,
i.e. trying to prove Hardy’s conjecture. Since the moment M2(x), see (1.55), is the
variance of P(x), an obvious quantity to study is the normalized remainder term

W(x) :=
P(x)√
M2(x)

.

Since M2(x) → C2
√

x for x → ∞, it turns out to be convenient to consider the
function

F( p) :=
P( p2)
√

p
=

1
π

∞∑
n=1

r(n)
n3/4 cos

(
2π

√
np –

3π
4

)
+ O
(

1
p

)
( p → ∞) (1.58)

as a function of p :=
√

x > 1 and F( p) = 0 for p < 1. Obviously, F( p) fluctuates about
zero and its mean value vanishes asymptotically for p → ∞, whereas Cramér’s
result [84] implies that the second moment of F( p) exists. There now arise the
following questions. i) Does F( p), where p is randomly chosen from the interval
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1, pm

]
, have for pm → ∞ a limit distribution f (α)dα with probability density f (α)?

ii) Assuming that f (α) exists, what is its form? In view of the erratic behavior of
P( p2) and thus of F( p), one may guess that the central limit theorem can be applied
to F( p) and thus f (α) should be a Gaussian.

The study of the distribution of F( p) was initiated by Heath-Brown [85] who
proved that F( p) has indeed a distribution function f (α) in the sense that, for any
interval [a, b] ⊂ C we have

lim
pm→∞

1
pm

μ
{
p ∈ [0, pm

]
: F( p) ∈ [a, b]

}
=

b∫
a

f (α)dα (1.59)

(here μ denotes the Lebesgue measure.) Moreover, he proved that f (α) can be ex-
tended to an entire function on C and decreases faster than polynomially on the
real line as |α| → ∞.

The results of Heath-Brown were developed further by Bleher, Cheng, Dyson and
Lebowitz [86] who proved

lim
pm→∞

1
pm

pm∫
0

g(F( p))ρ
(

p
pm

)
dp =

∞∫
–∞

g(α)f (α)dα (1.60)

for every piecewise continuous bounded function g(x) on R and for an arbitrary
probability density ρ(x) v 0 on [0, 1]. In addition, they showed that for every ε > 0
there exists α0 = α0(ε) > 0 such that, on the real line α ∈ R, we have the upper
bound

0 u f (α) < e–|α|4–ε
(1.61)

when |α| > α0, and that the cumulative distribution C(α) :=
α∫

–∞
f (α′)dα′ satisfies for

every α > α0 the lower bound

C(–α), 1 – C(α) > e–α4+ε
. (1.62)

These results [85, 86] came as a great surprise since they imply that f (α) decreases
for |α| → ∞ roughly as e–α4

and thus faster than a Gaussian density! A numerical
computation of f (α) is shown in Figure 1.3 and compared with a normal Gaussian
distribution. The deviation from a Gaussian distribution is clearly visible; more-
over, one observes that f (α) is skewed towards positive values of α.

In the next section we shall formulate a conjecture which states that the non-
Gaussian behavior of f (α) has its origin in the fact that the circle problem can
be related to the remainder term of Weyl’s law for a quantum mechanical system
whose corresponding classical system (i.e. the geodesic flow on a torus with L = 2π)
is integrable and thus regular.

The proof of the properties (1.60)–(1.62) is based on the fact that F( p) is an almost
periodic function of Besicovitch class B2 [86, 87], which means

lim
N→∞

lim
pm→∞

1
pm

pm∫
0

∣∣∣∣∣∣∣F( p) –
1
π

N∑
n=1

r(n)
n3/4 cos

(
2π

√
np –

3π
4

)∣∣∣∣∣∣∣
2

dp = 0 . (1.63)
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Figure 1.3 The distribution function f (α) is shown for the circle

problem in comparison with a Gaussian normal distribution

(dashed curve).

1.3.11

A Conjecture on the Value Distribution of the Remainder Term in Weyl’s Law

for Integrable and Chaotic Systems

In this section we would like to mention an application of Weyl’s law in quantum
mechanics. Let us consider a bound quantum system i.e. a system whose quantum
Hamiltonian has a purely discrete energy spectrum

{
λn
}
n∈N. To have a specific ex-

ample in mind, think of two-dimensional quantum billiards on a bounded domain
Ω with area |Ω|, for which the time-independent Schrödinger equation reads (in
appropriate units) –ΔΩun(x) = λnun(x) imposing (for example) Dirichlet or Neu-
mann boundary conditions on ∂Ω (see (1.1) and (1.2)). Moreover, let us assume
that Weyl’s law holds in the form

N(λ) = N(λ) + Nfl(λ) , (1.64)

where the smooth part N(λ) describes asymptotically the mean behavior of the
counting function N(λ), i.e. the fluctuating remainder term Nfl(λ) satisfies

1
λ

λ∫
λ1

Nfl(λ′)dλ′ → 0 for λ → ∞ . (1.65)

For “generic” two-dimensional billiards, there exists a three-term formula for N(λ)

N(λ) =
|Ω|
4π

λ ∓ |∂Ω|
4π

√
λ + C , (1.66)

where the first two terms correspond to Weyl’s conjecture (see (1.6) and the re-
marks after (1.7)), and the constant C takes the curvature of ∂Ω and corner correc-
tions into account (see (1.67)).
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The definition of what is meant by “generic” is a very subtle subject, the dis-
cussion of which is beyond the scope of this contribution. Examples of generic
and nongeneric systems are discussed in [88]. A rigorous definition requires the
introduction of geometrical concepts like “nonperiodicity” and “nonblocking”; see
for example [89]. To derive the smoothed counting function N(λ), several averag-
ing procedures have been invented, in particular by Brownell [90], which are de-
scribed in [91]. For a simply connected domain Ω possessing piecewise smooth
arcs of length γi and corners of angle ϕj ∈ (0, 2π] one obtains [91, p. 62] (1.66)
with

C =
1

12π

∑
i

∫
γi

κ(l)dl +
1
24

∑
j

(
π
ϕj

–
ϕj

π

)
, (1.67)

where κ(l) (l ∈ arc γi ⊂ ∂Ω) denotes the curvature of the arc γi. It should be noted,
however, that the three-term formula (1.66) does not imply Nfl(λ) = O(1). On the
contrary, the problem of determining α0 = inf α in the estimate Nfl(λ) = O(λα)
is a very difficult one; the circle problem discussed in Section 1.3.2 being an
illustrative example.

To compare the quantal spectra of different systems, one has to get rid of the
system-dependent constants in N(λ), which is achieved by “unfolding” the spectra
by xn := N(λn). The unfolded spectrum {xn}n∈N has by construction a unit mean
level spacing, and thus the corresponding counting function N̂(x) := # {xn u x}
reads N̂(x) = x + N̂fl(x). Obviously,

1
x – x1

x∫
x1

N̂fl(y)dy → 0 for x → ∞. (1.68)

In analogy to the approach discussed in Section 1.3.10 for the circle problem, we
are interested in the statistical properties of the normalized remainder term

W(x) :=
N̂fl(x)√

D(x)
, (1.69)

where D(x) denotes the variance (� is a constant to be given below)

D(x) :=
�

x – x1

x∫
x1

(
N̂fl(y)

)2
dy . (1.70)

We now consider W(x) as a random variable, where x is chosen randomly from
the interval [x1, xm] and ask whether W(x) possesses in the limit xm → ∞ a limit
distribution. If a limit distribution exists, it has by construction a second moment
of one (if the second moment exists) and a first vanishing moment.
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We are now in a position to formulate the following

Conjencture 1.1 ([92, 93]) For bound conservative and scaling quantum systems the
quantity W(x), Equation (1.69), possesses for x → ∞ a limit distribution with zero mean
and unit variance. This distribution is absolutely continuous with respect to Lebesgue
measure on the real line with a density f (α) i.e.

lim
xm→∞

1
xm

xm∫
x1

g(W(x))ρ
(

x
xm

)
dx =

∞∫
–∞

g(α) f (α)dα , (1.71)

where g(x) is a bounded continuous function on R, and ρ(x) v 0 a probability density on
[0, 1]. Furthermore,

∞∫
–∞

αf (α)dα = 0,

∞∫
–∞

α2f (α)dα = 1 . (1.72)

If the corresponding classical system is strongly chaotic, having only isolated and unstable
periodic orbits, then f (α) is universally a Gaussian,

f (α) =
1
√

2π
e–α2/2 . (1.73)

In contrast, a classically integrable system leads to a system-dependent non-Gaussian
density f (α).

Here a few remarks are in order. i) The normalization used in the defini-
tion (1.69) is crucial in order for a limit distribution to exist since in all interesting
cases D(x) diverges for x → ∞. From Berry’s [94] semiclassical analysis one obtains
for generic integrable billiards

D(x) → c
√

x, x → ∞ , (1.74)

where c is some nonuniversal constant. (For rigorous results, see the discussion of
the torus billiard in Section 1.3.9 and [95]). In contrast, for generic classically chaotic
systems one expects

D(x) → 1
2π2�

ln x, x → ∞ , (1.75)

with � = 1 for systems with anti-unitary symmetry (for example time-reversal sym-
metry) and � = 2 for systems without such a symmetry. ii) The constant � in (1.70)
takes the value � = 2/3, if D(x) obeys (1.74), and � = 1 in the case of (1.75).
iii) The conjecture is proven for some integrable systems like the torus (Gauss
circle) problem, see [96] for a review. iv) The conjecture has been checked numer-
ically for several integrable (like the isospectral billiard shown in Figure 1.5) and
chaotic systems [88, 93] and has been found to hold with high statistical signifi-
cance. v) In Figure 1.4 we show the numerical evaluation of f (α) for the strong-
ly chaotic Hadamard–Gutzwiller model [64] which is the quantum version of the
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geodesic flow on a compact Riemann surface of genus two (for details, see Sec-
tion 1.4). For this system there exists the rigorous Selberg trace formula [45] (see
Equation (1.95) below) which yields for the remainder term N̂fl(x) the explicit ex-
pression (see (1.107) below)

N̂fl(x) =
1
π

arg Z
(

1
2

+ ix
)

(1.76)

in terms of the Selberg zeta function Z(s) evaluated on the critical line s = 1/2 + ix.
For the numerical computation in Figure 1.4 we used the first 6000 eigenvalues
with positive parity (computed by the boundary-element method [97]) of a generic
(nonarithmetic) Riemann surface whose fundamental domain in the Poincaré-disk
model for hyperbolic geometry is described in [97]. We conclude that the computed
histogram is in nice agreement with the conjecture (1.73). vi) In many respects the
nontrivial zeros of the Riemann zeta function �(s) behave like the scaled eigenval-
ues of a hypothetical classically chaotic system without anti-unitary symmetry, see
Sections 1.4.8 and 1.4.9. The analogue of (1.76) reads

N̂fl(x) =
1
π

arg �
(

1
2

+ ix
)

(see (1.108) below) counting only the zeros {xn}n∈N, �(1/2 + ixn) = 0, with Re xn > 0
and –1/2 < Im xn < 1/2 . It has been shown by Selberg’s moment method [98–100]
that the corresponding quantity W(x), with D(x) ~ 1/2π2 ln ln x, has a Gaussian
limit distribution in accordance with the conjecture. For a numerical calculation
of f (α) using the first 50 000 zeros and the 50 000 zeros starting from the 1020 +
143 780 420 th zero, respectively, see Figure 8 in [101], which shows that the con-
vergence of the probability distribution to the proven Gaussian limit distribution is
very slow.
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Figure 1.4 The distribution function f (α) is shown for the

strongly chaotic Hadamard-Gutzwiller model in comparison

with the conjectured Gaussian normal distribution (dashed

curve).
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1.4

Weyl’s Law with Remainder Term. II

1.4.1

The Laplace–Beltrami Operator on d-Dimensional Compact Riemann Manifolds Md

and the Pre-Trace Formula

In many physical applications (ergodic theory, quantum mechanics, nonlinear op-
tics, general relativity, string theory, and cosmology) one has to deal with the wave
equation (or heat or Schrödinger equation) on non-Euclidean spaces. Important ex-
amples are d-dimensional manifolds or orbifolds Md endowed with a Riemannian
metric for which the Euclidean Laplacian has to be replaced by the corresponding
Laplace–Beltrami operator. For simplicity, we discuss only manifolds with constant
Gaussian curvature K.

Let us first consider smooth compact Riemannian manifoldsMd without bound-
ary which are well studied and for which one can derive exact trace formulae
and therefore can obtain full information on Weyl’s law and even on Carleman’s
law [102, 103] involving the eigenfunctions. The simplest case of zero curvature
K = 0 i.e. flat tori Md

Γ = Rd/Γ , where Γ is a group of motions isomorphic to
Zd, which are compact Riemannian manifolds, has already been discussed in Sec-
tion 1.3.

The case of homogeneous manifolds with constant positive curvature K = +1 is
also well understood but will not be treated here.

The case of compact manifolds with constant negative curvature K = –1 and di-
mension d v 2 is highly nontrivial since the eigenvalues and eigenfunctions of the
Laplace–Beltrami operator corresponding to the non-Euclidean (hyperbolic) metric
are not known analytically. The geodesic flow i.e. the free motion of a point par-
ticle on these hyperbolic manifolds was already studied by Jacques Hadamard in
1898 [104, 105] and has played an important role in the development of ergodic
theory ever since. Hadamard proved that all trajectories in this system are unstable
and that neighboring trajectories diverge in time at an exponential rate, the most
striking property of deterministic chaos. In 1980, Martin Gutzwiller drew attention to
this system as a prototype example for quantum chaos [106]. Today the quantum sys-
tem governed by the free Schrödinger equation i.e. the eigenvalue problem of the
Laplace–Beltrami operator on these hyperbolic manifolds (or orbifolds), is known
as the Hadamard–Gutzwiller model [64, 65, 107]. In dimension d = 3, hyperbolic
manifolds are possible candidates for the spatial section of the Universe and are
investigated in cosmology [108].

In order to define a hyperbolic manifold, one considers IsoHd, the group of
isometries on Hd (i.e. the distance-preserving bijections on Hd), where Hd is the
d-dimensional hyperbolic space. The action of an isometry γ of Hd is denoted by
γ(z) with z ∈ Hd. Take a discrete subgroup Γ of IsoHd and identify all points of
Hd which can be transformed into each other by an element of Γ . Those points are
called Γ-equivalent, and we put them into an equivalence class Γ(z) =

{
γ(z) : γ ∈ Γ

}
with z ∈ Hd. The set of those classes defines the hyperbolic d-manifold represented
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by the quotient space Md := Hd/Γ =
{
Γ(z) : z ∈ Hd

}
. To visualize a given manifold,

we have to take one representative from each class such that the set of all repre-
sentatives yields a simply connected set in Hd, called the fundamental domain ΩΓ .
Here we discuss only compact manifolds whose fundamental domain is of finite
volume, |ΩΓ | < ∞. One can cover all of Hd with Γ-translates of ΩΓ . This produces
a tessellation of Hd in analogy to the case discussed in Section 1.3 for flat tori.
The group Γ is then called a hyperbolic crystallographic group or simply a hyper-
bolic lattice. The task is then to study the eigenvalue problem of the hyperbolic
Laplacian –Δu(z) = λu(z), z ∈ Hd, u ∈ L2

(
Hd/Γ , �

)
, where u is automorphic i.e. sat-

isfies u(γ(z)) = �̄(γ)u(z) for all γ ∈ Γ and z ∈ Hd. Here � is any one-dimensional
unitary representation of Γ , also called a character which satisfies

∣∣∣�(γ)
∣∣∣2 = 1 for

all γ ∈ Γ . Due to the compactness of Md, the spectrum of –Δ is discrete with
0 = λ0 < λ1 u λ2 u . . .. (whether λ0 = 0 exists depends on Md).

Let us consider the resolvent kernel GΓ (z, z′; λ) on Hd/Γ for f ∈ L2
(
Hd/Γ , �

)
[
(–Δ – λ)–1 f

]
(z) =

∫
ΩΓ

GΓ (z, z′; λ) f (z′)dμ(z′) , (1.77)

where λ ∈ C\ [0,∞). We then obtain the correlation function [107]

CF(z, z′) :=
∑

n

F(λn)en(z)ēn(z′) =
1
π

∞∫
0

F(λ′) disc GΓ (z, z′; λ′)dλ′ , (1.78)

where the spectral function F(λ) is assumed to obey the following sufficient condi-
tions:

– F(λ) is holomorphic in a strip enclosing the positive real axis,
– F(λ) drops faster than λ–d/2 for λ → ∞.

The last condition is imposed to ensure convergence of the above expression for all
z, z′ ∈ Hd including the diagonal z = z′. For z =/ z′ weaker conditions are sufficient.
Furthermore, we have introduced the discontinuity of GΓ across the cut in the λ-
plane

disc GΓ (z, z′; λ) := lim
ε→0+

1
2i
[
GΓ (z, z′; λ + iε) – GΓ (z, z′; λ – iε)

]
.

Since CF(z, z′) is identical to the automorphic kernel of the operator F(–Δ), we
obtain the pre-trace formula∑

n

F(λn) = Tr F(–Δ) =
∫
ΩΓ

CF(z, z)dμ(z) .

1.4.2

The Sum Rule for the Automorphic Eigenfunctions on Md

In the next step, we make use of the alternative representation of the resolvent
kernel which expresses the Γ-invariant kernel GΓ as a sum (“method of images”)



40 1 Weyl’s Law

over the free resolvent kernel G(d)
0 (z, z′; λ) on Hd

GΓ (z, z′; λ) =
∑
γ∈Γ

�(γ)G(d)
0 (z, γ(z′); λ) .

The crucial point now is that G(d)
0 is explicitly known for all d v 2, see [109]. In-

troduce the wave numbers pn via p0 :=
(
(d – 1)/2

)
i and pn :=

√
λn – (d – 1)2/4 v 0

for n v 1. Here p0 belongs to λ0 = 0 (if it exists), and pn, n v 1, to the eigenvalues
λn v (d – 1)2/4, where we have assumed that there are no so-called “small eigenval-
ues” with 0 < λn < (d – 1)2/4. It is now convenient to replace the spectral function
F(λ) by a new spectral function

h( p) := F
(
p2 +

(d – 1)2

4

)
= F(λ) : C→ C ,

which has to fulfil the following sufficient conditions

• h(–p) = h( p)

• h( p) is holomorphic in the strip
∣∣∣Im p

∣∣∣ u d – 1
2

+ ε, ε > 0 (1.79)

• h( p) = O
(
p–d–δ

)
, δ > 0 for

∣∣∣p∣∣∣→ ∞.

Then the correlation function takes the final form of a “sum rule” for the automorphic
eigenfunctions en (d v 2) [107]

∞∑
n=0

h( pn)en(z)ēn(z′) =
2
π

∑
γ∈Γ

�(γ)

∞∫
0

ph( p)Φ̂(d)(cosh d(z, γ(z′)); p)dp , (1.80)

where d(z, z′) denotes the hyperbolic distance between arbitrary points z, z′ ∈ Hd.
d(z, z′) is a point-pair invariant, i.e. d(γ(z), γ(z′)) = d(z, z′) for all γ ∈ Γ and z, z′ ∈
Hd. For z = z′ the distance τγ := d(z, γ(z)) is the length of a closed orbit, but which
is in general not a periodic one. The function Φ̂(d)(y; p) is explicitly given by (y v 1)

Φ̂(d)(y; p) =
π

(2π)d/2

(y2 – 1)(2–d)/4

2p

∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 P(2–d)/2
–1/2+ip(y) , (1.81)

where Pμ
ν (y) is the associated Legendre function of the first kind.

1.4.3

Weyl’s Law on Md and its Generalization by Carleman

At this point let us introduce the generalized counting function

N(d)
Γ (λ; z, z′) :=

∑
λnuλ

en(z)ēn(z′), (1.82)
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which for z = z′ gives Carleman’s function
∑

λnuλ

∣∣∣en(z)
∣∣∣2 [102,103] and after integrating

over ΩΓ the usual counting function

N(d)
Γ (λ) =

∫
ΩΓ

N(d)
Γ (λ; z, z)dμ(z) =

∑
λnuλ

1 (1.83)

(since
∫

ΩΓ

em(z)ēn(z)dμ(z) = δmn).

We then obtain from the sum rule (1.80) the explicit formula

dN(d)
Γ (λ; z, z′) = dN

(d)
Γ (λ; z, z′) + dN(d)

Γ ,fl(λ; z, z′) (1.84)

with

dN
(d)
Γ (λ; z, z′) :=

1
π

Φ̂(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝cosh d(z, z′);

√
λ –
(

d – 1
2

)2 ⎞⎟⎟⎟⎟⎟⎟⎟⎠ dλ (1.85)

and

dN(d)
Γ ,fl(λ; z, z′) :=

1
π

∑
γ∈Γ ′

�(γ)Φ̂(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝cosh d(z, γ(z′));

√
λ –
(

d – 1
2

)2 ⎞⎟⎟⎟⎟⎟⎟⎟⎠dλ ,

where Γ ′ := Γ\ {I} (I denotes the identity) and �(I) = 1 was used. From our discus-
sion of the trace formula for the tori Td we expect that (1.85) gives the asymptotical-
ly leading smooth contribution to the generalized counting function (1.82). With

d(z, z) = 0 we obtain from (1.85) for z = z′
(

p :=
√

λ –
(
(d – 1)/2

)2 )

N
(d)
Γ (λ; z, z) :=

λ∫
((d–1)/2)2

dN
(d)
Γ (λ; z, z) =

2
π

p∫
0

Φ̂(d)(1; p′
)
p′ dp′ ,

which no longer depends on z! Here Φ̂(d) (1; p
)

follows from (1.81)

Φ̂(d)(1; p) =
π

(2π)d/2

1
2p

∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 lim
y→1+

P(2–d)/2
–1/2+ip(y)

(y2 – 1)(d–2)/4

=
d

(4π)d/2Γ (1 + d/2)
· π

2p
·
∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 (1.86)

and thus

N
(d)
Γ (λ; z, z) =

d
(4π)d/2Γ(1 + d/2)

p∫
0

∣∣∣∣∣∣Γ
(
ip′ + (d – 1) /2

)
Γ(ip′)

∣∣∣∣∣∣2 dp′ . (1.87)
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Using the asymptotic expansion∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 = pd–1
(
1 + O

(
1
p2

))
( p → ∞) ,

we immediately obtain

N
(d)
Γ (λ; z, z) =

1
(4π)d/2Γ(1 + d/2)

λd/2 + O
(
λd/2–1

)
(λ → ∞) (1.88)

and after integration over ΩΓ the non-Euclidean analog of Weyl’s law (d v 2)

N
(d)
Γ (λ) =

|ΩΓ |
(4π)d/2Γ(1 + d/2)

λd/2 + O
(
λd/2–1

)
. (1.89)

Since one can show that the remainder term satisfies N(d)
Γ ,fl(λ; z, z) = O

(
λd/2
)
, we

obtain Carleman’s law

N(d)
Γ (λ; z, z) =

∑
λnuλ

∣∣∣en(z)
∣∣∣2 =

λd/2

(4π)d/2Γ (1 + d/2)
+ Oz

(
λd/2
)

(λ → ∞) , (1.90)

which is a generalization of Weyl’s law since it is not only a statement about
the eigenvalues but also about the eigenfunctions. Note, however, that the sum
rule (1.80) – being an exact explicit expression – contains much more information.
To see this, let us consider the simplest case d = 2 in more detail.

1.4.4

The Selberg Trace Formula and Weyl’s Law

In the case d = 2 we consider compact Riemann surfaces M2 = H2/Γ of genus
g v 2 with Γ a strictly hyperbolic Fuchsian group of the first kind, Γ ∈ PSL(2,R).
Such groups are characterized by the fact that all their group elements γ (except
the unity I) are hyperbolic. Here we choose for H2 the Poincaré!upper half plane
H2 =

{
z = x + iy : x, y ∈ R, y > 0

}
with the hyperbolic metric

ds2 =
dx2 + dy2

y2 ,

which is invariant under fractional linear transformations:

z → γ(z) :=
az + b
cz + d

,

where a, b, c, d ∈ R and ad – bc = 1. Then the Laplace–Beltrami operator is Δ =
y2
(
∂2/∂x2 + ∂2/∂y2

)
. It is also invariant under the group actions γ ∈ Γ . We then

obtain from (1.81)

Φ̂(2)(y; p) =
1
4

tanh(πp)P–1/2+ip(y) ,
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where Pν(y) denotes the Legendre function of the first kind.
Then the sum rule (1.80) takes the simple form (�(γ) = 1 ∀γ ∈ Γ , p0 = i/2,

pn =
√

λn – 1/4 v 0, n v 1) [110]

∞∑
n=0

h( pn)en(z)ēn(z′) =
1

2π

∑
γ∈Γ

ĥ
(
cosh d

(
z, γ(z′)

))
, (1.91)

where the hyperbolic distance on H2 is given by

cosh d(z, z′) = 1 +
(x – x′)2 + y2 + y′2

2yy′
.

Here ĥ denotes the Mehler transform of the spectral function h which is defined
by the relations

h( p) =

∞∫
1

ĥ(y)P–1/2+ip(y)dy (1.92)

ĥ(y) =

∞∫
0

p tanh(πp)h( p)P–1/2+ip(y)dp. (1.93)

In [107, 110] it was shown that the sum rule (1.91) can be used to compute numer-
ically the eigenfunctions en(z) called nonholomorphic (or automorphic) forms or
Maass waveforms, at least if the eigenvalues λn are not too large. Taking the trace of
the sum rule (1.91) one gets with (1.93) and P–1/2+ip(1) = 1 (the SL(2,R)-invariant
area element on H2 is dμ(z) = dxdy/y2)

∞∑
n=0

h( pn) =
|ΩΓ |
2π

∞∫
0

p tanh(πp)h( p)dp +
1

2π

∑
γ∈Γ ′

∫
ΩΓ

ĥ
(
cosh d

(
z, γ(z)

))
dμ(z) .

(1.94)

To evaluate the sum over γ ∈ Γ ′ involving the integral over ĥ is a nontrivial task
and was first achieved by Atle Selberg [45, 46] leading to the famous Selberg trace
formula

∞∑
n=0

h( pn) =
|ΩΓ |
2π

∞∫
0

p tanh(πp)h( p)dp +
∞∑
{γ}p

∞∑
n=1

l(γ)
2 sinh

(
nl(γ)/2

) h̃ (nl(γ)
)

,

(1.95)

where h̃(x) denotes the Fourier transform of h( p)

h̃(x) :=
1

2π

∞∫
–∞

eipxh( p)dp .
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The sum on the right-hand side of (1.95) runs over the length spectrum
{
l(γ)
}
p of the

primitive periodic orbits of the geodesic flow on the surface M2 = H2/Γ . Notice
that the length spectrum is uniquely given by the conjugacy classes of the hyper-
bolic elements in Γ as can be seen as follows. The elements γ ∈ Γ of the discrete
subgroups of PSL(2,R) can be represented as 2 ~ 2 matrices γ =

(
a b
c d

)
with real en-

tries and det γ = ad – bc = 1. For a strictly hyperbolic group one has, for all γ =/ ±I:∣∣∣Tr γ
∣∣∣ =
∣∣∣a + d

∣∣∣ > 2. The Jordan form of these matrices takes the form
(

a 0
0 1/a

)
with

|a| > 1, and the action of γ gives z → γ(z) = a2z, where N(γ) := a2 is called the norm
of the element γ. Since there exists a unique relationship between the conjugacy
classes in Γ and the homotopy classes of closed paths onH2, one can define in each
class a length l(γ) by the length of the shortest path, and then obtains N(γ) = el(γ),
l(γ) > 0. The length l(γ) is then given by cosh(l(γ)/2) =

∣∣∣Tr γ
∣∣∣ /2.

The sums and integrals in the Selberg trace formula are all absolutely convergent
if the spectral function h( p) satisfies conditions (1.79) for d = 2. The Selberg trace
formula (1.95) can be considered as a generalization and noncommutative ana-
logue of the classical Poisson summation formula (1.33), respectively of the trace
formulae (1.37) and (1.42–1.44) for flat tori.

From the Selberg trace formula (1.95) we can immediately read off the complete
Weyl term of the counting function (see the discussion above for general d v 2)

N
M2

Γ

(
p2 +

1
4

)
:=
|ΩΓ |
2π

p∫
0

p′ tanh(πp′)dp′ , (1.96)

which behaves as

N
M2

Γ

(
p2 +

1
4

)
=
|ΩΓ |

6
p3 + O

(
p5
)

for p → 0 ,

and hence we obtain Weyl’s law on compact Riemann surfaces of genus g v 2

N
M2

Γ

(
p2 +

1
4

)
=
|ΩΓ |
4π

(
p2 –

1
12

)
+ O
(
pe–2πp

)
for p → ∞ . (1.97)

This asymptotic formula contains the standard Weyl term proportional to λ and
the volume |ΩΓ |, no term proportional to

√
λ, since M2 has no boundary, it has

a constant term and then an exponentially small correction. Below we shall also
derive the fluctuating remainder term of the counting function.

1.4.5

The Trace of the Heat Kernel on M2

Choosing the spectral function h( p) = e–( p2+1/4)t, t > 0, we obtain for the trace of
the heat kernel on a compact Riemann surface M2 of genus g v 2 possessing the area
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|ΩΓ | = 4π
(
g – 1
)

(Gauss–Bonnet) the explicit formula (t > 0) [47]

ΘM2
(t) :=

∞∑
n=0

e–λnt =
∞∑

n=0

e–( p2
n+1/4)t = ΘM2

1 (t) + ΘM2

2 (t),

ΘM2

1 (t) := |ΩΓ |
e–t/4

(4πt)3/2

∞∫
0

x
sinh (x/2)

e–x2/4t dx

=
|ΩΓ |
4πt

N∑
n=0

bntn + O
(
tN
)
, t → 0+ ,

b0 = 1, bn =
(–1)n

22nn!

⎡⎢⎢⎢⎢⎢⎢⎣1 + 2
n∑

k=1

(
n
k

) (
22k–1 – 1

)
|B2k|
⎤⎥⎥⎥⎥⎥⎥⎦ , n ∈ N,

ΘM2

2 (t) :=
e–t/4

4
√

πt

∑
{γ}p

∞∑
n=1

l(γ)
sinh

((
nl(γ)

)
/2
) e–n2l2(γ)/4t ,

(1.98)

where B2k are the Bernoulli numbers (b1 = –1/3, b2 = 1/15). This formula is the
generalization of Poisson’s transformation formula for the elliptic theta function
θ3 discussed in Section 1.3.6 to Riemann surfaces of genus g v 2. Thus ΘM2

(t) can
be called the non-Euclidean theta function. The formula (1.98) is quite interesting
since it shows that for compact Riemann surfaces of genus g v 2 the complete
small-t asymptotics is explicitly known, see the term ΘM2

1 , and not just the leading
Weyl term |ΩΓ | /4πt. Furthermore, there even exists a closed expression for this
contribution as an integral which is valid for all t > 0 and is not just an asymptotic
result in the limit t → 0+. Moreover, the remainder term ΘM2

2 also has an explicit
representation as a sum over the length spectrum of periodic orbits. This term is
exponentially small in the limit t → 0+ and is determined by the shortest periodic
orbit with primitive length l(γ1) > 0, i.e. ΘM2

2 (t) = O
(
t–1/2e–l2(γ1)/4t

)
in close analogy

with the behavior on the torus T2.

1.4.6

The Trace of the Resolvent on M2 and Selberg’s Zeta Function

In order to calculate the trace of the resolvent of –Δ on M2, one is led to substi-
tute h( p) =

(
1/4 + p2 – λ

)–1
in the trace formula. This function violates, however,

the asymptotic condition in Equation (1.79) for
∣∣∣p∣∣∣ → ∞, i.e. the resolvent is not

of trace class as a consequence of Weyl’s law which tells us that the eigenvalues
behave as λn = 1/4 + p2

n ~ (4π/ΩΓ ) n for n → ∞. Thus the resolvent has to be regu-
larized properly. A very convenient regularization is given by the following choice.
(Re s, Re σ > 1)

h( p) =
1

p2 + (s – 1/2)2 –
1

p2 + (σ – 1/2)2 ,
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which fulfills all the conditions (1.79) in the trace formula. For the integral (Weyl)
term in the trace formula (1.95) one then obtains

|ΩΓ |
2π

∞∫
0

p tanh(πp)h( p)dp = –
|ΩΓ |
2π
(
ψ(s) – ψ(σ)

)
,

where ψ(s) := Γ ′(s)/Γ(s) is the digamma function. Using the Fourier transform
(Re s > 1/2, x v 0)

1
2π

∞∫
–∞

eipx

p2 + (s – 1/2)2 dp =
1

2s – 1
e–(s–1/2)x,

the Selberg trace formula for the trace of the regularized resolvent reads (Re s, Re σ > 1)

∞∑
n=0

(
1

λn + s(s – 1)
–

1
λn + σ(σ – 1)

)
= –

|ΩΓ |
2π
(
ψ(s) – ψ(σ)

)
+

1
2s – 1

A(s) –
1

2σ – 1
A(σ) , (1.99)

where the function A(s) is for Re s > 1 given by the absolutely convergent double
sum

A(s) :=
∑
{γ}p

∞∑
n=1

l(γ)e–(s–1/2)nl(γ)

2 sinh
(
nl(γ)/2

) .

It was one of Selberg’s deep insights to realize that A(s) can be rewritten for Re s > 1
as the logarithmic derivative of a kind of zeta function Z(s):

A(s) =
∑
{γ}p

∞∑
n=1

l(γ)e–(s–1/2)nl(γ)

enl(γ)/2 – e–nl(γ)/2
=
∑
{γ}p

∞∑
n=1

l(γ)e–snl(γ)

1 – e–nl(γ)

=
∑
{γ}p

∞∑
n=1

l(γ)e–snl(γ)
∞∑

k=0

e–knl(γ) =
∑
{γ}p

∞∑
k=0

l(γ)
∞∑

n=1

e–(s+k)nl(γ)

=
∑
{γ}p

∞∑
k=0

l(γ)
e–(s+k)l(γ)

1 – e–(s+k)l(γ)
=
∑
{γ}p

∞∑
k=0

d
ds

ln
(
1 – e–(s+k)l(γ)

)

=
d
ds

ln

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∏{γ}p

∞∏
k=0

(
1 – e–(s+k)l(γ)

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =:
Z′(s)
Z(s)

.

Here we have defined the Selberg zeta function (Re s > 1) [45]

Z(s) :=
∏
{γ}p

∞∏
k=0

(
1 – e–(s+k)l(γ)

)
, (1.100)
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which is given as a generalized Euler product over the lengths of the primitive
periodic orbits. It follows from Selberg’s trace formula that the infinite products
in (1.100) are absolutely convergent for Re s > 1. Replacing A(s) and A(σ) in (1.99)
by Selberg’s zeta function, we obtain an exact relation [47] which expresses the
trace of the regularized resolvent of –Δ on an arbitrary compact Riemann surface
of genus g v 2 in terms of the well-known ψ-function and Selberg’s zeta function.
On the other hand, this relation allows us to prove that Z(s) can be continued to the
left of Re s = 1. This can be seen by rewriting (1.99) as follows [47]

1
2s – 1

Z′(s)
Z(s)

= –2
(
g – 1
)

ψ(σ) +
(

1
2σ – 1

Z′(σ)
Z(σ)

–
1

σ(σ – 1)

)
(1.101)

+ 2
(
g – 1
)

ψ(s) +
1

s(s – 1)
+

∞∑
n=1

(
1

λn + s(s – 1)
–

1
λn + σ(σ – 1)

)
.

Note that the sum over the eigenvalues no longer contains the zero mode λ0 = 0.
Keeping the regulator σ fixed with Re σ > 1, we see that the right-hand side
of (1.101), derived for Re s > 1, is actually meromorphic for all s ∈ C. Thus the
left-hand side of (1.101) is also meromorphic, and so we obtain the analytic contin-
uation of Z(s) on C. In fact, further inspection shows that the Selberg zeta function
is an entire function of s of order 2 whose “trivial” zeros are at s = –k, k ∈ N, with
multiplicity 2(g – 1)(2k + 1). Furthermore, s = 1 is a simple zero, and s = 0 is a zero
of multiplicity 2g – 1. In addition Z(s) can have a finite number of zeros on the real
axis between 0 and 1 located at s = 1/2 ±

√
1/4 – λn corresponding to the so-called

“small” eigenvalues 0 < λn < 1/4. For surfaces of genus g > 2, one has at most
4g – 3 small eigenvalues [111, 112], while in the case of g = 2 there is at most one
small eigenvalue [113].

More importantly, Z(s) has an infinite number of “nontrivial” zeros located at s =
1/2 ± ipn, pn v 0, i.e. lying on the critical line Re s = 1/2, and thus one can say that
the Riemann hypothesis is valid for Z(s), a very remarkable result! One therefore has
the exact quantization condition (pn ∈ R)

Z
(

1
2

+ ipn

)
= 0 (1.102)

for the quantal eigenvalues λn = p2
n + 1/4 v 1/4 of the Schrödinger equation, which

are completely determined by the lengths of the classical periodic orbits of the
corresponding classical Hamiltonian system.

The reason behind the validity of the Riemann hypothesis in this case is obvious-
ly that s(s–1) is an eigenvalue of a self-adjoint operator, and hence is real, whenever s
is a zero of Z(s) within the critical strip. The question of whether something sim-
ilar holds for the nontrivial zeros of the Riemann zeta function, will be discussed
below.

The information on the zeros of Z(s) enables us now to eliminate the regulator σ
in (1.101) by taking the limit σ → 1. With ψ(1) = –γ, where γ is Euler’s constant,
we define the generalized Euler constant γΔ

γΔ := 2
(
g – 1
)

γ + B



48 1 Weyl’s Law

with

B := lim
σ→1

(
1

2σ – 1
Z′(σ)
Z(σ)

–
1

σ(σ – 1)

)
=

1
2

Z′′(1)
Z′(1)

– 1 .

Since Z(s) possesses a simple zero at s = 1, one has Z′(1) =/ 0 (actually Z′(1) > 0
holds) and thus the constant B is well defined. We then obtain for the trace of the
regularized resolvent of –Δ on M2 = H2/Γ the final result [47]

1
s(s – 1)

+
∞∑

n=1

(
1

λn + s(s – 1)
–

1
λn

)
=

1
2s – 1

Z′(s)
Z(s)

– γΔ – 2(g – 1)ψ(s) . (1.103)

1.4.7

The Functional Equation for Selberg’s Zeta Function Z(s)

To derive the functional equation for Z(s), we notice that s(s – 1) is invariant under
s → 1 – s and 2s – 1 changes sign. If we then subtract (1.103) evaluated at 1 – s from
the same expression evaluated at s, we obtain

1
2s – 1

d
ds

ln
Z(s)

Z(1 – s)
= 2(g – 1)

(
ψ(s) – ψ(1 – s)

)
.

Using the functional equation

ψ
(

1
2

+ z
)

– ψ
(

1
2

– z
)

= π tan(πz)

for the digamma function this then leads, with z = s –1/2, to the functional equation
for Z(s)

Z(s) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝|ΩΓ |
s–1/2∫
0

x tan(πx)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Z(1 – s) . (1.104)

Evaluating the functional equation on the critical line i.e. choosing s = 1/2 + ip,
p ∈ R, we get

Z
(

1
2

+ ip
)

= e–2πiN
M2

Γ (p2+1/4)Z
(

1
2

– ip
)

, (1.105)

where the smooth term N
M2

Γ of the counting function given in (1.96) enters as
a phase. It follows that the function

�( p) := Z
(

1
2

+ ip
)
eiπN

M2

Γ ( p2+1/4)

satisfies the simple functional equation �( p) = �(–p), and furthermore that �( p) is
real if p ∈ R, i.e. on the critical line.
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1.4.8

An Explicit Formula for the Remainder Term in Weyl’s Law on M2

and the Hilbert–Polya Conjecture on the Riemann Zeros

Using the argument principle, one can derive the exact Weyl formula (p v 0, p =/ pn)
for the counting function

NM2

Γ

(
p2 +

1
4

)
= N

M2

Γ

(
p2 +

1
4

)
+

1
π

arg Z
(

1
2

+ ip
)

, (1.106)

which proves that the fluctuating term (remainder term) of the counting function
is determined by the Selberg zeta function on the critical line

NM2

Γ ,fl

(
p2 +

1
4

)
=

1
π

arg Z
(

1
2

+ ip
)

. (1.107)

The derivation of (1.106) is completely analogous to the well-known calculation
leading to the counting function NR(t) for the nontrivial Riemann zeros

NR(t) = NR(t) +
1
π

arg �
(

1
2

+ it
)

, (1.108)

which counts the number of zeros of the Riemann zeta function �(s) in the region
0 < Re s < 1, 0 < Im s u t. Here the smooth term NR(t) is given by the famous
Riemann–von Mangoldt formula [114]

NR(t) =
t

2π
ln t –

1 + ln 2π
2π

t +
7
8

+ O
(

1
t

)
(t → ∞) . (1.109)

Note that Selberg introduced his zeta function Z(s) around 1950 in analogy with the
Riemann zeta function �(s) with the intention to shed some light on the properties
of the nontrivial Riemann zeros and the Riemann hypothesis. He noticed the striking
similarities between his trace formula (1.95) and the so-called explicit formulae
in the theory of prime numbers [115], whose most general form is André Weil’s
explicit formula [116].

Weil’s explicit formula establishes a deep relation between the nontrivial zeros
ρn = 1/2 + iτn, τn ∈ C, of �(s) and the prime numbers p:

∞∑
n=1

h(τn) =
1

4π

∞∫
–∞

ψ
(

1
4

+ i
τ
2

)
h(τ)dτ + h

(
i
2

)
– h̃(0)

ln π
2

–
∑

p

∞∑
n=1

ln p
pn/2 h̃(n ln p) ,

(1.110)

where the “test function” h(τ) satisfies the same conditions (1.79) as the spectral
function in the Selberg trace formula for d = 2, and h̃(x) is again its Fourier trans-
form. Here the sum on the right-hand side runs over all primes p. Comparing
Weil’s formula (1.110) with Selberg’s trace formula (1.95), one is tempted to inter-
pret the nontrivial zeros of �(s) as eigenvalues of a hypothetical “Riemann operator”
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and the logarithm of the prime numbers as the “lengths” l( p) := ln p of the primi-
tive “periodic orbits” of the corresponding hypothetical geodesic flow. The term on
the right-hand side of (1.110) involving the summation over the primes then reads

–
∑

p

∞∑
n=1

l( p)
enl( p)/2

h̃(nl( p)) , (1.111)

which is strikingly similar to the corresponding term in the Selberg trace formu-
la (1.95) involving the summation over periodic orbits. Note, however, the differ-
ence between the denominator

+2 sinh
(

nl(γ)
2

)
= enl(γ)/2 – e–nl(γ)/2

in (1.95) which has a dynamical interpretation in terms of the linearized Poincaré
recurrence map for unstable hyperbolic periodic orbits, see for example [82,92], and
the corresponding denominator –enl( p)/2 in (1.111), for which no dynamical inter-
pretation has been found until now; see, however, the paper by Alain Connes [117]
who has devised a hermitian operator whose eigenvalues are the nontrivial Rie-
mann zeros. His operator is the Perron–Frobenius operator (called the transfer op-
erator in physics) of a classical dynamical system. In his framework he has found
an explanation for the minus sign in (1.111).

At first sight it seems that there is another obstruction to the interpretation of
the Riemann zeros as the eigenvalues of a dynamical system since the smooth
counting function NR(t) (1.109) goes asymptotically as λ/(2π) ln λ, if we put t = λ,
which differs from the standard behavior according to Weyl’s law in dimension 2.
It will be seen, however, in Section 1.5.2 that such logarithmic modifications to
Weyl’s law can occur, for example in membrane problems, for which the domain Ω
is unbounded.

Mathematical wisdom has usually attributed the formulation of the idea of a hy-
pothetical Riemann operator to Hilbert and Polya, independently, some time in the
1910s. (See Odlyzko’s correspondence with Polya [118].)

There is another difference between the Riemann and the Selberg case. In the
definition of Z(s) in (1.100) one has a double product, whereas �(s) involves only
a single one. Furthermore, the “Euler factor” occurs in Z(s) with the (+1) in the
exponent, and in the case of �(s) with a (–1). It turns out that, when one generalizes
the Selberg zeta function to spaces of higher rank, the natural exponents are certain
Euler characteristics which can take positive or negative values [119]. To get rid of
the second product in (1.100), one simply considers the ratio

R(s) :=
Z(s)

Z(s + 1)
=
∏
{γ}p

(
1 – e–sl(γ)

)
, (1.112)

and ends up with the Ruelle zeta function R(s) [120], which is now a meromorphic
function. R(s) or rather 1/R(s) has been discussed in terms of Beurling’s general-
ized prime numbers and in connection with a generalized prime number theo-
rem [121].
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1.4.9

The Prime Number Theorem vs. the Prime Geodesic Theorem on M2

The famous prime number theorem states that the number of primes up to x,
π(x) := #

{
p : p u x

}
, is asymptotically equal to the logarithmic integral, given for

x > 1 by (
�

means the Cauchy principal value of the integral)

li(x) :=

x�

0

dt
ln t

=
x

ln x
+

x
(ln x)2 + . . . (x → ∞) .

The fact that the density of primes near x is about 1/ ln x was already conjectured
by Gauss in 1792 at the age of 15. To derive a formula for π(x) was Riemann’s main
goal in his famous paper from 1859, and it was for this purpose that he studied
�(s) which had been introduced for integer argument already in 1735 by Euler who
discovered among several other relations the formula �(2) = π2/6 and in 1737
established the Euler product for �(m), m v 2. The prime number theorem was
proved in 1896 independently by Hadamard and de la Vallée Poussin by using the
Riemann zeta function. It is worthwhile noticing that the first “elementary” proof
was found by Selberg in 1949, see for example [46].

If one associates the prime numbers with the “lengths” l( p) := ln p, the counting
function N(l) := #

{
p : l( p) u l

}
counts the number of hypothetical “periodic orbits”

with length up to l. The prime number theorem is then converted into

N(l) == π
(
el
)

~ li
(
el
)

~
el

l
, (l → ∞) . (1.113)

It is this result which gives perhaps the strongest support to the Hilbert–Polya con-
jecture, since it turns out that the counting functionNM2

Γ (l) := #
{
γ ∈ Γ : l(γ) u l

}
of

the genuine periodic orbits of the geodesic flow on M2 obeys Huber’s law [122]

NM2

Γ (l) = li
(
el
)

+ O
(

e(3/4)l

l

)
, (l → ∞) . (1.114)

This is a special case of the general prime geodesic theorem valid for the counting
function of the lengths of the unstable periodic orbits of chaotic systems with a
topological entropy τ > 0. In the general case, one has as leading term eτl/τl. Thus
Huber’s law is consistent with the well-known fact that the geodesic flow on M2

is strongly chaotic, i.e. ergodic, mixing, possesses the Bernoulli property, and has
topological entropy τ = 1. (Actually, all periodic orbits on M2 are unstable and
possess the same Lyapunov exponent λ(γ) = 1.)

Comparing (1.113) with (1.114), one concludes that the hypothetical dynamical
system associated with the Riemann zeros should be chaotic, should have topologi-
cal entropy τ = 1, and should possess a length spectrum of primitive periodic orbits
exactly given by the logarithm of the primes, l( p) = ln p!

The validity of Huber’s law (1.114) can be seen as follows. Due to the existence
of the zero mode λ0 = 0 with multiplicity one, ΘM2

(t) = 1 + O
(
e–λ1t
)
, t → ∞, holds
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for the trace of the heat kernel on M2. Furthermore, one infers from (1.98) that the
complete Weyl term ΘM2

1 (t) satisfies lim
t→∞

ΘM2

1 (t) = 0, and thus the remainder term

ΘM2

2 (t) in (1.98) must satisfy lim
t→∞

ΘM2

2 (t) = 1. One therefore obtains the condition

lim
t→∞

e–t/4

2
√

πt

∞∫
l1

le–l2/4t – l/2 dNM2

Γ (l) = 1 ,

which yields dNM2

Γ (l) = el/ldl + . . . for l → ∞ in complete agreement with Huber’s
law (1.114).

In [123] an explicit formula for dNM2

Γ (l) was derived including an oscillating
remainder term. The derivation starts from Selberg’s trace formula (1.95) and uses
the Möbius inversion formula in complete analogy with Riemann’s explicit formula
for π(x). The formula was used to compute the lowest part of the length spectrum
for the most symmetric compact Riemann surface of genus g = 2 using the first
200 eigenvalues, see Figure 1 in [123].

1.5

Generalizations of Weyl’s Law

1.5.1

Weyl’s Law for Robin Boundary Conditions

In Equations (1.66) and (1.67) we have given the three-term formula for the smooth
term N(λ) for simply connected and bounded two-dimensional domains Ω with
smooth boundary for Dirichlet as well as for Neumann boundary conditions. A gen-
eralization encountered in a nuclear physics context [124–126] are mixed or so-
called Robin boundary conditions

α(x)u(x) + ∂nu(x) = 0 (x ∈ ∂Ω) , (1.115)

which leaves the problem self-adjoint when α is real. The Dirichlet and Neumann
boundary conditions are recovered in the limit α → ∞ and α → 0, respectively. For
constant α v 0 and excluding corners, Sieber et al. [127] derived the three-term Weyl
formula

N(λ) =
|Ω|
4π

λ –
|∂Ω|
4π

⎡⎢⎢⎢⎢⎢⎣1 – 2

⎛⎜⎜⎜⎜⎜⎝
√

1 +
α2

λ
–

α√
λ

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ √λ

+

⎡⎢⎢⎢⎢⎢⎣1 – 3

√
λ

α

√
1 + α2/λ – 1√

1 + α2/λ

⎤⎥⎥⎥⎥⎥⎦ 1
12π

∫
∂Ω

κdl .
(1.116)

Since ∂nu = O
(√

λ
)

in the limit λ → ∞, the term ∂nu is asymptotically dominant in
the boundary condition (1.115), and hence the mean spectrum will for fixed α al-
ways tend to the Neumann case. Therefore in the derivation of (1.116), λ and α/

√
λ
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have been considered as independent parameters. One observes that the general-
ized Weyl law (1.116) interpolates neatly between the law (1.66), (1.67) for Dirichlet
and Neumann boundary conditions. Formula (1.116) has been checked [127] in the
case of the circle billiard, where 1/(12π)

∫
∂Ω
κdl = 1/6, for which the exact resolvent

kernel is known in closed form.
Apart from applications in nuclear physics, it was shown in [127] that the para-

metric dependence of the spectrum on the boundary condition is a very useful
diagnostic tool in the analysis of spectra.

1.5.2

Weyl’s Law for Unbounded Quantum Billiards

In Section 1.4.8 we have observed that the smooth term NR(λ) of the counting
function of the nontrivial zeros of the Riemann zeta function grows asymptotical-
ly as λ ln λ which contradicts the classical eigenvalue asymptotics given by Weyl’s
law. Thus it appears that the interpretation of the nontrivial Riemann zeros as
eigenvalues of the Laplacian is ruled out. It was pointed out, however, by Barry
Simon [128, 129] that an asymptotic behavior of the form λ ln λ can occur for the
eigenvalues of the two-dimensional Dirichlet Laplacian for certain unbounded re-
gions which have a purely discrete spectrum. Since this nonclassical Weyl asymp-
totics again opens the possibility of identifying the nontrivial Riemann zeros with
the eigenvalues of a hypothetical Riemann operator, it is important to determine
also the nonleading terms of the counting function for such unbounded systems.
As a representative example we here quote only the result for the so-called hyper-
bola billiard which is defined by the two-dimensional Euclidean Dirichlet Laplacian
in the “horn-shaped” region

Ω =
{(

x, y
) ∈ R2

+ : 0 u x · y u 1
}

.

It was shown by Simon [128] that this quantum system possesses a purely discrete
spectrum although the corresponding classical billiard has a continuous spectrum.
In [130] the following asymptotic expansion for the trace of the heat kernel of the
hyperbola billiard was derived (t → 0+)

Θ(t) := Tr etΔ = –
ln t
4πt

–
a′

4πt
+

b

8
√

πt
+ O
(
t–1/4
)

, (1.117)

where a′ = 2 ln(2π) – 1 – γ = 2.0985 . . ., b = 4π3/2/Γ2(1/4) = 1.6944 . . .. Using
the Karamata–Tauberian theorem in the form [129]: lim

t→0+

[
– (tr/ ln t) Tr etΔ

]
= c if and

only if lim
λ→∞

[
(λ–r/ ln λ) N(λ)

]
= c/Γ(r + 1), one derives from (1.117) the leading term

for the counting function

N(λ) =
1

4π
λ ln λ + . . . (λ → ∞).

To obtain the next terms one uses a theorem by Brownell [90] which allows to
obtain a smoothed counting function N(λ). Form (1.117) one then obtains the mean
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asymptotic growth of the number of eigenvalues of the hyperbola billiard [130]

N(λ) =
1

4π
λ ln λ –

a
4π

λ +
b

4π

√
λ + O

(
λ1/4 ln λ

)
(λ → ∞) , (1.118)

where a = 2
(
ln(2π) – γ

)
= 2, 5213 . . .. While the leading term in the last expression

coincides with the first term of NR(λ), Equation (1.109), the second and third terms
are different.

The hyperbola billiard has been extensively investigated in classical and quan-
tum mechanics as a model for quantum chaos [131–133]. It turns out that the clas-
sical periodic orbits can be effectively enumerated using symbolic dynamics with
a ternary code, and thus the length spectrum together with the Lyapunov expo-
nents can be calculated with high precision. The topological entropy of this system
is τ W 0.6. Using the boundary-element method, a large number of eigenvalues
could be calculated. The statistics of the eigenvalues is found to be consistent with
the predictions of random matrix theory for the Gaussian orthogonal ensemble.
Using the semiclassical Gutzwiller trace formula, one can define a dynamical zeta
function defined by an Euler product over the classical periodic orbits in analogy
with the Selberg zeta function (1.100). This zeta function satisfies an approximate
functional equation and thus can be effectively used as a semiclassical quantization
condition in analogy to the exact quantization condition (1.102).

1.6

A Proof of Weyl’s Formula

Only for very special geometries of Ω is it possible to give an explicit formula for the
eigenvalues of the Dirichlet Laplacian. Such a situation had been considered in the
previous sections, another is given by rectangles and cubes. Weyl’s original proof
for Jordan measurable domains consisted in exhausting the domain by rectangles.
This proof needs technical computations which we do not want to cover here. There
is another more structured proof which uses properties of the heat equation and
reveals an interesting connection between the heat kernel and the eigenvalues.

Let Ω ⊂ N be open and bounded with boundary ∂Ω. We want to impose a mild
regularity condition on Ω, namely we assume that for each ϕ ∈ C(∂Ω) the Dirichlet
problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C(Ω) ∩ C2(Ω)

Δu = 0

u|∂Ω = ϕ

(D(ϕ))

has a unique solution; i.e. we assume that Ω is Dirichlet regular. The Dirichlet prob-
lem is a classical subject of Potential Theory with physical interpretation in electro-
statics.

There is a beautiful mathematical theory on the Dirichlet problem, and precise
conditions on the boundary are known which imply Dirichlet regularity. It is a mild
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regularity condition on the boundary. If Ω has C1-boundary or if Ω is a polygon,
then Ω is Dirichlet regular. More generally, Lipschitz continuity of the boundary
suffices. In dimension 2 each simply connected domain (i.e. each open set without
holes) is Dirichet regular.

Dirichlet regularity implies that all eigenfunctions of the Dirichlet Laplacian are
continuous up to the boundary i.e. they lie in the space

C0(Ω) �
{
u ∈ C(Ω) : u|∂Ω = 0

}
.

Thus we may describe the Dirichlet Laplacian very simply by its spectral decompo-
sition. We consider the Hilbert space L2(Ω) with respect to the Lebesgue measure.
Then there exists an orthonormal basis {en : n ∈ } of L2(Ω) such that

en ∈ C∞(Ω) ∩ C0(Ω) ,

–Δen = λnen ,

where 0 < λ1 u λ2 u · · · u λn → ∞. We call λn the nth eigenvalue of the Dirichlet
Laplacian. Now Weyl’s law says that

lim
λ→∞

N(λ)
λN/2 =

ωN

(4π)N/2 |Ω| (1.119)

where |Ω| is the volume of Ω and ωN = πN/2Γ (1 + N/2) is the volume of the unit
ball in N. By N(λ) = #

{
n : λn u λ

}
we denote the counting function.

For f ∈ L2(Ω) we let

etΔD
Ω f =

∞∑
n=1

e–λnt (f | en
)

en , (1.120)

where
(
f | g
)

=
∫

Ω fgdx denotes the scalar product in L2(Ω). Then etΔD
Ω is a compact,

self-adjoint operator on L2(Ω). We call the family of operators
(
etΔD

Ω

)
tv0

the semigroup
generated by the Dirichlet Laplacian. This semigroup is positive and dominated by
the Gaussian semigroup (G(t))tv0, i.e. for 0 u f ∈ L2(Ω) we have

0 u etΔD
Ω f u G(t)f , (t > 0) (1.121)

where (
G(t)f

)
(x) �

∫
Ω

k0
t (x, y)f (y) dy ,

k0
t (x, y) � (4πt)–N/2 e–|x–y|2/4t ,

|x – y|2 �
N∑

j=1

(
xj – yj

)2
, x , y ∈ N .

The domination property (1.121) implies also that etΔD
Ω is defined by a measurable

kernel k̃t(x, y) such that

0 u k̃t(x, y) u k0
t (x, y) for all x, y ∈ Ω . (1.122)
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We will express the kernel k̃t in terms of the eigenfunctions in (1.124). But here we
recall that those operators S on L2(Ω) given by

(Sf )(x) =
∫

Ω
q(x, y)f (y)dy

for some q ∈ L2(Ω ~ Ω) are called Hilbert Schmidt operators. Such a Hilbert Schmidt
operator S is always compact. And if S is self-adjoint, then its eigenvalues (μn)n∈
satisfy

∑∞
n=1 μ2

n < ∞. Hence in our case

∞∑
n=1

e–2tλn < ∞ for all t > 0 .

Replacing t by t/4 we deduce that

∞∑
n=1

e–tλn/2 < ∞ for all t > 0 . (1.123)

Note that (1.122) implies that∣∣∣e–λnten

∣∣∣ = ∣∣∣∣etΔD
Ω en

∣∣∣∣ u G(t) |en| .

Since ‖en‖L2 = 1, it follows from the Cauchy Schwarz inequality that(
G(t) |en |

)
(x) u ct–N/4 , where c = π–N/42–(3/4)N .

Thus ∣∣∣en(x)
∣∣∣ u ct–N/4eλnt .

Letting t = 1/λn we obtain∣∣∣en(x)
∣∣∣ u c̃λN/4

n (x ∈ Ω, n ∈ )

where c̃ = c · e.
In view of (1.123), this estimate asserts that for each t > 0, the series

kt(x, y) �
∞∑

n=1

e–λnten(x)en(y) (1.124)

converges uniformly on the set Ω ~ Ω and defines a continuous, bounded function
kt: Ω ~ Ω → such that kt(x, y) = 0 whenever x ∈ ∂Ω or y ∈ ∂Ω.

Note that(
etΔD

Ω f
)

(x) =
∫

Ω
kt(x, y)f (y)dy , (1.125)

whenever f ∈ {en : n ∈ }. Since the en form an orthonormal basis of L2(Ω) it fol-
lows that (1.125) remains true for all f ∈ L2(Ω). We have shown that the function kt

is the kernel of the operator etΔD
Ω i.e. k̃t = kt.
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For our purposes the following immediate consequence is crucial.∫
Ω

kt(x, x)dx =
∞∑

n=1

e–λnt (1.126)

This formula allows us to estimate the counting function N(λ) = #
{
n : λn < λ

}
with

the help of the kernel kt. For this we will make use of the following Tauberian
theorem due to Karamata [134].

Theorem 1.1 Let (λn)n∈ be a sequence of positive real numbers such that the series∑
n∈ e–λnt converges for every t > 0. Then for r > 0 and a ∈ the following are equiva-

lent.

(a) lim
t→0

tr
∑
n∈

e–λnt = a

(b) lim
λ→∞

λ–rN(λ) =
a

Γ(r + 1)

Here N denotes the counting function N(λ) = #
{
λn u λ

}
, and Γ(r) =

∫ ∞
0 xr–1e–x dx is the

usual Gamma function.

Combining formula (1.126) and Theorem 1.1 we see that Weyl’s law (1.119) is
equivalent to the kernel estimate

lim
t→0

tN/2
∫

Ω
kt(x, x)dx =

|Ω|
(4π)N/2 . (1.127)

It is easily seen that the left-hand side of (1.127) is not greater than the right-hand
side as the kernel kt is bounded by the Gaussian kernel i. e. kt(x, y) u k0

t (x, y) for
x, y ∈ Ω, t > 0.

The lower estimate is more delicate. For this we will consider the heat equation
on the infinite cylinder + ~ Ω whose boundary we denote by Γ = ({0} ~ Ω) ∪
((0,∞) ~ ∂Ω). It is a remarkable fact that Dirichlet regularity of Ω also implies that
the following boundary value problem for the heat equation is well-posed.

Theorem 1.2 ([135, Theorem 6.2.8], [136]) Let ψ ∈ C(Γ). Then there exists a unique
solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ C
(

+ ~ Ω
)
∩ C∞((0,∞) ~ Ω

)
,

∂

∂t
u(t, x) = Δu(t, x) , (t > 0, x ∈ Ω)

u|Γ = ψ .

(1.128)

This solution satisfies the parabolic maximum principle, which says that for all t > 0
and all 0 u s u t, x ∈ Ω,

u(s, x) u max
Γt

u

where Γt � Γ ∩
(
[0, t] ~ Ω

)
.
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Example 1.1 Let f ∈ C0(Ω) and define ψ ∈ C(Γ) by ψ(0, x) = f (x) for x ∈ Ω, and
ψ(t, z) = 0 for t > 0, z ∈ ∂Ω. Then the solution of (1.128) is given by u(t, x) =

(
etΔD

Ω f
)
(x).

Thus, the semigroup
(
etΔD

Ω

)
tv0

governs the homogeneous boundary value problem (1.128).
Its solution can be expressed by the kernel kt, namely,

u(t, x) =
∫

Ω
kt(x, y)f (y)dy .

For this reason we call kt the heat kernel associated with the Dirichlet Laplacian.

To obtain a lower bound for the kernel we formalize the idea that at some distance
away from the boundary, kt behaves just like the Gaussian kernel.

Lemma 1.1 Let x ∈ Ω be arbitrary, and for y ∈ Ω let t0(y) � dist(y, ∂Ω)2/2N denote
the scaled squared distance of y to the boundary of Ω. Then

k0
t (x, y) – kt(x, y) u

⎧⎪⎪⎨⎪⎪⎩(4πt)–N/2 e– dist(y,∂Ω)2/4t , t u t0(y) ,(
4πt0(y)

)–N/2 e–N/2 , t > t0(y) .

Proof Fix y ∈ Ω. Then by Theorem 1.2 there exists a unique function p(·, ·, y)
solving the parabolic boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(·, ·, y) ∈ C
(

+ ~ Ω
)
∩ C∞((0,∞) ~ Ω

)
,

∂

∂t
p(t, x, y) = Δxp(t, x, y) , (t > 0, x ∈ Ω)

p(t, x, y) = 0 , (x ∈ Ω)

p(t, x, y) = (4πt)–N/2 e–|x–y|2/4t . (t > 0, x ∈ ∂Ω)

Then p(t, x, y) = k0
t (x, y) – kt(x, y). In fact, let f ∈ C0(Ω) be arbitrary, and let

u(t, x) �
∫

Ω

(
k0

t (x, y)f (y) – p(t, x, y)f (y)
)
dy .

The properties u ∈ C∞
(
(0,∞) ~ Ω

)
, ut = Δu on (0,∞) ~ Ω and u(t, x) = 0 if x ∈ ∂Ω,

t > 0 are obvious. Moreover, it is easy to prove that u can be continuously extended
to t = 0 and u(0, x) = f (x) for all x ∈ Ω. Thus u(t, ·) = etΔD

Ω f according to Example 1.1.

Since p solves a parabolic problem, we can use the parabolic maximum principle
to deduce that p attains its maximum on the boundary i. e.

p(t, x) u sup
0usut
x∈∂Ω

(4πs)–N/2 e–|x–y|2/4s u sup
0usut

(4πs)–N/2 e– dist(y,∂Ω)2/4s . (1.129)

Calculating the derivative of (4πt)–N/2 e– dist(y,∂Ω)2/4t as a function in the variable t one
sees that the maximum is attained at time t = t0(y). We can thus simplify (1.129)
accordingly which completes the proof. q
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We are interested in the error
∫

Ω

(
k0

t (x, x) – k(x, x)
)

dx of the approximation of k0
t

by kt as t tends to 0. Since the lemma essentially says that problems may only
arise near the boundary, it is natural to decompose Ω into a good part Ω1(t) �{
x ∈ Ω : dist(x, ∂Ω) v t1/4

}
and a bad part Ω2(t) � Ω \ Ω1(t). Note that

∣∣∣Ω2(t)
∣∣∣ → 0

as t → 0. If t u 1/4N2, then for every x ∈ Ω1(t) we have t0(x) v
√

t/2N v t. Hence
we can apply the lemma to obtain

tN/2
∫

Ω1(t)

(
k0

t (x, x) – kt(x, x)
)

dx u |Ω| (4π)–N/2 e–
√

t/4t → 0 (t → 0) .

On the other hand, using the trivial estimate kt v 0 we see

tN/2
∫

Ω2(t)

(
k0

t (x, x) – kt(x, x)
)

dx u
∣∣∣Ω2(t)

∣∣∣ (4π)–N/2 → 0 (t → 0) .

Combining these two estimates, we have proved

lim inf
t→0

tN/2
∫

Ω
kt(x, x)dx v lim inf

t→0
tN/2
∫

Ω
k0

t (x, x)dx =
|Ω|

(4π)N/2

This was the missing inequality required to prove (1.127). Since (1.127) has been
shown to be equivalent to Weyl’s law, we have completed the proof.

Weyl’s law also holds for arbitrary bounded open sets, [137, Theorem 1.11].
A simple proof by approximating an arbitrary open set by regular sets from the in-
terior is given in [138, Section 6.5.2]. For further results on domain approximation
we refer to the survey article [139] by Daners.

The proof given here is essentially the one given by Kac [9] who found for-
mula (1.126) and used Karamata’s Tauberian theorem. We were also inspired by
Dodzink [140] and the Diploma thesis by E. Michel [141]. However, the use of
Dirichlet regularity and Theorem 1.2 in particular comes from [138, Chapter 5]
where more details can be found. Concerning the Dirichlet problem we refer
to [142, 143] and the literature mentioned there.

1.7

Can One Hear the Shape of a Drum?

Weyl’s law shows us in particular the following. Assume that Ω ⊂ N is a bounded
open set and we know all the eigenvalues of the Dirichlet Laplacian. Then we also
know the volume of Ω. Thus the spectrum of the Dirichlet Laplacian determines
the volume. It is natural to ask whether there are other properties or qualities which
we may deduce from the spectrum. Those types of questions are called inverse (spec-
tral) problems. Let us say that two open bounded sets Ω1 and Ω2 in N are isospectral
if the corresponding Dirichlet Laplacians ΔD

Ω1
and ΔD

Ω2
have the same sequence of

eigenvalues. We already know that isospectral sets have the same volume. There is
another result of this kind.
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Theorem 1.3 Let Ω1, Ω2 ⊂ N be open bounded sets with Lipschitz boundary. If Ω1

and Ω2 are isospectral, then they have the same surface area.

Here we use the natural measure σ on the boundary ∂Ωi of Ωi i. e. the surface
measure or (which is the same) the (N – 1)-dimensional Hausdorff measure. The
surface area of Ωi is by definition σ (∂Ωi). For a proof, we refer to [144].

The most radical inverse spectral problem is whether the spectrum determines
the domain completely. This question became famous by Marc Kac’s article [9] from
1966. We want to formulate it more precisely. Two open sets Ω1, Ω2 ⊂ N are
called congruent if there exists an orthogonal matrix B and a vector b in N such
that Ω2 =

{
Bx + b : x ∈ Ω1

}
. This is just congruence in the Euclidean sense. It is

obvious that congruent open sets are isospectral.

Question 1.1 (Kac’s Question) Let Ω1, Ω2 ⊂ 2 be two bounded smooth domains
which are isospectral. Are they necessarily congruent?

By a domain we mean an open connected set. An open bounded set is called smooth
if the boundary is of class C∞.

Kac’s question became so popular because it has a fascinating physical interpre-
tation. We consider a bounded smooth domain Ω ⊂ 2 as a membrane which is
fixed at the boundary Γ of Ω. If it is set into motion, then the vertical displacement
u(t, x) at time t > 0 at the point x ∈ Ω satisfies the wave equation

utt = c Δu(t, x) (t > 0, x ∈ Ω) .

We normalize physical units in such a way that c = 1.
Of particular interest are solutions of the form u(t, x) = v(x)eiωt which are called

the pure tones of the membrane. In order that such u be a solution of the wave
equation it is necessary and sufficient that

–Δv = ω2v .

Thus u is a solution if and only if v is an eigenfunction of the Dirichlet Laplacian
for the eigenvalue ω2, where ω is the frequency of the displacement u. Now we
see that the eigenvalues of the Dirichlet Laplacian correspond exactly to the pure
tones of the membrane which we can hear. This lead Kac to reformulate his ques-
tion by asking “Can one hear the shape of a drum?”. Following Kac, people like to
formulate inverse spectral problems by asking which properties of Ω one can hear.
For example, we already know that we can hear the volume and the surface area of
a Lipschitz domain.

Kac himself said in [9]: “I believe that one cannot hear the shape of a tambourine
but I may be wrong and I am not prepared to bet large sums either way.”

Today the question raised by Kac is still open. But much more is known about
it. In fact, we may ask more generally if two bounded isospectral domains in N

are congruent. That is, we consider arbitrary dimensions now and give up the very
restrictive smoothness hypothesis. Let us note though that some hypothesis on the
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boundary is needed to avoid trivialities. For instance, if we consider the disc Ω1 ={
x ∈ 2 : |x| < 1

}
and the punctured disc Ω2 = Ω1 \ {0}, then they are isospectral

but not congruent. In fact, L2(Ω1) = L2(Ω2) and also the Dirichlet Laplacians with
respect to these two open sets are identical. We will describe below precisely which
regularity of the boundary is needed to avoid such simple counterexamples. Here
we want to impose throughout that all bounded domains have a Lipschitz boundary, and
we call them Lipschitz domains for short. They include all polygons in particular.

Before we describe some of the results concerning Kac’s question we mention
that the analogous question for compact manifolds has a negative answer as John
Milnor [70] had already shown in 1964. So the challenge concerns the Euclidean
case. A first counterexample was given by Urakawa [145] in 1982 who constructed
two isospectral Lipschitz domains in 4 which are not congruent. Ten years later,
Gordon, Webb and Wolpert [146] found a two-dimensional example. By putting
together seven triangles they obtained two polygons in 2 which are isospectral but
not congruent, see Figure 1.5. These two polygons are not convex, though. It is an
open question whether convex isospectral polygons in 2 are congruent. However,
in four dimensions convexity alone does not help. There are convex isospectal sets
which are not congruent. In fact, by modifying Urakawa’s example, Gordon and
Webb [147] obtained two truncated convex cones in 4 which are isospectral but
not congruent. These cones are induced by some vector space bases in 4. Here is
an explicit formulation.

Example 1.2 (Gordon, Webb) Let

u1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u2 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
–1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u3 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u4 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
be the first basis of 4 and

v1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , v2 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1√
3

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , v3 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , v4 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1.5 Isospectral polygons in two dimensions.
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the second. Consider the corresponding positive cones

C1 �

⎧⎪⎪⎨⎪⎪⎩ 4∑
i=1

aiui : ai v 0, i = 1, . . . , 4

⎫⎪⎪⎬⎪⎪⎭ , C2 �

⎧⎪⎪⎨⎪⎪⎩ 4∑
i=1

aivi : ai v 0, i = 1, . . . , 4

⎫⎪⎪⎬⎪⎪⎭ .

Let B0 �
{
x ∈ 4 : 0 < |x| < 1

}
be the punctured unit ball in 4 with respect to the

Euclidean norm |x| =
√∑4

j=1 x2
j . Then Ω1 � B0 ∩C1 and Ω2 � B0 ∩C2 are isospectral

but not congruent.

So far no smooth counterexample is known in any dimension. But in a very recent
work Zelditch [148] showed that isospectral domains with an analytic boundary,
having some symmetry, are congruent. A simple class of domains having such
a symmetry are ellipses and stadiums. Thus he shows in particular that those do-
mains can be distinguished by their spectra.

Now we describe further positive results. We mention that two isospectral tri-
angles are congruent, see [149] and references therein. Moreover, one can hear
whether a Lipschitz domain in N is a ball.

Theorem 1.4 Let Ω1 ⊂ N be a ball and Ω2 ⊂ N a Lipschitz domain. If Ω1 and Ω2

are isospectral, then they are congruent.

Proof If Ω is a Lipschitz domain, then one can hear its volume |Ω| according to
Weyl’s law. The Faber–Krahn inequality

λΩ
1 v cN |Ω|–2/N (1.130)

holds for all such domains, where λΩ
1 denotes the first eigenvalue of the Dirichlet

Laplacian on Ω and cN is an optimal constant which depends only on the dimen-
sion N [150, Theorem 3.1]. Moreover, (1.130) is an equality if and only if Ω is a ball,
see [151, Theorem 1.2]. q

The above theorem can be found in Kac’s paper [9]. However, Kac uses the isoperi-
metric inequality together with Theorem 1.3 instead of (1.130). For this argument
one has to be able to define the surface area of the domain. The above proof on the
other hand works in much more generality. The result can even be made optimal
in a sense that we will describe now. For this, we need the notion of capacity which
is used to describe the size of sets in N in terms of Sobolev norms. For a sys-
tematic introduction we refer to [152]. The capacity cap(A) of a set A ⊂ N may be
any number in [0,∞], but here we only need to know whether a set has capacity 0.
Sets of capacity 0 are also called polar sets. Although it is not trivial to characterize
all polar sets, thinking of them as subsets of N of dimension at most N – 2 gives
a good impression of how they look. For example, single points in 2 and smooth
curves in 3 are polar, but curves in 2 and surfaces in 3 are not polar. Moreover,
subsets of polar sets and countable unions of polar sets are also polar.
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What makes the notion of capacity paticularly interesting is the fact that the
Dirichlet Laplacian “does not see” polar sets. More precisely, if Ω1 and Ω2 are
open subsets of N that only differ by a polar set i.e. Ω2 \ Ω1 and Ω1 \ Ω2 are
both polar, then the sets differ only by a set of Lebesgue measure zero, hence
L2(Ω1) = L2(Ω2) as subspaces of L2( N). But in fact, ΔΩ1

D = ΔΩ2
D as operators on

this space, thus they have the same spectrum. This shows that inverse spectral
problems for the Dirichlet Laplacian are meaningful only up to polar sets. Thus we
are lead to introduce a notion of regularity which asserts that there are no artificial
“polar holes” in the set. More precisely, call an open set Ω in N regular in capacity
if cap

(
B(z, r) \ Ω

)
> 0 for all z ∈ ∂Ω and all r > 0, where B(z, r) denotes the ball

of radius r centered in z. We refer to [153] where this regularity assumption is in-
troduced and discussed. Here we only mention that all Dirichlet regular sets, and
hence all Lipschitz domains, are regular in capacity.

Given any open set Ω ⊂ N, there exists a unique open set Ω′ which is regular
in capacity such that Ω ⊂ Ω′ and cap(Ω′ \Ω) = 0. Since the Laplacian does not see
polar sets it is natural to consider merely open sets which are regular in capacity.
An inspection of Daners’ proof [151] shows that for a bounded open set Ω which is
regular in capacity the Faber–Krahn inequality becomes an identity if and only if Ω
is a ball. Thus Theorem 1.4 remains true if we assume that Ω2 is regular in capacity
instead of being a Lipschitz domain. In other words, if Ω2 is an arbitrary open set
which is isospectral to a ball Ω1, then the regular version of Ω2 is a ball of the same
radius, or, what is the same, there exists a ball B ⊂ N which is a translation of Ω1

such that Ω2 ⊂ B and cap(B \ Ω2) = 0.

1.8

Does Diffusion Determine the Domain?

In this short section we follow a paradigm which is slightly different from that in
the last section. Instead of the wave equation let us consider the diffusion equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut(t, x) = Δu(t, x) (t > 0, x ∈ Ω) ,
u(0, x) = u0(x) (x ∈ Ω) ,
u(t, z) = 0 (z ∈ ∂Ω) .

(D)

Here again Ω is a Lipschitz domain with boundary Γ . The solution u of (D) has
the following interpretation. Assume that Ω is a body containing water and some
dissolving liquid, for instance ink. Then u0 is the initial concentration of the ink
i. e. for ω ⊂ Ω the amount of ink in ω is given by

∫
ω u0(x)dx. The solution u(t, x)

gives the concentration at time t > 0 i. e. for ω ⊂ Ω,
∫

ω u(t, x)dx is the amount of
ink in ω at time t.

Given u0 ∈ L2(Ω), Equation (D) has a unique solution u : + → L2(Ω), where we
let u(t, x) = u(t)(x), given by

u(t) = etΔD
Ω u0 =

∑
n∈

e–λnt (u0 | en) en ,
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(compare (1.120)). In fact, since (d/dt)e–λnten = e–λnt (–λnen) = e–λntΔen, u is a solu-
tion of (D). Its uniqueness follows from Theorem 1.128, the parabolic maximum
principle. Thus the semigroup generated by ΔD

Ω, e–tΔD
Ω , is frequently called the dif-

fusion semigroup.
Now let Ω1 and Ω2 be two Lipschitz domains. If Ω1 and Ω2 are isospectral, then

we find orthonormal bases (en)n∈ of L2(Ω1) and
(
fn
)
n∈ of L2(Ω2) such that

–ΔD
Ω1

en = λnen and – ΔD
Ω2

fn = λnfn

for all n ∈ . Consider the unitary operator U : L2(Ω1) → L2(Ω2) satisfying Uen =
fn. Then

UetΔD
Ω1 = etΔD

Ω2 U (t > 0) , (1.131)

i. e. U intertwines the two diffusion semigroups. In other words, U maps solutions
of the first diffusion equation to solutions of the other diffusion equation. Con-
versely, if we find an intertwining invertible operator U : L2(Ω1) → L2(Ω2), then
Ω1 and Ω2 are isospectral. Now we remember that for the physical interpretation
only positive concentrations 0 u u0 ∈ L2(Ω1) are meaningful. If u0(x) v 0 for all
x ∈ Ω1, then u(t, x) v 0 for all x ∈ Ω1 and all t > 0. This is the positivity property
of the diffusion equation. The physical interpretation motivates us to consider, in-
stead of unitary operators, operators U which preserve positivity. A linear bijective
mapping U : L2(Ω1) → L2(Ω2) is called an order isomorphism if for all f ∈ L2(Ω1),
f v 0 if and only if Uf v 0. If in (1.131) instead of unitary we assume that U is an
order isomorphism, then we obtain a positive result.

Theorem 1.5 Let Ω1 and Ω2 be two Lipschitz domains in N. Assume that there exists
an order isomorphism U : L2(Ω1) → L2(Ω2) such that (1.131) holds. Then Ω1 and Ω2

are congruent.

For a proof, we refer to [153, Corollary 3.17]. We remark that this result also remains
true if we only assume the domains to be regular in capacity.

This theorem is no longer a purely spectral problem, but it is an inverse problem.
To say that U is an intertwining order isomorphism is the same as saying that U
maps positive solutions to positive solutions. Thus we may rephrase the result by
saying that “Diffusion determines the domain”.
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2

Solutions of Systems of Linear Ordinary Differential Equations
Werner Balser, Claudia Röscheisen, Frank Steiner, Eric Sträng1)

2.1

Introduction

Systems of ordinary differential equations (ODE) are of great interest, both in
mathematics and physics. If their coefficient matrix depends on the variable t,
then their solutions can only occasionally be computed in explicit form in terms
of known functions such as the exponential function (of a matrix), or other so-called
higher transcendental functions including Bessel’s or the hypergeometric function. In
this article we collect and describe methods that are popular among mathemati-
cians and/or physicists for computing the solutions of such a system. In some
exceptional cases these methods may lead to explicit solution formulas, while in
general they end with representations of solutions as infinite series that may or
may not converge, but still give useful insight into the behavior of the solutions.
As illustrating examples we shall frequently refer to two simple but nonetheless
nontrivial systems of the following very special form:

1. For d ~ d constant matrices Λ and A, with Λ being diagonalizable, we shall
follow K. Okubo [1] and refer to2)

(Λ – t)x′(t) = Ax(t) (2.1)

as the hypergeometric system in dimension d v 2. The name for this system
refers to the fact that, for d = 2, a fundamental solution can be computed in
terms of the hypergeometric function (and other elementary ones); for this,
refer to a book of W. Balser [2]. For d v 3, however, it is believed, although per-
haps not rigorously proven, say by differential Galois theory, that its solutions
only occasionally are known functions. This system may not have any direct
application in physics or other areas but has, partially in more general form,

1) Corresponding author.
2) We shall adopt the convention of writing Λ – t

instead of Λ – t I, with I being the identity
matrix of appropriate dimension.
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been frequently investigated by mathematicians. The reason for its populari-
ty with the latter group is that it is complicated enough to make its solutions
new higher transcendental functions, while on the other hand it is simple in the
following sense: The eigenvalues of Λ, defined as the points where Λ – t fails
to be invertible, as well as the point t = ∞, are regular singularities of (2.1),
hence it is what is called a Fuchsian system.

2. For Λ and A as above, we shall call
x′(t) = (Λ + t–1A)x(t) (2.2)

the confluent hypergeometric system in dimension d v 2. The confluent hyper-
geometric system is related to (2.1) by means of Laplace transformation, but
also by a confluence of all but one singularity of the hypergeometric system,
as was shown by R. Schäfke [3]. Having an irregular singularity at t = ∞, and
a regular one at the origin, (2.2) may appear more complicated than the pre-
vious one, but owing to their close relation, it is fair to say that they are of the
same degree of transcendency in the sense that if we can solve either one of
them, then we can also solve the other one. For d = 2, a fundamental solution
of the system (2.2) can be computed in terms of the confluent hypergeometric
function.

Mathematicians who have investigated either one of the two systems, analyz-
ing the behavior of their solutions and/or evaluating their Stokes constants, in-
clude G.D. Birkhoff [4], H.W. Knobloch [5], K. Okubo [6, 7], M. Kohno [8–10],
R. Schäfke [11, 12], Balser, Jurkat, and Lutz [13, 14], Kohno and Yokoyama [15],
T. Yokoyama [16, 17], and M. Hukuhara [18].

Aside from these two examples, we shall consider a general linear system of
ODE, denoted as

x′(t) = H(t)x(t) (2.3)

with a matrix H(t) whose entries are functions defined in some domain D that
is either a real (open) interval or an open and connected subset of the complex
numbers. If necessary, we shall require stronger assumptions on H(t), such as an-
alyticity, but for the time being we shall make do with continuity. Note that some
of the results to be presented here carry over to, or even have been developed for,
the case when H(t) is not a matrix but a more general, perhaps even unbounded,
operator in a Banach space. While we shall not attempt to treat such a general and
considerably more difficult situation here, we mention as a simple example the sit-
uation when X is a Banach or Hilbert space of functions f (x), with functions that
are arbitrarily often differentiable being dense inX, and instead of a matrix H(t) we
consider the operator ∂2

x, assigning to f its second derivative. In this case, instead of
a system (2.3) of ODE we deal with the one-dimensional heat or diffusion equation
∂tu(t, x) = α∂2

xu(t, x), where α > 0 is the diffusion constant. Given an initial con-
dition u(0, x) = φ(x) ∈ X which is arbitrarily often differentiable, one can formally
obtain a solution as

u(t, x) =
∞∑

k=0

(αt)k

k!
∂2k

x φ(x) = eαt∂2
x φ(x) . (2.4)
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Here, the operator under consideration is independent of time, which is an easy
situation when dealing with linear systems of ODE, since for any constant ma-
trix H the series etH =

∑
k(tk/k!)Hk converges. However, owing to the fact that

∂2k
x φ(x) in general is of magnitude (2k)!, the series (2.4) may diverge for every

t =/ 0. Very recently, it has been shown by Lutz, Miyake, and Schäfke [19] that
for many, but not all, functions φ(x) the series is summable in a sense to be dis-
cussed later; for this and other results in this direction, the reader may also refer
to a paper by W. Balser [20], as well as to the literature listed there. If the diffu-
sion constant α is allowed to be purely imaginary, say α = iα̃, then instead of
the diffusion equation one obtains the one-dimensional Schrödinger equation for
a free particle. The results from the papers quoted above easily carry over to this
situation as well. For a somewhat more detailed description of this situation, see
Section 2.5.6.

According to the general theory, we may regard (2.3) as solved, if we can find d
linearly independent solution vectors, since it is well known that the set of all solu-
tions is a linear space of dimension d. Such solutions can be arranged into a d ~ d
fundamental matrix X(t), and if X(t) is any matrix whose columns solve (2.3), then
it is fundamental if, and only if, its determinant is non-zero at least at one point t0,
implying det X(t) =/ 0 at all t ∈ D.

The methods that we are going to describe in the following three sections are
quite different at first glance, but are all based upon the following simple observa-
tion:

Suppose that the integral

Q(t) =
∫ t

t0

H(τ)dτ (2.5)

(which exists for any t0 ∈ D, owing to continuity of H(τ)) gives rise to a matrix
function that commutes with H(t). Then one can verify that the matrix

X(t) = eQ(t) :=
∞∑

n=0

1
n!

Q(t)n

with the series being absolutely convergent for all t ∈ D, gives a fundamental solu-
tion of (2.3), which is normalized by the fact that X(t0) = I.

This assumption is certainly satisfied whenever H(t) is a constant matrix H, in
which case the fundamental solution is X(t) = e(t–t0)H. So the difficulty in com-
puting a fundamental solution for (2.3) is caused by the fact that, in general, the
commutator [Q(t), H(t)] := Q(t) H(t) – H(t) Q(t) is not going to vanish. For example,
in the case of (2.2) we have

[Q(t), H(t)] =
(
1 – t0/t – log |t/t0 |

)
[Λ, A]

which vanishes if, and only if, Λ and A commute, and this is a relatively rare situ-
ation. If Λ is a diagonal matrix with all distinct diagonal entries, then it commutes
with A if, and only if, A is also diagonal. However, if they do commute, then the
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matrix X(t) = |t/t0 |A e(t–t0)Λ is a fundamental solution. In the case of complex t, an
even simpler one is given by

X(t) = tA etΛ (2.6)

for any choice of the branch of tA = e(log t) A.
We also wish to mention that the commutator [Q(t), H(t)] certainly vanishes if for

arbitrary values t1, t2 ∈ D we have [H(t1), H(t2)] = 0, and if this is so, we say that
H(t) satisfies the commutator condition.

Roughly speaking, the methods to be discussed treat a general system (2.3) as
a perturbation of a second one for which the commutator condition is satisfied or
its exact solution is known. In the first two approaches, the transition between the
two systems is by introducing a perturbation parameter λ (which in physical appli-
cations often plays the role of a coupling strength) and analyzing the dependence
of a fundamental solution upon λ, while the third method is best understood as
finding linear transformations linking the solution spaces of the two systems. In
all approaches, power series either in λ or t are used. While one at first may proceed
in a formal manner, one eventually is forced to ensure convergence of these series.
We shall indeed see in the last section that, in some situations, power series occur
which do not converge, but it will be indicated briefly that even then one can use
a technique of summation to still make good use of these divergent series.

2.2

The Exponential Ansatz of Magnus

Since a fundamental solution X(t) of (2.3) has a non-zero determinant, we may de-
fine Q(t) = log X(t), or equivalently write X(t) = eQ(t), with whatever determination
of the multi-valued logarithm of a matrix. This, however, leaves the question of
whether one may compute Q(t) without presuming X(t) to be known. That this can
be done, even in situations more general than (2.3), has been shown in an article
by Magnus [21]. However, observe that the suggestive idea of saying that

d
dt

log X(t) = X ′(t)X(t)–1 = H(t)

implying log X(t) =
∫ t

t0
H(τ)dτ, may not hold except when H(t) satisfies the commu-

tator condition, which brings us back to what was discussed above! Hence we need
a more sophisticated approach, and to facilitate computation, it is best to slightly
generalize (2.3), introducing a (complex) parameter λ and write

x′ = λH(t)x . (2.7)

A fundamental solution X(t; λ) then depends upon t as well as λ, and we wish to
represent it as

X(t; λ) = eλQ(t;λ) =
∞∑

k=0

λk

k!
Q(t; λ)k , Q(t; λ) =

∞∑
j=0

λjQ j(t) (2.8)
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with coefficient matrices Q j(t) to be determined, and convergence of the second
series to be investigated later. While the computation to follow can be facilitated
by using some well-known identities, such as those for the computation of the
derivative of an exponential matrix, we shall follow a more direct approach, leading
to an identity from which one can recursively compute the matrices Q j(t). For every
natural number k v 2, we set

Q(t; λ)k =
∞∑
j=0

λjQ jk(t) , Q jk(t) =
j∑

ν=0

Q j–ν(t)Q ν,k–1(t) .

Setting Q j1(t) = Q j(t) and interchanging the order of summation, we conclude

X(t; λ) = I +
∞∑

μ=1

λμ
μ–1∑
j=0

1
(μ – j)!

Q j,μ–j(t)

and in order that this expression is a solution of (2.7), with X(t0; λ) = I, we need to
have Q 0(t) =

∫ t
t0

H(τ)dτ, and for μ v 1

μ∑
j=0

1
(μ + 1 – j)!

Q j,μ+1–j(t) =
∫ t

t0

H(τ)
μ–1∑
j=0

1
(μ – j)!

Q j,μ–j(τ)dτ . (2.9)

Suppose that for some μ v 1 we would already know Q 0(t), . . . , Q μ–1(t) and this is
certainly correct for μ = 1. Then we also know Q jk(t) for all j = 0, . . . , μ – 1 and all
k v 1. Hence we may use (2.9) to explicitly find the next matrix Q μ(t) = Q μ1(t). We
leave it to the reader to verify that

Q 1(t) =
1
2

∫ t

t0

∫ t1

t0

[H(t1), H(t2)]dt2 dt1

Q 2(t) =
1
6

∫ t

t0

∫ t1

t0

∫ t2

t0

([
[H(t1), H(t2)], H(t3)

]
+
[
[H(t3), H(t2)], H(t1)

])
dt3 dt2 dt1 .

Similarly, the other coefficients can be computed in terms of higher order com-
mutators. For details, and a different proof of these identities, refer to articles [22]
and [23].

Note that all Q k(t) with k v 1 vanish whenever H(t) satisfies the commutator con-
dition, and there are other situations possible when Magnus’ series for Q(t; λ) may
terminate. In general, however, we have to deal with investigating the convergence
of the power series Q(t; λ), in particular for the value of λ = 1. While we shall post-
pone the discussion of the general case until later, we conclude this section with
the following easy but instructive example, showing that we cannot always expect
convergence at λ = 1:

Suppose that

H(t) =
[

a 0
t 0

]
, a =/ 0 .
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In this case, the fundamental solution X(t; λ), with X(0; λ) = I, of (2.7) can be verified
to be

X(t; λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eλat 0

1 + (λat – 1) eλat

λa2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

This matrix has a removable singularity at λ = 0. Using the theory of logarithms of
a matrix, one finds that X(t; λ) = eQ(t;λ) with

Q(t; λ) = log X(t; λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λat 0

t
(
1 + (λat – 1)eλat

)
a
(
eλat – 1

) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Again, the singularity of Q(t; λ) at λ = 0 is removable, and hence an expansion
as in (2.8) holds for sufficiently small values of |λ|. For t =/ 0, however, Q(t; λ) has
a first-order pole at λ = 2π i/(at), so that the radius of convergence is smaller than
1 whenever |t| > 2π/|a|. We shall analyze this effect in more detail in the following
section.

2.3

The Feynman–Dyson Series, and More General Perturbation Techniques

Here we briefly mention that the fundamental solution of (2.7) can also be repre-
sented by a convergent power series

X(t; λ) =
∞∑

k=0

λkX k(t) (2.10)

with X 0(t) = I and

X k(t) =
∫ t

t0

H(τ)X k–1(τ)dτ , k v 1 .

By repeated insertion of this recursion relation into itself, one can also write X k(t)
as an n-fold integral, and after some manipulation one can obtain a form that is
referred to as the Feynman–Dyson series [24] which contains so-called time-ordered
products of the matrix H(t). This shall not be discussed here, but we should like
to say that the series in its original form is intimately related to the Liouville–
Neumann method, see for example [25], which is also used in the proof of Picard–
Lindelöf’s Theorem on existence and uniqueness of solutions to initial value prob-
lems. From estimates given there one can show that in our situation the series
converges for every λ, hence X(t; λ) is an entire function of λ. Knowing this, one
can conclude that the matrix Q(t; λ) = log X(t; λ), studied in the previous section, is
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holomorphic at least in a sufficiently small disc about the origin, so that Magnus’
series in (2.8) has indeed a positive radius of convergence. From the theory of log-
arithms of a matrix one knows that Q(t; λ) = log X(t; λ), regarded as a function of λ,
may become singular once two eigenvalues of X(t; λ) differ by a nonzero multiple
of 2π i, and this may or may not happen for values of λ in the unit disc, as is seen
in the example given at the end of the previous section. Therefore, the radius of
convergence of Magnus’ series may, for any fixed t =/ t0 be smaller than 1, in which
case the series fails to converge at λ = 1. As a way out of this dilemma, one may use
explicit summation methods providing continuation of holomorphic functions to
compute Q(t; λ) outside of the circle of convergence of Magnus’ series, but we will
not discuss this here in detail.

A similar approach to that above works when investigating a system of the form

x′ =
(
H0(t) + λH(t)

)
x (2.11)

where H0(t) satisfies the commutator condition, so that for λ = 0 (the “unper-
turbed” system) a fundamental solution X 0(t) (which in the case of H0(t) == 0 may
be taken as the identity matrix) of (2.11) is known. The matrix λH(t) is considered
to be a “small perturbation“ if

∣∣∣λ∣∣∣ is considered to be small enough. For example, in
the case of confluent hypergeometric system (2.2), we may choose H0(t) = Λ+ t–1D,
with D being a diagonal matrix consisting of the diagonal elements of A. In this
case D and Λ commute, so that X 0(t) = tD etΛ. The series (2.10) then is a solution
of (2.11) if, and only if,

X ′
k(t) = H0(t)X k(t) + H(t)X k–1(t) , ∀k v 1 .

With the standard technique of variation of constants one obtains the recursion

X k(t) = X 0(t)
[
Ck +

∫ t

t0

X –1
0 (τ)H(τ)X k–1(τ)dτ

]
, ∀k v 1

with constant matrices that can be chosen arbitrarily. To have X(t0; λ) = I, one
should pick Ck = 0. However, if one wishes to obtain a fundamental solution with
a prescribed behavior as t → ∞, say, then other choices for Ck are more appropri-
ate. In the Diplomarbeit of Röscheisen [26], this technique has been used for the
system (2.2) to obtain fundamental solutions that, in sectors in the complex plane,
have a certain asymptotic behavior.

The approach discussed so far is referred to as a regular perturbation of lin-
ear systems, since (2.11), for λ = 0, is still a linear system of ODE. Other cases
arise when the parameter λ also occurs in front of the derivative x′, in which case
one refers to a singular perturbation. Such cases have been analyzed, see for exam-
ple [27], and it has been shown there that one meets power series that are divergent
for every λ =/ 0, but can be summed using the techniques to be discussed later.

Singular perturbation theory has important applications in quantum mechan-
ics. The evolution of a quantum mechanical system is governed by a PDE, the
Schrödinger equation,

i�∂tψ(x, t) = –
�2

2
Δxψ(x, t) + V(x)ψ(x, t) (2.12)
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where Δx is an appropriately defined Laplacian on a Hilbert space and � is Planck’s
constant. The study of the semiclassical limit � → 0 leads to a singular perturba-
tion problem identifying λ = i�. Of particular interest are the simultaneous limits
�→ 0, t → ∞ of the unitary evolution generated by (2.12) which do not, in gen-
eral, commute. This is the subject of Quantum Chaos, an introduction to which
can be found in the book of Grosche and Steiner (fifth chapter) [28] and the ar-
ticle by Bäcker and Steiner [29]. Quantum chaos deals with, amongst others, the
properties of the spectrum of operators or the ergodic properties of the evolution
generated by (2.12) using such techniques as microlocal analysis and the theory of
pseudo-differential operators (see [30] and references therein).

2.4

Power Series Methods

The methods discussed in the previous sections have the advantage of being appli-
cable to systems where the coefficient matrix H(t) is fairly general. What we shall
do here is restricted to cases when H(t) is a meromorphic function for t ∈ D, mean-
ing that D is an open and connected subset of the complex numbers C, and H(t)
is either holomorphic or has a pole at any point t0 ∈ D ⊂ C. As we shall see, it is
natural in this context to distinguish three different cases:

2.4.1

Regular Points

If H(t) is holomorphic at a point t0 ∈ D, then t0 is referred to as a regular point
of (2.3). In this case, we can expand H(t) into its power series about t0, and hence
for some ρ > 0 we have

H(t) =
∞∑

k=0

(t – t0)kHk , |t – t0 | < ρ (2.13)

with coefficient matrices Hk that we assume known. Assuming that the fundamen-
tal solution X(t) can also be represented by a power series, we write analogously

X(t) =
∞∑

k=0

(t – t0)kX k

and inserting into (2.3) and comparing coefficients, we obtain

(k + 1)X k+1 =
k∑

j=0

Hk–jX j , ∀k v 0 .

Selecting X 0 = I, the remaining coefficients X k are determined by this identity, and
a direct estimate shows that the power series so obtained converges for |t – t0 | < ρ,
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and its sum indeed is the fundamental solution of (2.3) normalized by X(t0) = I.
This argument shows that theoretically we can compute a fundamental solution
of (2.3) by a power series ansatz, provided that the coefficient matrix H(t) is holo-
morphic in the disk |t – t0| < ρ, and moreover, we obtain holomorphy of X(t) in
the same disc! We can even do better than this. If we choose any curve from t0 to
any other point t ∈ D, we can cover the curve with discs that remain in D, and by
successive re-expansion of X(t) compute its continuation to the point t. However,
note that examples show that continuation along a closed curve may not end with
the same fundamental solution with which we started!

2.4.2

Singularities of the First Kind

An important issue in the theory of ODE is to analyze how solutions behave when
the variable t tends to a singularity t0 of the coefficient matrix H(t). Even if we suc-
ceed in calculating a fundamental solution in closed form, or by means of a con-
vergent power series about a regular point, this may still be a difficult problem. An
explicit formula for X(t) may be so complicated that we cannot find out whether or
not X(t) grows, or stays bounded, or even goes to 0 as t → t0; the power series, even
when t0 is a point on the boundary of its circle of convergence, will not immediately
say much about the behavior of X(t) at t0 anyway. So this is why other ways of repre-
senting X(t) are still to be desired. This can be done relatively easily at a singularity
of the first kind, meaning any point t0 where H(t) has, at most, a first-order pole:
Suppose that

H(t) = (t – t0)–1–r
∞∑

k=0

(t – t0)kHk , |t – t0 | < ρ (2.14)

then one refers to r as the Poincaré rank of (2.3) at t0, and a singularity of the first
kind is characterized by r = 0. In addition, we assume for simplicity that the ma-
trix H0 satisfies the following eigenvalue condition:

(E) If λ and μ are two distinct eigenvalues of H0, then λ – μ is not an integer.

In this situation, a fundamental solution X(t) exists that has a representation of the
form

X(t) =
( ∞∑

k=0

(t – t0)kX k

)
(t – t0)H0 . (2.15)

Choosing X 0 = I, the remaining coefficients are uniquely determined by the iden-
tity

X k(H0 + k) – H0X k =
k–1∑
j=0

H k–jX j , ∀ k v 1 (2.16)

since the eigenvalue assumption made above ensures that the left-hand side, which
is simply a system of linear equations in the entries of X k, has a unique solution.
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Again, estimating coefficients implies that the power series in (2.15) converges for
|t– t0 | < ρ, and this representation immediately explains how X(t) behaves as t → t0,
since we see that X(t)(t – t0)–H0 is even holomorphic at t0.

Another way of looking at the above result is as follows. The convergent power
series

T(t) =
∞∑

k=0

(t – t0)kX k ,

when used as a transformation x = T(t)y, changes (2.3) to the system y′ = (t –
t0)–1H0y, whose fundamental solution is Y(t) = (t – t0)H0 . In general, if T(t) is any
invertible matrix, then the linear transformation x = T(t) y takes (2.3) to the new
system

y′ = H̃(t)y , H̃(t) = T –1(t)
(
H(t)T(t) – T ′(t)

)
and one may hope that the system so obtained can be solved more easily than the
original one, perhaps since the commutator relation discussed in the introduction
is satisfied. The same approach works with a singularity of the first kind when the
eigenvalue assumption (E) is violated, leading to an analogous result. For more
details on this, refer to [31] or [2]. As we shall see in the following subsection, this
idea can also be used for systems with singularity of higher Poincaré rank.

Applying this result to the hypergeometric system (2.1), which for diagonal Λ
has singularities of the first kind at all diagonal elements of Λ, plus an additional
one at t = ∞, we see that in principle we may compute fundamental solutions
at each singularity, and then by successive re-expansion even find out how these
matrices are connected with one another. These connection formulas have important
applications and have therefore been much studied in the literature.

A related method is commonly used to solve the Schrödinger equation

i�∂tU(t) = H(t)U(t)

in quantum mechanics and quantum field theory, where the Hamiltonian H(t) =
H0(t) + λH1(t) can be split into a free part H0(t) and an interacting part H1(t). (Here
H(t), H0(t), H1(t) denote hermitian matrices or self-adjoint operators.) With U(t) =
U0(t) U1(t), i�∂tU0(t) = H0(t) U0(t), one obtains the Schrödinger equation in the
Dirac interaction picture [32, 33]

i�∂tU1(t) = λH̃1(t)U1(t) , H̃1(t) := U –1
0 (t)H1(t)U0(t) .

2.4.3

Singularities of Second Kind

The confluent hypergeometric system (2.2) has a singularity of the first kind at the
origin, hence we may compute a fundamental solution of the form (2.15), with
t0 = 0. Owing to the absence of other finite singularities, the power series in this
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representation converges for every t ∈ C. However, it is not obvious how the so-
lutions so obtained behave as t → ∞. By means of a change of variable t = 1/τ,
system (2.2) becomes equal to y′ = –(τ –2Λ + τ –1A)y, with y′ denoting the derivative
of y with respect to τ. This new system has a singularity of Poincaré rank r = 1 at
the origin, and this is why we say that (2.2) has the same rank at infinity. Hence, the
methods of the previous subsection do not apply. Nonetheless, it is natural to look
for a transformation x = T(t)y which changes (2.2) into a new system that may be
solved directly, and since we want the fundamental solution Y(t) of the transformed
system to have the same behavior at ∞ as that of the original equation, we wish to
represent T(t) as a power series in t–1, denoted by

T(t) =
∞∑

k=0

t–kTk . (2.17)

Since T –1(t) should also be such a power series, we require in addition that the
matrix T0 be invertible. For simplicity, we require that Λ is not only diagonalizable,
but is indeed a diagonal matrix, whose diagonal entries are all distinct. Then we
may even restrict to T0 = I, and it can be shown that a transformation as above
exists, for which the transformed system has the form

y′ = (Λ + t–1D)y

with a diagonal matrix D that is equal to the diagonal entries of the original ma-
trix A in (2.2). So in a sense the matrix T(t) is a diagonalizing transformation for the
confluent hypergeometric system.

In [26], confluent hypergeometric systems have been considered, without the re-
striction that all diagonal entries of Λ are distinct (the so-called case of multiple
eigenvalues), but that identical entries appear consecutively. With a formal diag-
onalizing transformation, recursion formulas for a formal fundamental solution
of triangular systems has been computed and it has been shown that this formal
transformation in triangular form is unique under the assumption that T0 = I.

Even for a general system of arbitrary Poincaré rank, say, at the point ∞ it is
well known that a transformation (2.17) exists for which the transformed system
satisfies the commutator condition needed to compute its fundamental solution.
However, in all but some exceptional situations, the series in (2.17) fails to con-
verge for every t. But there is a relatively recent theory of multi-summability that
allows one still to make use of this series and compute a fundamental solution with
the help of finitely many integral transformations. We shall briefly describe these
results in the following section, and refer to the books by Balser [2, 34] for details.
In the first one, one can even find a proof for the fact that all power series that
arise as formal solutions even for nonlinear equations are multi-summable. Un-
fortunately, this is no longer the case with series that solve even very simple partial
differential equations; for example, the series (2.4) solving the heat equation fails
to be multi-summable for certain initial conditions.
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2.5

Multi-Summability of Formal Power Series

Here we attempt to briefly describe the theory of Gevrey asymptotics and (multi-)
summability of formal power series. This theory was proven to be very appropriate
when dealing with formal solutions of ordinary differential equations, and is now
investigated for applications to partial differential equations, or other functional
equations. In this case one is concerned with power series whose coefficients, in-
stead of being complex numbers, are functions of one or several variables, and
therefore this summation method has been shown in [2] to generalize to power se-
ries whose coefficients are in an abstract Banach space E over the fieldC of complex
numbers. However, for simplicity of presentation we shall here restrict ourselves
to the special situation where E is one-dimensional, in other words where it is in
fact equal to C.

2.5.1

Asymptotic Power Series Expansions

It is standard to say that a function f (z), which is assumed here to be analytic in
a sector S = {z : 0 < |z| < r, α < arg z < �} of the complex plane, is asymptotic to
a formal power series f̂(z) =

∑
n znfn as z → 0 in S, provided that for every (closed)

subsector Sδ = {z : 0 < |z| u r – δ, α + δ u arg z u � – δ}, with δ > 0, and every N v 0,
there exist constants cδ,N > 0 such that

∣∣∣∣f (z) –
N–1∑
n=0

znfn
∣∣∣∣ u cδ,N|z|N , ∀ z ∈ Sδ . (2.18)

If this is so, we also say that the power series f̂ (z) is the asymptotic expansion of the
function f (z) in the sector S. This statement can be seen to be equivalent to the fact
that for every n v 0 the nth derivative f (n)(z) of f (z) tends to n! fn as z → 0 in Sδ. Yet
another way of looking at this is by saying that there exists a unique value f (0) for
which f (z) not only becomes continuous, but in fact arbitrarily often differentiable
at the origin (however, only when restricting the corresponding limits for z → 0 to
values z ∈ Sδ), and then the formal series f̂ (z) is simply the Taylor series of f at the
origin.

The observation that an asymptotic expansion of a function f (z) is equal to its
Taylor series may suggest that this series converges to f (z) for sufficiently small |z|,
but this is not the case in general. On the contrary, the radius of convergence of
f̂ (z) may be equal to zero, and if not, the series may converge to a function differ-
ent from f (z). Moreover, while a given function f (z) can have at most one asymp-
totic expansion, it is so that infinitely many functions exist which are asymptotic
to a given power series f̂ (z) in a given sector S (of finite opening). The existence
of such a function in fact follows from a theorem named after J.F. Ritt [35], while
its nonuniqueness is due to the fact that exp[az–c], for sufficiently small c > 0 and
suitable complex a, is asymptotic to the zero power series in a given sector S.



2.5 Multi-Summability of Formal Power Series 85

2.5.2

Gevrey Asymptotics

The fact that there are always infinitely many functions which are asymptotic to
a given formal power series, even if this series converges, is very annoying in cer-
tain applications, such as using formal power series solutions for differential equa-
tions to construct proper solutions. Therefore, it is natural to ask whether there is
one particular function f (z), asymptotic to a given series f̂ (z), which in some sense
is the most natural choice to make, and which therefore might be considered as
a generalized sum for f̂ (z). In order to discuss this, we introduce the notion of
Gevrey asymptotics of order s > 0 by requiring that (2.18) holds for constants cδ,N

satisfying

cδ,N u CδKN
δ Γ(1 + sN) , ∀ N v 0

with suitable constants C δ, K δ that may depend upon δ but not upon N. In this
situation, if we want a function f (z) to have a given series f̂ (z) as its Gevrey asymp-
totic of order s, then |fn| u CK nΓ(1 + sn) for all n v 0 follows, with suitable C, K > 0.
This fact is expressed verbally by saying that f̂ (z) is a formal power series of Gevrey
order s. Given such a power series, the following can be shown:

1. If S is a sector of opening not larger than sπ, then there always exists a func-
tion f (z) that, in this sector, has f̂ (z) as its Gevrey asymptotic of order s, but
this function is still not uniquely determined. This result is usually referred
to as the Gevrey–Ritt theorem.

2. If the opening of S is larger than sπ, then a function as in (1) may not exist,
but if it does, then it is uniquely determined. To show uniqueness of f (z),
one uses the so-called Phragmén–Lindelöf theorem, which is a variant of the
maximum principle for analytic functions.

Hence we see that for sectors of large opening we have, at most, one function
having a given series as its Gevrey asymptotic, and therefore this function, if it
exists, is awarded the title (generalized) sum of the divergent series f̂ (z). In fact,
it turns out that this sum coincides with the one obtained by the process of k-
summability, for k = 1/s, that we shall discuss later. Note, however, that this sum in
general depends upon the sector S, and there may be some sectors where no such
sum exists, even if we are willing to make the opening of the sector smaller (but
still larger than sπ), keeping its bisecting ray fixed.

2.5.3

Asymptotic Existence Theorems

A nonlinear system of ordinary differential equations may have one, or even sev-
eral, solution vectors whose coordinates are formal power series in z. If so, Ritt’s
theorem implies the existence of functions that are asymptotically equal to these
series, but it is not clear whether any of them may be used to build a solution of the
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given system of ODE. However, results exist showing that this indeed can be done
under fairly weak assumptions about the form of the system.

Results of this kind, usually called asymptotic existence theorems, were proven, first
for linear and later for nonlinear systems, as follows. First, one uses the fact that
a formal power series solution exists, in order to rewrite the system in the form of
an integral equation that, aside from the other data, depends upon finitely many
arbitrary parameters. Then one shows that this integral equation can be solved by
the usual iteration procedure for contractive operators in a suitable Banach space.3)

Last, the solution obtained by this technique is shown to have the desired asymptot-
ic behavior. In fact, one can show that the asymptotic expansion is of some Gevrey
order, but the solution so obtained is not unique, since the sector in which this ex-
pansion holds, generally has too small an opening. Many results of this type have
been obtained in the first half of the last century, without using the terminology of
Gevrey asymptotics, or even that of multi-summability that we shall discuss later
on. The fact that for one and the same formal power series solution one has dif-
ferent solutions having the formal one as their asymptotic expansion in different
sectors, or equivalently, that the same solution in general has a different asymptotic
behavior in different sectors, is usually called Stokes’ phenomenon, since Stokes [36]
first analyzed this behavior in some special examples.

2.5.4

k-Summability

Formal power series solutions of linear, and to a lesser degree even nonlinear sys-
tems of ordinary differential equations are relatively easy to find – if we are satisfied
with finding a recursion equation for the coefficients of the power series. Given
a sector of sufficiently small opening, an asymptotic existence theorem shows that
at least one solution of the system has the formal one as its asymptotic expansion
in this sector. However, one would certainly prefer to have a way of computing such
a solution directly in terms of the formal power series that one has computed be-
fore. To do this, a summation method is needed that can sum power series with
rapidly growing coefficients. Abstractly speaking, such a summation method is an
operator S, mapping a set D of formal power series into a set of holomorphic func-
tions, and in order to be suitable for summation of formal solutions of ordinary
differential equations, it should have the following properties:

– The domainD ofS should be a differential algebra, that is, a vector space over
C that is closed with respect to multiplication and termwise differentiation.

– The operator S should be a homomorphism, meaning that it should map
a sum, respectively, a product of series in D to the sum, respectively, product

3) Observe that the integral equation has
a unique solution. However, due to the
existence of free parameters, one has in
general more than one solution of the
original system of ODE.
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of the corresponding functions, and a derivative of a series should be mapped
to the derivative.

– The domainD should include all convergent power series, and S should map
every one of those to its natural sum.

Every summation method satisfying these requirements has the property that, giv-
en any ordinary differential equation satisfying some reasonable assumptions, any
formal power series solution that belongs to the domain D is mapped by S to
a function that is again a solution of the equation. Many of the classical summation
methods such as Cesaro’s, or Abel’s method, fail to have one or more of these prop-
erties. However, Ramis [37] presented a family of methods which all are variants of
the Borel summation and can be seen to obey all the requirements listed above:

Let k > 0 and d be given.4) Then a formal power series f̂ (z) =
∑

f j z j is said to be
k-summable in the direction d, provided that the following two conditions hold.

1. The series g(t) =
∑

f j t j/Γ(1 + j/k) has positive radius of convergence.

2. There exists a δ > 0 so that the function g(t) can be continued into a sector
S(d, δ) = {t : |d – arg t| u δ}, and for suitably large C, K we have

|g(t)| u CeK|t|k , t ∈ S(d, δ) .

If so, then the function f defined by the integral5)

f (z) = z–k
∫ ∞(d)

0
g(t) e–(t/z)k

dtk , z ∈ Gd (2.19)

is the k-sum of f̂ (z) in the direction d, or for short: the sum of f̂ (z). We denote by Gd

the set of values z where the integral converges. Observe that the integral in (2.19)
is intimately related to Laplace transformation, and if we would replace g(t) by its
power series representation and interchange sum and integral, then instead of f (z)
we would re-obtain the series f̂ (z). This, in fact, proves that if the series f̂ (z) has
positive radius of convergence, then it is k-summable in the direction d, for every
value of k > 0 and d, and f (z) in this case is its natural sum. Moreover, one can show
that if a series is k-summable in every direction d, then it is necessarily convergent.
On the other hand, there are simple examples of series that are divergent but k-
summable in all but finitely many directions. Consider the series f̂ (z) =

∑
Γ(1 +

n/k)zn; its radius of convergence is zero, owing to the rapid growth of the Gamma
function. However, the corresponding function g(t) is just (1 – t)–1, and therefore
we conclude from the definition that this series is k-summable in all directions d
except for the positive real axis, and its sum is given by

f (z) = z–k
∫ ∞(d)

0

e–(t/z)k

1 – t
dtk .

4) Here d may be restricted to a half-open
interval of length 2 π, say d ∈ (–π, π] or, more
conveniently, values of d differing by integer

multiples of 2 π should be considered as
equivalent.

5) For convenience we write dtk instead of
ktk–1 dt.
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Here one can see that f (z) is a holomorphic (but not single-valued) function in the
sector –π/2 < arg z < 5π/2 and has the formal series f̂ (z) =

∑
Γ(1 + n/k)zn as its

asymptotic expansion of Gevrey order s = 1/k, as z → 0 in this sector. Even in
general, the set Gd where the integral (2.19) is convergent is a sectorial region of
opening larger than π/k, and the function so defined is asymptotic to f̂ (z) of Gevrey
order s = 1/k.

In [26], Röscheisen used the method of 1-summability to get proper fundamental
solutions of a triangular confluent hypergeometric system of differential equations.
After computing recursion formulas for a formal power series F̂(z) =

∑∞
j=0 z–jFj, it

is possible to define a function G(u) by

G(u) :=
∞∑
j=1

u j–1

( j – 1)!
Fj ,

which is a slight modification of the definition above. So, for certain directions
dν, ν ∈ Z, depending upon the eigenvalues of the system, and d ∈ (dν+1, dν) the
1-sum of F̂(z) in direction d has been given by

Fν(z) :=
∫ ∞(d)

0
e–zuG(u)du .

Observing the intimate relation of (2.19) to a Laplace transformation, one can verify
that the method of k-summability has all the properties listed above as desirable for
dealing with formal solutions of differential equations. Unfortunately, examples
show that some equations have formal solutions that are not k-summable in any
direction d, for whatever value of k > 0. On the other hand, a result by Ramis [37]
that was also shown independently in [38, 39], shows that such solutions can be
decomposed into sums of products of (finitely many) series that individually are
summable, but for values of k depending upon the term in the decomposition.
Since this decomposition cannot be found effectively, this result cannot be used
to compute the sum of formal solutions for general systems of ODE. To do this,
one needs a more powerful method, called multi-summation, that was originally
introduced by Ecalle [40] and will be presented in the next subsection in a form
which in [41] was shown to be equivalent to that of Ecalle.

It may be surprising to note that the method of k-summation does not improve
when k is varied in either direction. The first condition in the definition may fail to
hold when k becomes larger, that is, when s = 1/k gets smaller. On the other hand,
if k > k̃ > 0, then there exist series that are k-summable in a direction d, but for
which the second condition in the definition does not hold when k is replaced by k̃.
In addition, one can show that a series which is k-summable in all but finitely many
directions d, and which at the same time is of Gevrey order s < 1/k, is necessarily
convergent.
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2.5.5

Multi-Summability

As noted above, the methods of k-summation are still not sufficiently powerful to
handle all formal power series solutions of ODE. In order to produce some stronger
method, we again look at the two conditions in the definition of k-summability.
The first one is important to provide a function g(t) which then, according to the
second condition, can be inserted into the integral (2.19) in order to obtain the sum
of the formal series f̂ (z). So to proceed from k-summability to multi-summability,
we say that in order to have a function g(t) at our disposal, it is not important to
require convergence of the series

∑
f jt j/Γ(1+j/k), but instead we may allow that this

series is just summable in some sense, for example, κ-summable in a direction δ.
This idea of iteration of summation methods is already present in the work of
Hardy and his student and collaborator Good, but its potential for summation of
formal solutions of ODE was not observed until the fundamental contributions
from Ecalle.

In detail, the idea described above leads to the following definition. Let κj > 0 and
dj, 1 u j u q, be so that |dj – dj–1 | u π/κj, 2 u j u q. Then f̂ (z) =

∑
f j t j is said to be

(κ1, . . . , κq)-summable in the multidirection (d1, . . . , dq), provided that the following
two conditions hold.

1. The series f̂1(t) =
∑

f j t j/Γ(1 + j/κ1) is (κ2, . . . , κq)-summable in the multidirec-
tion (d2, . . . , dq); its sum will be called f1(t).

2. For some δ > 0, the function f1(t) can be continued into the sector S(d1, δ) =
{t : |d1 – arg t| u δ}, and for some C, K > 0 we have

|f1(t)| u CeK|t|κ1 , t ∈ S(d1, δ) .

If so, then

f (z) = z–κ1

∫ ∞(d1)

0
f1(t) e–(t/z)κ1 dtκ1 , z ∈ Gd1

is the (κ1, . . . , κp)-sum of f̂ (z) in the multi-direction (d1, . . . , dp).
Observe that here in the case of q = 2, one should interpret (κ2, . . . , κq)-

summability in the sense of Ramis. Moreover, the sum f (z) is in fact given by
an iterated integral, in which the order of integration, in general, cannot be
interchanged. One usually refers to the vector (κ1, . . . , κq) as the type of multi-
summability, and notes that a formal power series is multi-summable, provided
that a type (κ1, . . . , κq) exists for which it is (κ1, . . . , κq)-summable in all but finitely
many multi-directions (d1, . . . , dq). If we define numbers k1 > . . . > kq > 0 by

1/kj = 1/κ1 + . . . + 1/κj , 1 u j u q

then one can show that every series f̂j(z) that is kj-summable in the direction dj

is also (κ1, . . . , κq)-summable in the multi-direction (d1, . . . , dq), and the two sums
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agree. Moreover, since multi-summability can also be shown to have all the prop-
erties listed in Section 2.5.4, the sum f̂ (z) = f̂1(z) + . . . + f̂q(z) is also summable in
this sense. In fact, it has been shown in [42, 43] that in the case of κj > 1/2 the con-
verse of this statement holds. If f̂ (z) is (κ1, . . . , κq)-summable in the multi-direction
(d1, . . . , dq), then f̂ (z) = f̂1(z)+ . . .+ f̂q(z) with f̂j(z) being kj-summable in the direction
dj; the same statement, however, fails to hold if one, or several, κj u 1/2.

When Ecalle gave his definition of multi-summability, it followed from results
mentioned above that all power series arising in formal solutions of linear ODE
are multi-summable. Meanwhile, there are three independent proofs by Braaks-
ma [44], Ramis and Sibuya [45], and in [34], showing the same even for nonlinear
systems of ODE. However, while many of the best-known ODE have their roots
in physics, and some of them have divergent power series solutions, there is no
such equation for which a formal power series solution cannot be summed by the
method of k-summability, but instead requires the technique of multi-summation.
Nonetheless, it is fair to say that multi-summability is the perfect tool for handling
divergent solutions of ODE. The situation is slightly different for partial differential
equations, as we shall briefly describe in the next subsection.

2.5.6

Applications to PDE

The technique of multi-summability can be applied to formal solutions of partial
differential equations as well but, as one may expect, such an attempt meets with
new difficulties. In order to understand this, it suffices to look at the very simple
Cauchy problem

∂tu = α∂2
xu , u(0, x) = φ(x)

where α =/ 0 is an arbitrary complex constant, while the initial condition φ is as-
sumed to be holomorphic in a disc about the origin. As was made clear in the
Introduction, this problem includes both the heat or diffusion equation, where α
would be a positive real number, as well as the Schrödinger equation, in which
case α should be purely imaginary. For applications, one should interpret the vari-
ables t and x as real (and perhaps restrict t to positive values), but presently it is
more natural to allow the two variables to be complex. In any case the above prob-
lem has the unique formal power series solution (2.4), and since the 2kth derivative
of a function, in general, is of magnitude (2k)!, one can see that this series diverges
and is, for fixed x, of Gevrey order at most 1. Therefore, it is natural to investigate
its 1-summability, for fixed x, and to do so, we form the series

v(t, x) =
∞∑

k=0

(αt)k

(k!)2 ∂
2k
x φ(x)

which has a positive radius of convergence. For u(t, x) to be 1-summable in a di-
rection d, it is necessary and sufficient to show that v(t, x) can be continued with
respect to t into a small sector bisected by the ray arg t = d, and can be estimated
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by C exp(K|t|), for some constants C, K > 0. To do this, it is convenient to recall
from [2] that this is possible for the function v(t, x) if, and only if, it can be done for
the slightly different function w(t, x) given by

w(t, x) =
∞∑

k=0

(αt)k

(2k)!
∂2k

x φ(x) =
1
2

(
φ(x + (αt)1/2) + φ(x – (αt)1/2)

)
.

From this formula, we read off that for 1-summability of the series (2.4) in a direc-
tion d, it suffices to assume that the initial condition φ(x), which by assumption
is holomorphic in a disc about the origin, can be continued into a sector with bi-
secting direction arg x = (d + arg α)/2, and can be estimated by C exp(K|x|2). It is
not obvious, but can be derived from general properties of k-summability that this
condition upon φ(x) is also necessary. It is clear that every rational function φ(x)
has this property for all but finitely many directions d, with the exceptional ones
related to the location of its poles. On the other hand, there exist functions that are
holomorphic in the unit disc, say, but cannot be continued beyond its boundary,
and for such an initial condition φ, we conclude that the formal solution (2.4) is
not 1-summable in whatever direction d.

The result described above has, in the case of α = 1, been shown in [19]. For an
application, it is most natural to choose the direction d = 0, since then, under the
corresponding condition on φ, the sum of (2.4) is defined for all positive values of t.

2.5.7

Perturbed Ordinary Differential Equations

This subsection is about singularly perturbed systems of ordinary differential equa-
tions of the form

tr+1εσx′ = g(t, x, ε)

where σ and the Poincaré rank r are natural numbers, and g(t, x, ε) is holomorphic
in a neighborhood of the origin of C ~ Cν ~ C. Analysis of the dependence of
solutions on the perturbation parameter ε is referred to as a singular perturbation
problem. Under suitable assumptions on the right-hand side, such a system will
have a formal solution

x̂(t, ε) =
∞∑

n=0

xn(t)εn =
∞∑

k=0

xk(ε)tk =
∞∑

k,n=0

xkntkεn

with coefficients xn(t), xk(ε), xkn given by differential recursion relations. In gener-
al, the series are divergent, but they are still useful if one applies summability in
several variables.

In [27], Balser and Mozo-Fernández investigated the case of linear perturbation
systems of the form

tr+1εx′ = A(t, ε)x – f (t, ε) (2.20)
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with a coefficient matrix A(t, ε) =
∑

k,n Akntkεn, whose leading term is invertible
(that is A(0, 0) is invertible) and an inhomogeneity vector f (t, ε) whose entries are
holomorphic near the origin.

A typical example in dimension ν = 1 is

tr+1εx′ = ax – f (t) (2.21)

where a ∈ C\{0} and f is holomorphic in a neighborhood of the origin. In this exam-
ple, let r be not just a natural number, but r v –1. The problem has a unique formal
solution of the form x̂(t, ε) =

∑∞
n=0 xn(t)εn. The coefficients xn(t) can be recursively

computed by

ax0(t) = f (t) , axm+1(t) = tr+1x′m(t) , m v 0

If r = –1, this formal series is 1-summable in direction d for t in a sufficiently small
disc around the origin if and only if the function f is holomorphic and of exponen-
tial growth at most 1 in some sector with bisecting direction d–arg a. Furthermore,
the coefficients xn(t) are holomorphic functions in t and if one considers x̂(t, ε) as
a power series in t, it is even convergent.

The most important case, however, is r v 1. In this case, the formal series
is 1-summable in a direction d for t in r disjoint sectorial regions of opening
π/r, whose bisecting directions depend upon d. So, although the higher value of
the Poincaré rank r causes a more complicated singular behavior of the solutions
of (2.21) with respect to the variable t, it improves the situation when studying the
dependence upon the perturbation parameter ε.

The case r = 0 is a special case, but not very interesting and therefore it will not
be discussed here.

2.6

Periodic ODE

Other ODE of importance are those where H(t) is periodic in the variable t. As exam-
ples, these appear when seeking periodic solutions of ODE [46] or in the Fredholm
theory of periodic operators on Banach spaces and perturbations thereof. Histori-
cally, periodic ODE have played an important role in the study of planetary and lu-
nar motion [47–49] and later in the quantum mechanical description of solids [50].
We will here consider only linear ODE of real variables.

2.6.1

Floquet–Lyapunov Theorem and Floquet Theory

For linear ODE of the form (2.3) with periodic coefficients H(t) of period T and
Lebesgue measurable entries, the Floquet–Lyapunov theorem [49, 51] implies the
existence of fundamental matrices X(t) of the form

X(t) = U(t) e Λt (2.22)

where Λ is a constant matrix and U(t) is a periodic function of period T [52].
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2.6.2

The Mathieu Equation

The inherent problem of Floquet theory is to find just the matrix Λ. In important
cases, Λ is diagonalizable whereupon its eigenvalues λi are called Floquet expo-
nents. In many examples one is particularly interested in the dependence of the
Floquet exponents upon some parameter of H(t, ε) where H depends analytically
on ε, in other words, one wishes to find the functions λi(ε). We will here describe
the determinantal approach to finding these exponents.

For the sake of simplicity, we will consider the 1-dimensional Mathieu equa-
tion [46]

x′′ +
(
ε – 2q cos (2t)

)
x = 0 (2.23)

where ε and q are real parameters. The Mathieu equation is the simplest nontrivial
case of the Hill equation [47] where the periodic function is not restricted to one
Fourier mode. The Mathieu equation has come to play an important role in the
theory of ODE, in particular, its stability regions, defined by the values of ε for
which Re (λi) > 0, have been studied extensively. A similar treatment for systems of
linear ODE is also possible [53].

Inserting the Floquet representation

x(t) = eiλt
∑
κ∈Z

c2κ(λ)e2iκt (2.24)

in (2.23), one is led to investigate the Fourier coefficients of the periodic function
U(t), c2κ, which satisfy the recursion

c2κ + q
c2(κ–1) + c2(κ+1)

(2κ – λ)2 – ε
= 0 . (2.25)

In the case of a Hill equation with n Fourier coefficients, the corresponding recur-
sion relation would be of order 2n + 1.

2.6.3

The Whittaker–Hill Formula

Finding the non-trivial solutions of (2.25) is equivalent to finding λ such that

det
(
A
(
λ; ε, q

))
= 0 (2.26)

where A
(
λ; ε, q

)
is a linear operator on �2(Z) giving the system of recursions as

A
(
λ; ε, q

)
c = 0.

Such determinants have contributed to the creation of the theory of determinants
of infinite matrices [47,54]. The latter determinant is to be understood in the sense
of Poincaré [54], who defined it as the limit of a sequence of determinants of finite
dimensional matrices. In this particular case, this determinant can be shown to
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converge absolutely for 2κ – λ =/ ±
√

ε since A – �2(Z) : �2(Z) → �2(Z) is trace class.
A trace class operator T defined on a separable Hilbert space with eigenvalues μi

satisfies
∑

i

∣∣∣μi

∣∣∣ < ∞. The determinant of T + is then correctly defined by
∏

i(1 +
|μi |) [55].

The determinant is an analytic function of the variable λ except at its poles, for
which 2κ – λ = ±

√
ε. It is easily shown to be 1 periodic in λ with simple poles. This

is also valid for the function

D(ε, λ) =
1

cos (πλ) – cos
(
π
√

ε
) . (2.27)

Hence, applying Liouville’s theorem, there exists C(λ) such that

det
(
A
(
λ; ε, q

))
– C(λ)D(ε, λ) = 0 (2.28)

Further asymptotic considerations in λ permit one to determine C, leading to the
so-called Whittaker–Hill formula [25]

sin2
(

πλ
2

)
= det

(
A
(
0; ε, q

))
sin2
(

π
√

ε
2

)
. (2.29)

Note that this result still holds for the full Hill problem [25].

2.6.4

Calculating the Determinant

There are many schemes that attempt to calculate the Floquet exponent using the
Whittaker–Hill formula [25,56–59]. These schemes rely on the analytic or algebraic
properties of the sequence of matrices with index i of size (2i + 1) ~ (2i + 1) needed
to determine det

(
A
(
0; ε, q

))
in the Poincaré sense.

In [59], the determinants, Δi of adjacent matrices in the sequence are put in
relation to each other. This results in a third-order recursion for these determinants

Δi = �iΔi–1 – αi�iΔi–2 + αiα2
i–1Δi–3 (2.30)

where αi, �i are known elementary functions of the elements of the i-th matrices in
the sequence. Note that this technique can easily be generalized to potentials with
a greater number of Fourier coefficients in (2.23). The order of the recursion (2.30)
will, however, also be higher. Such recursions can be brought to explicit closed
forms [59]. The sought-for determinant is then det

(
A
(
0; ε, q

))
= limi→∞ Δi.

Although such considerations do not explicitly enable one to compute λ using
the Whittaker–Hill formula, they provide iterative methods to numerically approx-
imate λ.

2.6.5

Applications to PDE

The Hill equations appear intrinsically in the eigenvalue problems of so-called Hill
operators. They are differential operators of the form

Ĥ = –�2∂2
x + VΓ (x) (2.31)
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where VΓ (x) ∈ L1

(
Rd
)

is periodic with respect to some d-dimensional lattice Γ .
The spectral properties of such operators have been extensively studied (for a short
review see [60]). Lyapunov [49] proved that there are, in general, infinitely many
stability intervals, which implies for periodic Schrödinger operators that the spec-
trum of Ĥ cannot lie in certain bands. Moreover, such operators have an absolutely
continuous spectrum. It is, in this context, customary to denote the eigenvalue
band n as a function En(λ) of the characteristic exponent λ. These functions play
an important role in the quantum theory of solids. Considering the Schrödinger
equation

i�∂tψ =
(
Ĥ + ϕ(εx)

)
ψ , ψ(0, x) = φ(x) ∈ L2

(
R

d
)

(2.32)

the evolution on the subspace of the n-th energy band will, for small enough
ε, be well approximated by Peierls’ substitution. This consists in replacing the
periodic part of the Schrödinger operator (2.32) Ĥ by En(–i�∂x) [61]. Such ap-
proximate adiabatic evolutions are used exhaustively in atom and solid state
physics.
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A Scalar–Tensor Theory of Gravity with a Higgs Potential
Nils Manuel Bezares-Roder1), Frank Steiner1)

3.1

Introduction

3.1.1

General Relativity and the Standard Model of Particle Physics

One might imagine science as a huge building that has been growing through
time. At first sight, this building seems to consist of independent blocks. However,
in its foundations general topics are closely related with each other, but also still
far apart in the lack of unifying concepts and theories, given the different interpre-
tations that may exist. In theoretical physics, for instance, there are the theories of
elementary particle physics for quantum phenomena. Together with their interpre-
tation, they are now extremely well-grounded experimentally. On the other hand,
there is General Relativity (GR) as the theory of gravitation. This represents anoth-
er conceptual revolution fulfilled and grounded in the 20th century. It is formally
comparable to “theories of quanta”. However, both cannot even now be unified in
a unique and consistent theory.

The construction plan and design of science is not always clear, but it develops,
expands and interrelates its different subjects, implementing new ideas and results
which come over time. Science has evolved progressively, so that new concepts al-
ways work as a seed for future interrelations, to produce a better understanding
and new and wider horizons. It is exactly the same with learning. There, a neural
network is founded as a building and new synapses are created for better intercon-
nections through the axons between individual somata of the neurons which form
the net. Such a unification may be fulfilled only in a progressive way. When com-
plete, however, stimuli may be better transmitted and received. At the same time,
these stimuli lead to new and better interconnections which need continuous re-
freshment. Between neurons, myelin is then needed for the isolation of axons, and
the ability to create and modulate neurotransmitters to transmit the information is
required.

1) Corresponding authors.
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In science, stimuli come from both theory and experiment and it cannot be en-
sured how they (as new concepts, for instance) may appear or mix, nor which of
the channels in the existing net are best for them. Their correct reception, trans-
mission and modulation, however, is part of the architecture of science.2)

A first grounding for transmission and reception of stimuli in scientific models
and theories lies in empiricy. Hence, there are degrees of freedom in their con-
struction and also in their final form. New concepts may come from new experi-
ments and the hypotheses that follow them. Thus, interrelation between the estab-
lished models and the feedback from evolving theoretical and experimental tech-
niques is crucial. Self-doubt acquires a fundamental character to strengthen scien-
tific achievements, too, with the viewpoint that scientific ideas may change and that
science, in the end, does not attempt to dictate reality, but only to describe it.

In this context, it may be concluded that scientific theories and interpretations in
natural science are related to epistemological ideas that are based on an empiricist-
transcendental principle which implies that the validity of the theories depends on
the knowledge obtained so far (see, for instance, the discussion by Einstein in [2]
in relation to his opinion about metaphysics in interpretations). This knowledge,
however, together with its interpretation, may change in time. Thus, a scientific
theory cannot expect to be the final truth. However, within more general theories,
the descriptions of nature can seek for a wider application area and for new pre-
dictions to be contradicted by experiments.3) Fundamental maxims, further, are
unification, consistency and simplicity. These are followed, for instance, when ex-
tending gravitational models from Newtonian mechanics to Einstein’s theory of
General Relativity (GR). Not only does the latter entail Newtonian gravitation in the
nonrelativistic limit of weak gravitational fields. It describes and accurately predicts
effects such as perihelion advance (also known as perihelion shift; most notably in
the case of Mercury’s orbit), light deviation (leading to “gravitational lenses”) and
the Thirring–Lense effect (an effect caused by rotating massive bodies), which all
lie beyond Newtonian dynamics. At the same time, GR unifies the concepts of
space and time (therefore, we use Greek letters here as indices counting from zero
to three) introducing curved Lorentzian manifolds and tensors as functions on the
manifold itself to describe its properties (like energy and momentum, which now
discovers a relationship with geometry!).

2) As in science, for progressive development,
the reader should have the right to pick up
some concepts as stimuli and to compare
them with related ones in theories he might
know or might be interested to know in the
future. Paraphrasing Sartre, and in relation to
positivistic thoughts of modern science, “the
fundament of truth is freedom. Recognition
is to bring what is (‘das Sein’ or ‘ l’être ’) to
the light, to act and search on the margin of
mistakes, rejecting in this way ignorance and
lies related with predisposition. And truth
is this progressive disclosure, even though

truth itself may be relative to the epoch in
which it is achieved” (cf. [1]).

3) In the philosophy of science, [3] this is
called fecundity and independent testability,
which, together with unity i.e. a unique
problem-solving strategy, should characterize
a “good” scientific theory. In the same
context, Karl R. Popper defines scientific
theories and human knowledge in general
as dependent on historico-cultural settings.
Further, while absolute verifications cannot
exist, nonrefutability of a theory is stated as
nonscientific [4].
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Within GR, the field equations (which give the dynamics) are usually known as
Einstein’s field equations. They were first derived in 1915 [5] and give the dynamics
of gravitation. According to them, gravitation is understood geometrically as the
curvature of the space–time manifold (that is, a generalization of space carrying
time as a further dimension) and no longer as a force. This curvature is given by
the Einstein tensor Gμν = Rμν – 1/2Rgμν.4) According to Einstein’s field equations,
Gμν is related to the energy-momentum tensor Tμν of matter:

Gμν = –κTμν , (3.1)

whereas the latter is derived from the so-called Hilbert–Einstein action

SHE =
∫ [

1
κ

R + LM

]
√

–gd4x . (3.2)

For an action, the variation is postulated as vanishing, according to the Hamilton
Principle of Least Action. This principle leads correctly to Newtonian or quan-
tum mechanics; electromagnetism or gravitation, for instance. This depends on
the Lagrangian (or Lagrange density) chosen under the integral of the action S.
Thus, (3.2) is the fundament of normal GR and defines all gravitational interac-
tions.

Here, g denotes the determinant of the metrical tensor gμν, and κ = 8πG/c4 is
related to Newton’s gravitational constant G and the speed of light c, which is pos-
tulated as constant. Furthermore, the energy-momentum tensor Tμν is related to
the Lagrangian of matter LM, which is the fundament of a theory, where (especial-
ly fermionic) matter is defined in terms of the wave function given by the state ψ, in
accordance with quantum mechanics. And it is quantum mechanics which indeed
leads to the idea of field theories instead of only theories for the dynamics of parti-
cle systems. Within quantum theories, trajectories are no longer defined. But their
analog can be found in the quantum mechanical state, as the system “blurred” in
space. As the eigenvector of an observable, the state gives the probability of quali-
ties to be measured.

Within quantum mechanics, a measure of a property given by an operator Â
with real-valued eigenvalues (an observable) is related to the so-called collapse of
the wave function. The observer is understood as part of the whole quantum me-
chanical system, and as such there is an intrinsic interaction between him and

4) In the notation, the Einstein convention for
the addition states that for a twice-appearing
index; once as an upper (in physics usually
called covariant) and one as a lower
(contravariant) one, is to be summed over it.
Further, here Rμν denotes the so-called Ricci
tensor, while R is the Riemann (or Ricci)
scalar of the metric. Since in curved space
inversion of the first and second derivatives
of a vector does not lead to the same
mathematical object, the so-called Riemann
tensor Rλ

μσν may be defined as a measure of

this permutation loss. Its trace Rλ
μλν = Rμν

is the Ricci tensor, and the trace of it then
R. All of these can be written as functions
of derivatives of the metric gμν, which
gives the properties of the space–time and
mathematically defines the scalar product. In
a flat space–time like the pseudo-Euclidean,
Minkowski one, of Special Relativity (which
can be found in normal quantum mechanics
where gravitation is neglected), the curvature
tensors vanish.
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the analyzed subsystem. This interaction leads to loss of information in form of
the “collapse” (to the basis of the observed property with eigenvalues a, which are
the statistical mean value of measurements). If the eigenvalues of Â and of a fur-
ther observable B̂ possess different eigenvectors, the measurement of both is not
commutative (ÂB̂ =/ B̂Â), and a change in the order of measurement leads to dif-
ferent mean results. The quantum mechanical state, which gives the properties of
the analyzed system, changes after the first measurement. A second measurement
represents an interaction with a different system where information was lost (this
is closely related with Heisenberg’s uncertainty relation, often given for the mea-
surement of a momentum p̂x and a coordinate x̂ which a particle may possess as
properties at a specific moment. As canonical conjugate operators, p̂x and x̂ are
orthogonal to each other and thus possess a different basis. Consequence: it is not
possible to know both the exact momentum (velocity) and the place of say an elec-
tron at the same time).

In the same way, since a realistic quantum system is never isolated, the interac-
tion of the state with its environment is important. There are quantum correlations
between them, and this interactions may be understood as a sort of measurement,
again related with a collapse, but especially with the so-called decoherence [24].
Through this, superpositions of the wave functions, a fundamental property of
quantum physics (mathematically founded in the linearity of the Hilbert space,
in which quantum mechanical states exist), vanish.5) The idea is that classical me-
chanics should be recovered from quantum mechanics by means of the quantum
properties themselves, especially for large sizes and masses of the observed sys-
tem. Quantum properties cancel out, leading to the classical world, it is said. The
dynamics that will explain the collapse and define a complete theory of measure-
ment has not yet been completely explained, though. It is related to what is called
“the problem of definite outcomes” and that of the “preferred basis”. Together these
form the measurement problem, and their further research relies on quantum infor-
mation theory.

Research on quantum information, related for instance to quantum and non-
linear optics, leads to many new and classically unexplicable effects such as en-
tanglement (from the so-called EPR paradox of Einstein, Podolsky and Rosen [6])
and quantum teleportation [7] (an experimental fact since Zeilinger’s experiment
in 1997 [8]!), which is fundamental to the concept of quantum computers [9] and
which should further be explained in relativistic contexts (where a priori informa-
tion of the state to be teleported is necessary to label identical particles in order to
make them effectively distinguishable [10]). However, neither usual (Schrödinger’s
nonrelativistic, or even Dirac’s special-relativistic for particles with spin) quantum
mechanics alone, nor General Relativity, can describe the nature of matter itself.
This is rather fulfilled within the context of (special- relativistic as well as quan-

5) A well-known example of superpositions in
quantum mechanics is Schrödinger’s cat. It is
described as alive and dead at the same time
until measurement (observation) “decides”
its classical status.
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tum theoretic) elementary particle and high-energy physics. The latter evolved out
of nuclear physics with the desire to discover the foundations of matter and its
fundamental dynamics.

Modern particle physics theories have their beginning and interpretation basis
in the early 20th century. Back then, H. Yukawa proposed that nuclear particles
were held together (against electromagnetic repulsion) by the mediation of parti-
cles that he proposed (the pi-mesons or pions) [11]. These particles are massive
(with about 140 MeV/c2 W 2.5 ~ 10–28 kg mass) and do indeed mediate short-range
interactions within the nucleus.6) However, pions decay in leptons, and are thus
not fundamental. They mediate only residual interactions. Further, the nucleus-
conforming particles (called hadrons in the general case) possess a finite diameter
of about 10–15 m and also an inner structure [13]. In this context, Gell-Mann [15]
and Zweig [16], independently of each other, interpreted a nonelementarity and in-
troduced constituent particles of hadrons back in 1964. The experimental evidence
for these [14], finally, was acknowledged with the Nobel prize in 1990.

Elementary particle physics describes dynamics on the basis of quantum field
theories and hence of quantum mechanical states as property carriers for measure-
ments. States are there related to constituent particles. Furthermore, modern theo-
ries are based on Yang’s and Mills’ field theory of 1954 [17], utilizing N-dimensional
wave functions as states.7) The latter, however, is necessarily combined with the
Higgs (or Higgs–Kibble) mechanism of symmetry breakdown [18] (cf. later in this
subsection), through which the theory is renormalizable [19] (’t Hooft and Veltman
were awarded the Nobel prize for this proof in 1999). It further neglects gravitation
since gravitation is by far the weakest of the four known fundamental interactions
(gravitational, electromagnetic, weak and strong).

The main example within elementary particle theories is the unifying Glashow–
Salam–Weinberg Model of the electroweak interactions (Nobel prize awarded in
1971), which, together with so-called Quantum Chromodynamics (QCD) of the
strong interactions (named in analogy to electrodynamics but with “color” – �ρώμα –
charge instead of only an electric one) of Gell-Mann and others, leads to the Standard
Model (SM) of elementary particles under the symmetry group SU(3)C ~ SU(2)L ~
U(1)Y. Here, the constituents are part of a multiplet or isovector which is conformed
by those particles which are indistinguishable within a specific interaction. The
group dimension (and subscript), hence, is given by the particles represented in each
group: three differently “colored” (C) quarks for the strong interactions, electrons

6) For his prediction in 1935 and for the
development of experimental techniques
which resulted in the discovery of pions [12],
Yukawa and Powell were awarded with the
Nobel prize in 1949 and 1950, respectively.

7) The Yang–Mills theory is a non-Abelian
(non-commutative) theory with SU(N)
transformations (i.e. unitary matrix-valued
transformations for N dimensions and
determinant +1 for the transformation
operator or matrix) and thus with

self-interactions that generalize the
Maxwell equations of (Abelian U(1)-)
electrodynamics (where photons as gauge
bosons – mediators – do not self-interact)
to the so-called and analog Yang–Mills
equations. The dimension N of the symmetry
group gives the number of so-called gauge
currents that mediate the interactions,
according to the usual interpretation of these
theories.



104 3 A Scalar–Tensor Theory of Gravity with a Higgs Potential

and neutrinos (leptons L) for the weak interactions, and electrons for electromag-
netism. Y stays for the “hypercharge”, which is related to the usual electromagnetic
charge of electrons by the so-called Gell-Mann–Nishijima formula.

The SM, as a quantum field theory of interacting fundamental fields, is based
on the so-called gauge principle or gauge invariance, which leads to the covari-
ant derivatives. These make it possible for derivatives to maintain their tensorial
character, and can be introduced in terms of parallel transport (and holonomy) in
curved space (a sphere, for instance). There, a usual derivative leads outside of
the manifold. An additional term is needed for correction, that is to move parallel
to the surface of the sphere during the derivation. This additional term is relat-
ed to so-called connections, such as Christoffel symbols Γμ

νλ in GR or gauge fields
(or potentials) Aμ in usual gauge theories. Furthermore, the SM has built in Gell-
Mann’s [15] and Zweig’s [16] idea of quarks as fundamental constituents of hadrons
(like protons, neutrons and more massive particles). Interactions between quarks,
then, are understood to be mediated through the gauge fields, with the so-called
gauge bosons as the field quanta of the interactions. Gauge bosons thus possess
an analogous property to the mesons in Yukawa’s earlier theory, but they do have
a truly fundamental character, related to potentials (photons are related to the elec-
tromagnetic potentials, for instance).

The above ideas suggest the composition of the universe through different eras
after the Big Bang, after which more complex types of matter evolved. The com-
position of the early universe includes different types of composite and noncom-
posite matter. The composite one is then divisible as the superposition of the main
constituents bound together by gluons as gauge bosons of the strong interactions.
Gluons, as gauge bosons, are the mediators of the strong interactions, which, in
the end, hold atoms together through short-ranged residual interactions.

In analogy to quantum electrodynamics (QED), in quantum chromodynamics
(QCD) of strong interactions, a (strong) color charge is defined. However, this
charge exists in three types (named blue, red and green, like the three primary
colors for additive combinations in color theory) and three “anti-types” (named anti-
blue, anti-red and anti-green). Further, although both photons and gluons, gauge
bosons, are massless and thus QED- and QCD- interactions are long-ranged, other
than photons, gluons self-interact and carry and mediate a charge (actually both
a color- and an anti-color-charge). And while quarks are “colored” i.e. possess a col-
or charge, the resulting superposition of all free particles in nature is assumed to
be “colorless” (“white”-charged, following the analogy with color theory). This is re-
lated with the problem of confinement and asymptotic freedom: quarks cannot be de-
tected as free particles, since strong-interaction (color) forces should augment with
distance. Within a hadron (femtometer scale), however, quarks would move freely.8)

8) The predicted interaction between the
color-mediating gluons and quarks in
hadrons, first discovered in the early 1970s,
achieved the Nobel Prize for Gross, Wilczek
and Politzer in 2004.
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Unlike hadrons, quarks do not seem to possess an inner structure and in partic-
ular, the SM assumes none. What makes them different from each other is sim-
ply called flavor (there are six of them, and six anti-flavors). Otherwise, quarks are
only divided into three families or generations. In each of them, an (iso-)pair (anti-
pair) of quarks is found. With a member with positive fractional electric charge
Q = +2/3e and another one with negative fractional electric charge Q = –1/3e (up
and down, charm and strange, top and bottom, and antiquark analogs). The first
generation consists of the less massive quarks with mup/mdown W 0.56 and mup of
about 2 MeV/c2. Top quarks (proven experimentally only in 1995 at Fermilab [20]),
of the third and most massive family, on the other hand, possess a mass of about
171 GeV/c2 (an electron Volt eV is about 1.6 ~ 10–19 Joules. It is the amount of
energy equivalent to that gained by a single unbound electron when it is acceler-
ated in vacuo through an electrostatic potential difference of one volt): about 1000
times more massive than (composite) pions and with almost twice the mass of
weakons!

The matter class composed especially by quarks is called hadronic. The relation
of this composite matter with its main constituents as well as its subclassification
are listed in a simplified way below:

Class of composite Constituents Examples
HADRONS (H) QUARKS and GLUONS
H1) Baryons 3 quarks OR 3 antiquarks

H1.1) Nucleons up- and down- proton
quarks (antiquarks) neutron
and gluons antiproton

antineutron

H1.2) Hyperons with top-, bottom-, Ω–

charm- or strange- (3 strange-quarks)
quarks (antiquarks) Λ+

C
also (up, down, charm)

H2) Mesons ONE quark and ONE antiquark

H2.1) Flavorless up-, down- quarks pion π+

and antiquarks and gluons (up, anti-down)

H2.2) Flavored up-, down, top-, kaon K+

bottom-, strange- quarks (up, anti-strange)
and antiquarks and gluons

Nuclear matter consists only of quarks of the first generation. Thus, given that
such combinations are generally preferred energetically, the main type of baryonic
matter is nucleonic. However neither baryonic, nor hadronic matter in general, are
the only types. Not even including composite matter. Other classes that are known
experimentally are those consisting of bosons or leptons. Leptons are sometimes
bound in composites as leptonia (like electron–antielectron–pairs, for instance). At
the same time, gluons, for example, bound in so-called glue-balls which acquire
dynamic mass and may explain in the SM the short range of (effective) nuclear
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forces (about 2.5 ~10–15 m, in contrast to pure strong interactions, which are long-
ranged, since gluons do not possess mass).

The elementary nonhadronic (and thus nonbaryonic) matter is listed below:

Class of matter Constituents Frequent symbol Some properties

Bosonic matter photons A Mediate electromagnetism.
or γ Uncharged. No mass

gluons Gi Mediate strong interactions.
(nine types) Possess color-charge

and -anticharge
weakons W+, Mediate weak interactions.

W–, Lead to �-decay.
Z0 Massive

Leptonic matter electron- e±, Massive.
(positron-) μ±, Three leptonic generations
analogs τ± with me < mμ < mτ
neutrinos νi and Only (gravitationally and)
(antineutrinos) ν̄i weakly interacting.

(i = e, μ, τ) Nonvanishing small mass

The latter category (of neutrinos and their antimatter counterpart) is especially rel-
evant in an astrophysical description of matter. In astrophysics, there is a crucial
discussion about which kind of matter may be perceived (almost) only gravitation-
ally. And this seems necessary to explain some empirical data which may contradict
the usual models of astrophysical dynamics if this type of matter is not taken into
account. Neutrinos do not couple electromagnetically and are thus very difficult to
detect directly. In an astrophysical context they are therefore called hot dark mat-
ter (HDM). Dark because they lack electromagnetic coupling (which makes them
very difficult to detect, so that 25 years passed from their prediction by Pauli in the
late 1930s [21], even before neutrons were discovered, until their 1995 Nobel-prize
winning discovery by Reines and Cowan in 1956 [22]. Hot, because of the high ve-
locity of neutrinos related to their almost, but according to neutrino oscillations not
vanishing, mass of, at most a few eV/c2).

Dark matter (DM), though, can be baryonic (like a brown dwarf, for instance)
or nonbaryonic. Nonbaryonic DM can be like the HDM. But it may be an exotic
example as well, generally called “cold”; some kind of as – yet undiscovered mat-
ter, a particularly important likely candidate of which being light supersymmetric
particles like neutralinos or gravitinos. These are introduced under the assump-
tion that there is a special symmetry between bosons (with integer spin as “quan-
tum number”) and fermions (with half-integer spin) in nature, so that for each
boson (fermion) there exists a partner fermion (boson) as a so-called superpartner.
Here, gravitinos are superpartners of gravitons in a quantum theory of gravitation,
and neutralinos are quantum theoretical superpositions of the superpartners of
the Z-bosons, of photons (neutral gauginos) and of neutral Higgs particles of su-
persymmetric theories (Higgsinos). The latter are thought to mix due to the effects
of electroweak symmetry breaking (when both electromagnetic and weak become
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independent interactions, leading to massive weakons characterizing the broken
symmetry). As heavy, stable particles, neutralinos, in particular, seem to be good
candidates for cold dark matter (CDM) as very weakly interacting massive particles
(WIMPs). They are assumed to decay finally especially in τ-leptons, although decay
channels including supersymmetric particles such as neutral Higgsinos, for in-
stance, are also expected [23]. The neutralino mass is thought to be over 10 GeV/c2,
and evidence of annhihilation of such particles in regions which are expected to be
highly “dark-densed” is hoped will be found in γ-ray and neutrino telescopes.

From a theoretical point of view though, it is not only possibly still unobserved
supersymmetric particles which should be taken into account. There are also cos-
mological relics from symmetry-breaking processes which are predicted by high-
energy physics to be included in a list of the universe’s components [25]. All these
particles and fields, as far as they really exist in the physical world, should have
played a role in structure formation. They therefore imply the existence of an exotic
part of the dark components of the density of the universe (that is, of the compo-
nents such as those of dark matter which we do not directly see, or the nature of
which is still unclear).

According to GR dynamics, nowadays it is generally believed that dark compo-
nents are by far the major part of the total matter-like density that exists (cf. [26]),
but not only of the matter-like components, though! However, at this point the na-
ture of these dark density components is unclear and also whether this complexity
in interpretation might indicate a deeper, new physics, better described by more
general models. Here, for instance, we intend to ground a model for which the as-
sumption of scale-independent dynamics is no longer valid. This means that small
or large ranges show different dynamics to those we usually perceive. We intend
to change the fundamental properties of the models in order to obtain a more gen-
eral one which might be used in a simplified and unified way to explain empirical
complexity by means of changed dynamics, in comparison with usual GR. The
methods and ideas in the subsequent sections are, however, not new. They may
be traced back to the beginning of the 20th century but might allow the reader
to view some concepts and building properties of modern theoretical physics and
its structure. The general, covariant form of such theories (usual in Relativity) as
in Section 3.2.2 is very compact and helpful. It is, however, rather difficult to un-
derstand for readers not used to it, though. Thus, the outlook in Section 3.2.4 will
help with two special cases which are then simplified in terms of dark matter and
cosmology.

The dark components of density are usually divided into those of matter, the
main component of which is called cold dark matter (CDM) (as opposed to the
HDM components), and those of dark energy (which acts anti-gravitationally i.e.
against gravity, or, equally, as having negative pressure). The latter may be identi-
cal with Einstein’s cosmological constant Λ0, introduced by Einstein in 1917 [27]
(however, with the idea of a closed and static universe) by replacing Gμν in his Equa-
tions (3.1) by Gμν + Λ0gμν. Λ0 is interpretable as the energy density of a vacuum.
A particular candidate for this is the scalar field commonly known as quintessence
or “cosmon” field [28, 29] as a theoretical carrier (generally coupled minimally to
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gravitation in modern standard theories or with a scalar field coupling to R which
stays almost constant). The cosmological constant represents a special case of dark
energy that does not change with time (cf. [30]) but which should also be explained
within a quantum theory of gravitation.

Dark energy is related to the phenomenon of cosmic acceleration (see Sec-
tion 3.2.4) since anti-gravitation interactions would lead to a repulsion of matter
after the Big Bang. However, for a long time, it was strongly believed to be van-
ishing. There were only few empirical data which would point to anti-gravitation.
And it was only in the last decade of the 20th century that this assumption of
a vanishing Λ began to fall apart. A nonvanishing value for dark energy was
measured within the context of GR for Super Novae of type Ia (SNeIa) as extra-
galactic distance indicators [31–33].9) And in the years that followed, the results
were corroborated. Thus, cosmic expansion seems to be accelerated. However, by
now it is unclear if the value of this dark energy (as the anti-gravitation compo-
nent) stays constant in time, as a true cosmological constant Λ0, or wether today’s
dark energy component is the remainder of some cosmological function. This
function should contribute as ΩΛ W 0.7 today to the total density parameter ΩT

of the current universe. Here, Ωi is defined as a dimensionless parameter for
a given energy (mass) density εi = ρi c2, given by Ωi = ρi/ρc = εi/εc, where ρc is
a critical density defined in terms of G, c and the Hubble constant H0, which, on
the other hand, is a measure of the cosmic expansion, see Section 3.2.4. Earlier
experimental works like [34] and [35] have already proposed a nonvanishing, but
over-abundant cosmological constant (for a slightly closed (K = 1, ΩT W 1) baryonic-
matter dominated universe). Nowadays standard measured values of the models,
however, are Ωm = 0.127 h–2 for matter, including ΩB = 0.0223 h–2 for baryons and
ΩDM = 0.105 h–2 for dark matter (h = 0.73 gives the normalized modern Hubble
expansion rate). For neutrinos, the constraint lies at Ων < 0.007h–2, and the cos-
mological constant density yields ΩΛ = 0.76. According to the three-year results
of WMAP, the total energy density parameter lies around ΩT = 1.003+0.013

–0.017 [36].
A value of 1 means a curvature K = 0 of a flat universe, while higher values mean
a closed universe with K = 1, and lower ones indicate an hyperbolic universe with
K = –1.

If dark energy components should change in time, the scalar field of quintessence
might be one that acts on local planetary [37] or galactic scales [38]. Moreover, if
coupled nonminimally to gravity, massive fields of that kind might even account
for the phenomenology of dark matter components of galaxies and thus con-
tribute to the understanding of their flat rotation curves [39, 41]. According to
Newtonian dynamics, the tangential velocity of spiral galaxies should decrease

9) SNe Ia are variable stars which (simplified)
result from a violent explosion of a white
dwarf star which has completed its normal
stellar life and where fusion has ceased. After
having ignited carbon fusion, the released

energy and subsequent collapse has unbound
the star in the supernova explosion. For the
type Ia especially, the spectrum shows a lack
of hydrogen lines but indicates singly-ionized
silicon.
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inverse-proportionally to the distance from the galactic nucleus. Empirically, this
is not the case and the velocity stays nearly constant (flat), as if there were a halo
of invisible massive matter (dark matter), the dynamics of which is dependent of
the visible matter of the galactic disc. A scalar field, though, may lead to the same
dynamics and flattened curves of the tangential velocity.

The question of whether scalar fields exist at all is still open. However, the Higgs
field for spontaneous symmetry breaking (SSB) [18] is of special relevance as a basis
for the SM (but not the only one!). The underlying mechanism, related to a scalar
field (which can be related to an order parameter within the context of solid state
physics, and specifically with the complex one of the Ginzburg–Landau theory, or
with Cooper pairs – bosons – in the BCS theory, both of superconductivity), pre-
dicts the existence of new particles, especially the massive ones known as Higgs
particles in the case of the Higgs’ mechanism. In the case of Goldstone’s mech-
anism, on the other hand, there are also massless Goldstone particles. Through
a unitary transformation they are absorbed by the gauge fields and the Higgs mode
is achieved, with the appearance of only massive particles (cf. [45]).

The appearance of these particles is related to a breaking of the symmetry when
energy scales are low enough and the ordered state becomes unstable. The scalar
field as the order parameter and as the most likely state becomes nonvanishing (or-
der, symmetry, is broken). And the latter is related to the scalar field potential and
its degeneracy after the universe cools following the Big Bang. Then, the ground-
state value (or vacuum expectation value (VEV)) of the field becomes nonvanishing
and it is energetically more favorable to create a particle (the Higgs particle) than to
have it disappear. This particle is related to the nonvanishing field. If, on the other
hand, there were a real invariant vacuum, the symmetry-breaking mode becames
a Wigner mode. Modes of this kind are found in relation to degeneracies like the
ones within the Zeeman effect (see discussion in [45]).

The Higgs mode within Abelian Higgs models (coupled with electrodynamics)
gives a more elementary explanation of the Meissner effect and superconductiv-
ity from the appearance of the (dynamical) mass of photons, and within QCD it
gives a method for the explanation of the confinement of quarks in color singlets
within hadrons through a dual form of superconductivity i.e. with a color-magnetic
superconductor (see [46]).

Higgs particles are expected to be found in high-energy experiments such as in
the LHC, the particle accelerator in Geneva, Switzerland (see [45]). They represent
the one still unverified prediction of the SM, which has proven very successful.
Still, the SM postulates Higgs fields in order to be renormalizable [42] (i.e. espe-
cially avoiding divergences in perturbation theory) and thus so to obtain a realistic
physical description.

The SM of elementary particle physics has been remarkably successful in provid-
ing the astonishing synthesis of the electromagnetic, weak and strong interactions
of fundamental particles in nature [43,44]. According to this, inertial as well as pas-
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sive gravitational mass10) are introduced as generated simultaneously with respect
to gauge-invariance by the interaction with a scalar Higgs field through the SSB.
Then, considering the Higgs field for small enough energy scales, the Higgs field
couples to matter. By means of this interaction, matter no longer moves as fast as
the speed of light. It spontaneously possesses mass. However, the latter is generat-
ed or explained in the theory by an interaction between particles, but only within
elementary particle physics and not within GR. The Higgs mechanism of SSB [18]
provides a way for the acquisition of mass by the gauge bosons and fermions in na-
ture, but the mass is reduced to the parameters of the Higgs potential, the physical
meaning of which is still not completely understood.

On the other hand, following Einstein’s idea of the principle of relativity of in-
ertia, mass should be produced by the interaction with the gravitational field [47].
Einstein had argued that the inertial mass is only a measure for the resistance
of a particle against a relative acceleration with respect to other particles; there-
fore, within the theory of relativity, the mass of a particle should originate from
an interaction with all other particles of the universe. This interaction should be
the gravitational one, which couples to all particles i.e. to their masses or ener-
gies. Furthermore, Einstein postulated that the value of the mass should go to
zero if one put the particle at an infinite distance from all the others. GR, how-
ever, was not able to realize this principle, commonly known as (Einstein’s version
of the) Mach’s principle. Nevertheless, these ideas led Carl H. Brans and Robert
H. Dicke to develop their scalar–tensor theory (STT) [48] (see Section 3.1.2), al-
though an explanation of mass did not follow from it either. However, the cosmolo-
gy of scalar–tensor theories leads naturally to cosmic acceleration [49]. This makes
the scalar fields of such theories the natural candidates to be quintessential-like
fields [50–52].

Interestingly, the Higgs mechanism lies in the direction of Einstein’s idea
of mass production. As a result of the fact that the Higgs field itself becomes
massive after symmetry breaking, it mediates a scalar gravitational interaction
between massive particles. This interaction is, however, of Yukawa type (short-
ranged): there is a type of gravitational interaction of the Higgs field between
massive fermions [53] as well as bosons within the Glashow–Salam–Weinberg
model of electroweak interactions based on the localized group SU(2) ~ U(1) [54]
but not restricted to it; further, this is valid in all cases of mass production by
symmetry breakdown via the Higgs mechanism [55], so that it is natural to cou-
ple scalar fields, and especially Higgs-like fields, to the curvature of GR within
scalar–tensor theories (STTs) (see also the analysis in [56, 57]). Actually, both
the 4-force of the gauge field and the Higgs field act on the matter field. The
gauge-field strength couples to the gauge-currents, that is to the gauge-coupling

10) Inertial mass is defined as a measure of
an object’s resistance to the change of its
position due to an applied force. Passive
gravitational mass is also a measure of the
strength of the gravitational field due to
a particular object (see [45], especially in

relation to symmetry breaking modes and the
Higgs mechanism). Although conceptually
different, Einstein’s principle of equivalence
asserts that they are equal for a given body
and, this has now been well-grounded
experimentally.
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constant g, whereas the Higgs field strength (gradient of the Higgs field) couples
to the fermionic mass-parameter k. This points to a gravitational action of the
scalar Higgs field. In the case of a scalar gravity only massive particles should
interact and the only possible source of a scalar gravity is the trace of the energy-
momentum tensor [55]. Further, even in the field equations of the SM, the scalar
field plays the role of an attractive scalar gravitational potential between massive
particles.

3.1.2

Alternative Theories of Gravity and Historical Overview

In modern quantum theories, interactions between equally charged particles me-
diated by bosons with odd spin are repulsive (as in quantum electrodynamics for
equally charged particles, since photons possess spin 1, while QCD-confinement
comes from an attractive force, given the differently color-charged quarks of
hadrons). Those by bosons with even spin are attractive. Further, from Einstein’s
GR (in analogy to quantum theories) it follows that the gravitational interaction
is, in its quantum-mechanical nature, mediated by massless spin-2 excitations
only [58]. This is expected to be related to the still-hypothetical gravitons as in-
termediate particles of a quantum theory of gravity. Classically, to describe this
interaction, the gravitational Lagrangian of the theory (which follows the Euler–
Lagrange equations for a field) describes the propagation and self-interaction of
the gravitational field only through the Ricci scalar R (see (3.2)).

Scalar–tensor theories (STTs), on the other hand, postulate in this context the
existence of more complex dynamics from further mediating particles, named in
this case graviscalars, within the context of quantum theories. This means that
STTs modify classical GR by the addition of scalar fields to the tensor field of GR.
They further demand that the “physical metric” gμν (coupled to ordinary matter) be
a composite object of the form gμν = A2(φ̂)g∗μν, with a coupling function A(φ̂) of the
scalar field φ̂ [59].

The first attempts at a scalar–tensor theory were started independently by
M. Fierz in 1956 [60] and by Pascual Jordan in 1949 [61]. The latter noticed
through his isomorphy theorem that projective spaces such as Kaluza–Klein’s
(five-dimensional) can be reduced to usual Riemannian four-dimensional spaces
and that a scalar field as a fifth component of such a projective metric can play the
role of a variable effective gravitational “constant” Geff, which is typical for STTs
and by which it is possible to vary the strength of gravitation [62] (thus, obviously
violating to some degree the strong equivalence principle). Furthermore, this kind
of general-relativistic model with a scalar field is equivalent to a multi-dimensional
general-relativistic model [63]. Many theories do involve this physics (e.g. string
theories or brane theories), but scalar-tensor theories are typically found to repre-
sent classical descriptions of them [64].

In his theory, Jordan introduced two coupling parameters of the scalar field. One
parameter produced a variation in the gravitational constant. The other one broke
the energy conservation by a nonvanishing divergence of the energy–momentum
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tensor to increase the mass in time, in accordance with the ideas of Jordan and
Dirac [65]. However, the cosmic microwave background radiation (CMB) as a real
black-body radiation discovered in 1965 [66]11) forces one to accept general energy
conservation as experimental fact [67].

Jordan’s theory was worked out independently by Brans and Dicke in 1961 [48]
without breaking energy conservation, but again introducing a scalar field with an
infinite length scale and playing the role of a variable gravitational coupling. The
generalization to GR’s action (3.2) was then proposed as

SJBD =
∫ [

φ̂R + (16π/c4)LM –
ω
φ̂

(
∂φ̂
∂xμ

∂φ̂
∂xμ

)]
√

–gd4x . (3.3)

Here, we have the determinant g of the metric tensor, the (Ricci) curvature scalar R,
the matter LagrangianLM and a scalar field φ̂ which plays the role of the reciprocal
Newtonian constant G–1. The first term of (3.3) couples the scalar field and gravita-
tion given by R, while the third term represents the kinetic energy of φ̂, since the
Lagrange density L (conceptually derived from the Lagrange function of mechan-
ics) is usually defined in terms of the substraction of the potential from the kinetic
energy of the analyzed system.

Other than in the original theory of Jordan, the Brans and Dicke theory in (3.3)
does not contain a mass-creation principle. The wave equation of φ̂ can be trans-
formed so as to make the source term appear as the contracted energy–momentum
tensor of matter alone. In other words, the inhomogeneous part of the wave equa-
tion is only dependent on the trace T of the tensor Tμν, and this is in accordance
with the requirements of Mach’s principle: φ̂ is given by the matter distribution in
space.

In 1968, P. Bergmann [68], and 1970 R. Wagoner [69], discussed a more general
scalar–tensor theory which possesses an additive cosmological function term Λ(φ̂)
in the Lagrangian. Furthermore, the latter may now possess a functional param-
eter ω = ω(φ̂) for a scalar field φ̂. This general kind of theory, now often called
Bergmann–Wagoner (BW) class of STTs, possesses the Jordan–Brans–Dicke (JBD)
class as a special case for ω = const and Λ(φ̂) = 0.

The Bergmann–Wagoner-formed models are not canonical, and in physics a the-
ory is said to be in a canonical form if it is written in the paradigmatic form taken
from the classical one (an ideal which is, in principle, freely eligible and a matter
of definition).12) The Equation (3.3) (considered to be in the Jordan frame) is not in
this form. However, STTs can be transformed conformally into a canonical form
(Einstein frame) in which a cosmological function still appears, but φ̂ is minimally
coupled. This is achieved by changing from the so-called Jordan frame (with mixed

11) Work which resulted in 1984 in the Nobel
prize for physics for A.A. Penzias and
R.W. Wilson. Further, the exact analysis
and corroboration of the qualities of CMB,
together with the small anisotropy present,
led to the Nobel prize award to John C.
Mather and George F. Smoot in 2006.

12) Cf. an interesting analysis about the historical
origin and meaning of the concept of “canon”
by J. Assmann in [70], which he further
relates to Halbwachs’ “mémoire volontaire”
of a society.
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degrees of freedom of metric and scalar field) to the Einsteinian one (with un-
mixed degrees of freedom). In the four-dimensional case, this is fulfilled through
gμν → φ̂–1gμν and a redefinition of the scalar field and cosmological function. It
is still the subject of discussion which frame is best. The Jordan one, however, is
usually called the physical frame [71].

The scalar field in the Jordan–Brans–Dicke theory is massless. However, a gen-
erally covariant theory of gravitation can accommodate a massive scalar field in
addition to the massless tensor field [72, 73]. Thus, a version of the JBD or BW
theory with massive scalar fields may be postulated [74]; indeed, A. Zee incorpo-
rated the first concept of SSB to gravity within a STT [75], suggesting that the
same symmetry-breaking mechanism was responsible for breaking a unified gauge
theory into strong, weak and electromagnetic interactions (mediated by their cor-
responding gauge bosons). Spontaneous symmetry breaking (SSB) causes some
scalar field to have a vacuum expectation value v, thus generating the mass of the
intermediate bosons and of fermions, relating them to the ground state of the scalar
field after the breakdown of symmetry. Zee attributed the smallness of Newton’s
gravitational constant GN (of order of magnitude of about 10–11 m3 kg–1 s–2) to the
massiveness of some particle (this may be compared with the result of [53]) with

GN ~ 1/v2 , (3.4)

where v2 =
√

2/ (8πGF) W 6.07 ~ 104 (GeV)2. Thus, SSB generates the mass of the
intermediate boson such that for the Fermi constant (GF W 1/(2π(294 GeV)2)) (with
weakon mass MW (~ 80 GeV/c2) and elementary charge e (~ 10–19 C)) we have

GF ~ e2/M2
W ~ 1/v2 , (3.5)

which may be compared with (3.4). Since SSB has proven extraordinarily faithful in
many areas of physics, Zee considered it worthwile to incorporate this mechanism
into gravitation [75] and explain the smallness of Newtons’s constant through the
mass of Higgs particles.13) This mechanism includes a self-interaction of the scalar
field and, thus, a potential V as part of the cosmological function of the BW class
of STTs, but which is missing from usual JBD theories.

As a result of the missing potential, Brans–Dicke’s theory is inconsistent with ob-
servation unless a certain parameter is very large [76]. In fact, from measurements
of radio-signal current time delay with Viking probes from Mars, the coupling pa-
rameter ω of the usual JBD theory in (3.3) (a measure of the strength of the scalar
field coupling to matter) is required to being greater than about 500 [77].

In any sensitive theory, as Brans and Dicke proved in their original work [48],
the dimensionless constant ω must be of the general order of unity. For ω → ∞,
however, GR is obtained, which entails that the JBD theory leads nearly to the same

13) The smallness of G can also, as will be seen,
be explained through a high expectation value
of the scalar field as well as through a strong
coupling of the scalar field to gravitation,
analogously to [54].
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results as GR. In contrast, however, in a STT with the scalar field anchored by the
SSB potential, this strength of the scalar field coupling may naturally be smaller.
Thus, new physics of a higher order is possible. Given the gravitational properties
of Higgs-like fields (see Section 3.1.1), for instance, it seems natural to couple them
to gravitation and analyze new properties of the model. This kind of Higgs-like field
(because of the coupling to SSB and the possession of a nontrivial vacuum state)
may then be relevant in view of a gravitational theory which might entail long-
range changes in the dynamics to explain dark components, anchored or not with
elementary particle physics. Indeed, the simplest “Higgs-field model” beyond the
standard model consists in the addition of a singlet particle that only interact with
the Higgs sector of the SM, in which the sector does not couple directly to vector
bosons. With a fundamental gauge-invariant construction block φ†φ, the simplest
coupling of a particle to a Higgs or Higgs-like field is [78]

Lagrangian term of Higgs sector = λ̃Xφ†φ , (3.6)

where X is a scalar field and † represents the Hermitean conjugation, the transpo-
sition of a tensor for real-valued components, and complex conjugation for purely
scalar quantities.

The Higgs-like field develops a vacuum expectation value and, after shifting it,
the vertex (3.6) leads to a mixing between the scalar field and the Higgs-like field.
Thus, it may give rise to new effects that do not involve the scalar explicitly [78].
Furthermore, the X-field may be considered as not fundamental, but an effective
description of an underlying dynamical mechanism, and a relation between grav-
ity and the generalized Higgs sector may be assumed. Both gravity and a Higgs
particle possess some universal characteristics; gravity couples universally to the
energy–momentum tensor and the Higgs particle to mass, which corresponds to
the trace of the energy–momentum tensor. This suggest a relation between the
generalized Higgs sector and gravity be conjectured, which is indeed given by Hig-
gs gravity in [54]. Furthermore, there is a similarity between X and the hypothetical
graviton, since both are singlets under the gauge group [57].

Because they have no coupling to ordinary matter, singlet fields are not well con-
strained by experiments. Typically, one can argue that they are absent from the the-
ory because they can have a bare mass term which can be made to be of the order
of the Planck mass MP, making these fields invisible. However, one can take the
attitude that the Planck length be not a fundamental constant but rather a property
of today’s state of the world, which evolve in time and be typically given by a vac-
uum expectation value of some scalar field [28]. With a Higgs coupling to gravity,
then, all masses, including the Planck mass, should be given by SSB. In this case
there is a hierarchy of mass scales MP >> v. Given these similarities, X can be con-
sidered to be essentially the graviton and be identified as constant · R, with the
curvature scalar R [57]. Moreover, this possibility may be used to explain the natu-
ralness problem, especially since other candidates such as top-quark condensation
or technicolor (in which quarks are no longer primordial) have not functioned so
far and supersymmetry doubles the spectrum of elementary particles, replacing
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Bose (Fermi) degrees of freedom with Fermi (Bose) degrees of freedom, whereas
all supersymmetric particles are by now beyond physical reality.

Making a low-energy expansion ( [57]) and ignoring higher derivative terms,
a spontaneous symmetry breaking theory of gravity with a Higgs field as the origin
of the Planck mass may be derived [57, 79]. Moreover, this is the theory which was
first derived in [80] and [81]. The remnant of originally very strong interactions is
the parameter ᾰ, which in Section 3.2.1 will be introduced as the coupling strength
of the Higgs field to gravitation. It will essentially give Newton’s gravitational con-
stant, and its high value will enable the model to be distinguishable to gravity at
low energy scales, other than the case within usual JBD-theories.

The class of STTs with massive scalar fields is given within the Bergmann–
Wagoner (BW) class with the Lagrangian14)

LBW =
1

16π

{
φ̂R +

ω(φ̂)

φ̂
φ̂,λφ̂,λ – 2φ̂U(φ̂) +LM

}
√

–g , (3.7)

whereas S =
∫
Ld4x and δS == 0 are valid. Further, φ̂U(φ̂) = Λ̃(φ̂) gives a cosmolog-

ical function and ,λ the derivative in respect to the λ-coordinate.
Within the Bergmann–Wagoner class, there is a wide account of analyses, al-

though most of them focus on U(φ̂) = 0 as special case. However, analyses within
the general BW class such as on the existence of black holes as well as global prop-
erties of vacuum, static, spherically symmetric configurations can be found, for
instance, in [82–84], and in deSitter and warm inflation models in the framework
of STTs in [85], and with the Higgs potential in [86, 87]. Friedmann–Lemaître–
Robertson–Walker (FLRW or simply RW) models for Friedmann–Lamaître uni-
verses for cosmology, further, are analyzed in [88], obtaining a class of separable
Wheeler–deWitt equations after a quantization of the models. That is, equations
which a wave function of the universe should satisfy in a theory of quantum gravity.

3.2

Scalar-Tensor Theory with Higgs Potential

3.2.1

Lagrange Density and Models

Let us take a closer look at a Bergmann–Wagoner (BW) model with a generally
nonvanishing cosmological function. Then let the scalar field be defined through
a U(N) isovector which is a scalar field also, with

φ̂ = ᾰφ†φ and the definition ω =
2π
ᾰ

= constant , (3.8)

14) For purposes of completeness, the BW class
can be given in an even more general form
for D dimensions and with a nonminimal
coupling f (φ)R (see [82]).
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with the gravitational strength ᾰ (as remnant of strong interactions [56]), and the
cosmological function of the BW class given by

U(φ̂) = U(φ†φ) =
1

ᾰφ†φ

[
8πV ∗(φ†φ)

]
, (3.9)

whereas V ∗(φ) == V ∗(φ†φ) be the potential of the scalar field.
As can be easily seen, such a model does not possess a dimension-loaded cou-

pling constant like G, which is the main problem for renormalizing Einstein’s the-
ory. Through (3.19), G will be replaced with the reciprocate dimensionless constant
ᾰ multiplied by φ†φ. Thus, the dimension problem for renormalization disappears.

The scalar field will couple non-minimally with the Ricci curvature scalar R with
the gravitational strength ᾰ. In this way, we can give the Lagrangian of a scalar–
tensor theory in Jordan frame of the form

L =
[

1
16π

ᾰφ†φR +
1
2

φ†
;μφ;μ – V ∗(φ) –LM

]
√

–g , (3.10)

whereas � = 1 and c = 1 are set, and ;μ means the covariant derivative with re-
spect to all gauge groups.15) The subscript ,μ represents the usual derivative (see
discussion in relation with the Lagrangian (3.7)). The Lagrangian (3.10) postulates
possible gravitational interactions not only mediated by massless spin-2 excitations
as is postulated on one hand in usual GR, but also takes into account gravitational
interactions of massive scalar fields. Further, let the potential V ∗(φ) of the scalar
field be of the form of that of the Higgs field of elementary particle physics, that is
a φ4-potential with

V(φ) =
λ
24

(
φ†φ + 6

μ2

λ

)2
=

μ2

2
φ†φ +

λ
24

(
φ†φ
)2

+
3
2

μ4

λ
. (3.11)

The potential in (3.11) possesses an additive factor 3/2μ4/λ which does not usually
appear in the standard theory. This factor lowers the minimum so that the energy
density for vanishing scalar field excitations is defined as zero with V(φ†

0φ0) = 0 for
the ground state φ0 of the scalar field. The additive term is thus related to the elec-
tion of a vanishing formal cosmological constant which, however, can be inserted
in the theory by adding a constant term

V0 = –
3ᾰμ2

4πλ
Λ0 (3.12)

with Λ0 as a true cosmological constant and with a total potential of the form

V ∗(φ) = V(φ) + V0 (3.13)

with a cosmological function Λ(φ) dependent on this generalized Higgs potential,
as will be seen in Section 3.2.2. The cosmological constant Λ0 is often expected to

15) As explained before, the connection
coefficients Γμ

νλ of the affine connection are
now introduced. This connection is a rule
which describes how to legitimately move
a vector along a curve on the manifold

without changing its direction. Γμ
να are the

so-called Christoffel symbols, which give
the Riemann tensor Rμ

νλσ as introduced in
footnote 4.
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be vanishing for physical economy. However, together with quintessence in gen-
eral, it is related to our understanding of the nature of gravity. It might indeed be
a low-energy appearance coming from primary gravitation in the early universe, as
proposed in [89], but also related to dynamical quintessential fields. Nevertheless,
the constant part of the cosmological function coming from the Higgs potential
(3.13) (i.e. the true cosmological constant) will further be taken as vanishing and,
if written, then only for purposes of completeness.

In (3.10), LM is the Lagrange density of the fermionic and massless bosonic
fields,

LM =
i
2

ψ̄γμ
L,Rψ;μ + h.c. –

1
16π

Fa
μνFμν

a – (1 – q̂)kψ̄Rφ̆†x̂ψL + h.c. , (3.14)

while ψ in (3.14) are the fermionic fields, and

Fa
μν =

1
ig

[
Da

μ, Da
ν

]
= Aa

ν,μ – Aa
μ,ν + ig

[
Aa

μ, Aa
ν

]
= Aa

[ν,μ] + ig
[
Aa

μ, Aa
μ

]
is the field-strength tensor for the gauge potentials Aa

μ. It is defined by the commu-
tator of the covariant derivative Da

μ, analogous to electrodynamics for the electric
and magnetic strengths E and B. The exact form of covariant derivatives, that is of
the potentials, however, depends on the chirality and form of the actual fermion-
ic field. Chirality is important since parity violation, and thus a different coupling
dependent on chirality, is an experimental fact, characterizing the weak interac-
tions and �-decay [90, 91]. For the electroweak interactions, left-handed wave func-
tions are thus described by (iso-)doublets, while right-handed ones are described
by (iso-)singlets.

Within electrodynamics, the homogeneous Maxwell equations are derived us-
ing Jacobi identities with covariant derivatives (Bianchi identities). The inhomoge-
neous ones depend on the Lagrangian and thus on the exact system (and thus on
the environment, as reflected in the appearance of magnetization M and polariza-
tion P in the field equations). The more general equations of Yang–Mills’ theories,
for the dynamics of Fμν and isovectorial ψ, are derived analogously. However, unlike
within QED, the commutator [Aμ, Aν] == AμAν – AνAμ is not vanishing. It presents
self-interactions of the gauge potentials. Through them, in QCD, for instance, glu-
ons interact with each other, while such interactions vanish within QED given the
Abelian (commutative) character of the symmetry group U(1). Photons as gauge
bosons in QED, do not self-interact.

In (3.14), x̂ give the Yukawa coupling operator, k be a constant factor, and the
subscripts R and L refer to the right- and left- handed fermionic states of ψ. The
index a be the iso-spin index, which counts the N elements of the multiplet ψ,
given by the particles which are indistinguishable for an interaction. Further, let us
take φ̆ = φ in the following; this means the same scalar field coupled with R and
matter for the case q̂ =/ 1.

Equation (3.14), together with (3.10) leads to the field equations as derived first
in [57, 80, 81]. The model parting from (3.10) and (3.14) does not possess bare
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gravitational vertices as an Einsteinian quantum theory would. This lack of only
gravitational vertices should further exclude outer gravitational lines (as long as
no primordial gravitational constant is assumed) [92]. This theory is renormaliz-
able [80, 92] according to deWitt’s power-counting criterion.

The parameter q̂ is defined to give the fermionic coupling with the scalar field.
It will represent the fact that, in the case of a coupling of the scalar field φ to
the fermionic fields, the source of this Higgs field is canceled by the fermionic
term identically after symmetry breaking (see Section 3.2.3 and especially (3.35)
and [45, 81]). If the model is, though, not only for astronomical considerations re-
sulting from changes in the standard dynamics of GR, and a further unification
is considered, the scalar field may be coupled to LM and assumed to be the Hig-
gs field coupled to the curvature scalar in (3.10). Then the model is the one first
presented in [81] in which q̂ is chosen as 0. This model corresponds to a coupling
with the SM, with mass production via the Higgs mechanism but with sourceless,
only gravitationally coupled stable Higgs particles as a type of self-interacting dark
matter in the sense of [93] and [94]. The scalar field would be assumed to be an
analog to the standard model Higgs field. Further, for q̂ = 1 (not assuming another
scalar field here) [80], the Higgs-like field does not produce the mass of elementary
particles, and may be coupled to a GUT (Grand Unified Theory) or quintessence
model, with an almost only gravitationally coupled scalar field that, for a very small
mass, may contribute to the phenomenon of dark matter as shown in [39,95]. Such
particles are still not detectable through current fifth-force experiments like [96]
and lead to a quintessential behavior, canceling the appearance of an horizon for
central symmetry and very high scalar field length scales [40].

3.2.2

The Field Equations

Using the Hamilton Principle of Least Action and the Euler–Lagrange equations
for relativistic fields,(

∂L
∂ψ,μ

)
,μ

–
∂L
∂ψ

= 0 (and Hermitean conjugation of the same) , (3.15)

one achieves generalized Einstein field equations and a Higgs-like field equation
with a coupling of the scalar field φ to the curvature scalar R and the symmetric
metrical energy–momentum tensor Tμν:16)

Rμν –
1
2

Rgμν + Λ ∗(φ)gμν = –
8π

ᾰφ†φ
Tμν –

8π
ᾰφ†φ

[
φ†

(;μφ;ν) –
1
2

φ†
;λφ;λgμν

]
–

–
1

φ†φ

[
(φ†φ),μ;ν –

(
φ†φ
),�

;� gμν

]
, (3.16)

φ;μ
;μ –

ᾰ
8π

φR +
δV ∗(φ)

δφ† = 2
δLM

δφ† , with
δV(φ)
δφ† = μ2φ +

λ
6

(φ†φ)φ . (3.17)

16) (...) are the antisymmetric Bach parenthesis
given by A(iBk) = 1/2(AiBk + AkBi).
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The term on the right-hand side of the Higgs-like field equation (3.17) is the source
of the Higgs-like field with

2
δLM

δφ† = 2
(

δLM

δφ

)†
= –2k(1 – q̂)ψ̄Rx̂ψL . (3.18)

Equation (3.18) depends on the fermionic Lagrangian and thus on q̂.
We may define in (3.16) a gravitational coupling term

G(φ) =
1

ᾰφ†φ
, (3.19)

in analogy to GR (see (3.1)), whereas G(φ) here is a field quantity and thus local.
It is dependent on the scalar field φ and the gravitational strength ᾰ. Analogously,
a general cosmological function was defined in (3.16) as

Λ ∗(φ) :=
8π

ᾰφ†φ
V ∗(φ) = 8πG(φ)V(φ) –

6μ2

λ
Λ0

φ†φ
, (3.20)

mainly given by the potential of the scalar field and its excitations (as in (3.23)
and (3.22)), and related to the cosmological function term ᾰφ†φU(φ) of the BW
class of STTs. The field equations for the fermionic fields and the bosonic Yang–
Mills fields are neglected.

The Ricci curvature scalar R in the field equations of gravity and of the scalar
field is coupled to the scalar field itself. R = gμνRμν ==

∑3
μ,ν=0 gμνRμν can be derived

from (3.16), with the form

R =
8π

ᾰφ†φ

[
T + 4V ∗(φ) – φ†

;�φ;�
]

–
3

φ†φ
(φ†φ);�

;� , (3.21)

whereas V ∗(φ) = V(φ) + V0 is valid from (3.13).

3.2.3

Field Equations After Symmetry Breakdown

In the spontaneously broken phase of symmetry, developing the scalar field φ
around its ground state v,

φa = vNa + φ′
a , (3.22)

the ground-state value of the scalar field is given by

φ†
0φ0 = v2 = –

6μ2

λ
, (3.23)

with v real-valued and μ2 < 0. This can further be resolved in general as φ0 = vN
with N = constant, satisfying N†N = 1, with

φ = ρUN =
ρ
v

Uφ0 . (3.24)
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For the ground state φ0, the potential vanishes with the election of no further addi-
tive factor Λ0 of the cosmological function, following (3.11) through (3.13):

V(φ0) = u0 ==
1

8πG(φ0)
Λ0 . (3.25)

This is the energy density of the ground state of the scalar field, which is V̆∗(φ0) =
–3/2( μ4/λ) +

(
1/
(
8πG(φ0)

))
Λ0 if the last factor of (3.11) is not taken. It would lead

to a formal cosmological constant added to the cosmological constant itself, which
we want to avoid.

After symmetry breaking, two particles appear: a massless particle, called a Gold-
stone, and a massive particle usually called a Higgs ([45]). The first of these particles
can be “gauged away” through the so-called unitary gauge [39, 54]. The scalar field
φ can be written in terms of the real-valued excited Higgs-like scalar field � (a real-
valued scalar variable) in the following form:

φ = ρN = v
√

1 + �N with � =
φ†φ
v2 – 1 . (3.26)

The Higgs-like field equation then yields, using (3.21):

�,μ
;μ +

4π/(9ᾰ)λv2

1 + 4π/(3ᾰ)
� =

1
1 + 4π/(3ᾰ)

· 8π
3ᾰv2

[
T̂ –
√

� + 1ψ̄m̂ψ
]

+
4
3

Λ0

(
1 +

4π
3ᾰ

)–1

,

(3.27)

with the effective energy–momentum tensor T̂μν (analogous to the SM, [87]) with
the trace [81]

T̂ =
i
2

ψ̄γμ
L,Rψ;μ + h.c. =

√
1 + �ψ̄m̂ψ , (3.28)

with the fermionic mass matrix (cf. [101])

m̂ =
1
2

kv
(
N†x̂ + x̂†N

)
. (3.29)

Now, insertion of (3.28) into (3.27) leads to a vanishing of the right-hand side of
(3.27) in the case q̂ = 0 and Λ0 = 0. Thus, the coupling (given by LM in (3.14)) of
these Higgs particles to their source is only weak (this means proportional to G) if
this Higgs field does not couple in the fermionic Lagrangian [39,80], or completely
vanishing [45, 81] in the case of a coupling of this Higgs field to SM (with Λ0 == 0).
According to [56], a wave function renormalization of the scalar field results in the
effective coupling of this Higgs field to matter becoming of gravitational strength
O(M/MP). Because of this, the Higgs becomes essentially a stable particle, which
may have some cosmological consequences. These, however, would depend on the
length scale of the scalar field. In particular, the scalar field particles should effec-
tively decouple for large values of λ, that is for a small mass M (see (3.31)). Mean-
while, ᾰ, as the remnant of an original strong interaction, would be the essential
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cause for the gravitational coupling G being so small (see (3.1.2)). Particularly in
the case q̂ = 0, the scalar field possesses qualities as in [93] as a candidate of self-
interacting DM, and in this way might be related to works like [94].

In (3.27), which is a Yukawa equation, a gravitational coupling constant

G0 =
1

ᾰv2 = –
1
ᾰ

λ
6μ2 = G(v) (3.30)

may be defined (see (3.42)). Further, the (Compton-)length scale of the scalar field,
using (3.30), is given (� and c are inserted only for the definition of the scale factor
and the scalar field mass) by

l =
[

1 + 4π/(3ᾰ)
16πG0(μ4/λ)

]1/2

= M–1
(
·�
c

)
(3.31)

with the scalar field mass M, which in the SM is only given by
√
|2μ|2. The latter

equation can also be written as

M2 = –
8π
3

μ2

ᾰ

(
1 +

4π
3ᾰ

)–1 (
· c
�

)2
=

4π
9 α̃

λ v2
(
1 +

4π
3ᾰ

)–1 (
· c
�

)2
. (3.32)

It is dependent on the reciprocal gravitational coupling strength ᾰ–1. Thus, the
squared mass of the scalar field depends essentially on the gravitational coupling
strength G0, which is very weak. Thus, the Compton length given by l = M–1 may
at this point be expected to be high-valued. This would mean, within the SM, a very
small value of |μ|. The constraints of a Higgs-field mass, though, may change here
in relation to those in the standard theory. For q̂ = 0, for instance, the coupling
constants g and the ground state (vacuum expectation) value are indirectly known
from high-energy experiments. A comparison between current–current coupling
within Fermi’s theory, low-energetic limits of W+ couplings and the weakon mass
MW, v can be written dependent on Fermi’s constant GF and experimentally deter-
mined as v2 W 6 ~ 104 (GeV)2. Here, though, nonvanishing values of v are possible
for small masses M, which may be small-valued without the necessity of small |μ|
values.

The gravitational coupling of (3.30) depends on v–2. Insertion of this and eventu-
ally also the length scale (3.31), leads to the Higgs potential in the form

V ∗(�) =
3
2

μ4

λ
�2 + (8πG0)–1Λ0 = –

1
4

μ2 v2 �2 + (8πG0)–1Λ0

=
λ v4

24
�2 + (8πG0)–1Λ0 =

3
32 l2

�2

π G0

(
1 +

4π
3ᾰ

)
+ (8πG0)–1Λ0. (3.33)

The Higgs-like field equation yields with l,

�,μ
;μ +

�
l2

=
1

1 + 4π/(3ᾰ)
· 8πG0

3

[
T̂ –
√

� + 1ψ̄m̂ψ
] (

+
4
3

1
1 + 4π/(3ᾰ)

Λ0

)
.

(3.34)
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In the case q̂ = 0, the gauge-boson matter terms cancel and the scalar field equation
becomes a homogeneous Klein–Gordon equation for Λ0 == 0.

Now, let us rewrite (3.34) in the form for ᾰ >> 1,

�;μ
;μ +

1
l2

� =
8πG0

3
q̂T̂ +

4
3

Λ0, (ᾰ >> 1) , (3.35)

The vanishing property of its source is easily seen. Further, the trace of the sym-
metric energy-momentum tensor Tμν belonging toLM

√
–g in the Lagrangian given

by (3.10) and (3.14) satisfies the conservation law

T̂ ν
μ;ν = (1 – q̂)

1
2

�,μ(1 + �)–1 T̂ . (3.36)

In the case when φ does not couple to the fermionic state ψ in LM
√

–g, then (3.36)
does not possess a source and for the SM, the above equation means the production
of the fermionic mass through this Higgs field. This leads to a breaking of the
conservation law through a new “Higgs force”.

The dimensionless parameter ᾰ in (3.10) may, further, be defined in terms of the
ratio

ᾰ � (MP/MB)2 >> 1 , (3.37)

where MP and MB are the Planck mass and the mass of the gauge boson, respec-
tively. The mass of the gauge boson is given by

MB �
√

πǧv , (3.38)

where ğ is the coupling constant of the corresponding gauge group.
Through similitude with the standard theory, an effective gravitational coupling

(as screened gravitational strength) may be given by

Geff = G(�) = (1 + �)–1G0 . (3.39)

The latter reduces to (3.30) in the absence of a Higgs-like scalar field excitation �
(that is for � = 0 with the chosen form of Higgs excitations), and becomes singular
for a vanishing Higgs-like scalar field with � = –1 [39, 40].

Also, the generalized Einstein field equations, which reduce to the usual GR ones
for vanishing excitations �, are now given by (3.16) in the form17)

Rμν–
1
2

Rgμν + Λ ∗(�)gμν = –8π GeffT̂μν –
π
ᾰ

1
(1 + �)2

[
2 �,μ�,ν–

– �,λ �,λ gμν

]
–

1
1 + �

[
�,μ;ν – �,λ

;λgμν

]
, (3.40)

17) These may be compared with the field
equations in [41, 104] within the BW class
with a rescaled potential. The Newtonian
approximation of it leads to essentially the
same equations as here.
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whereas the cosmological function is given by

Λ ∗(�) =
8πG0

1 + �
V(�) +

Λ0

1 + �
=

12π
ᾰv2

μ4

λ
�2

1 + �
+

Λ0

1 + �
. (3.41)

It is clear that, for the special case of vanishing scalar field excitations �, (3.40)
results in the usual Einstein field equations

Gμν = Rμν –
1
2

Rgμν + Λ0gμν = –κTμν . (3.42)

As a result of (3.30), the gravitational coupling strength given by ᾰ is very high,
so that the second term on the right-hand side of (3.40), π/ᾰ-proportional, can be
neglected (see [101]), due to the smallness of the term 4π/(3ᾰ).

Equation (3.40) can be rewritten for ᾰ >> 1. This and the insertion of the Higgs-
like field equation (3.27) into the Einstein field equations leads to

Rμν –
1
2

R gμν +
1
l2

(1 + �)–1�
(
1 +

3
4

�
)

gμν –
1
3

(1 + �)–1Λ0gμν

= –8πGeff

(
T̂μν –

q̂
3

T̂gμν

)
– (1 + �)–1�,μ;ν, (ᾰ >> 1) . (3.43)

The cosmological function Λ(φ) after symmetry breaking (3.41) is essentially
quadratic in �. For ᾰ >> 1, it yields

Λ ∗(�) =
3

4 l2
1

1 + �
�2 +

Λ0

1 + �
. (3.44)

Hence, with

� =
G(v) – Geff

Geff
(3.45)

it can be written in the form

Λ ∗(�) =
3

4 l2

⎛⎜⎜⎜⎜⎝G(v)2 + G2
eff

G(v)Geff
– 2
⎞⎟⎟⎟⎟⎠ +

Geff

G(v)
Λ0. (3.46)

The trace of (3.43) leads to

R =
3
l2

� + 8πGeff(1 – q̂)T̂ =
3
l2

(
G(v)
Geff

– 1
)

+ 8πGeff(1 – q̂)T̂ . (3.47)

R is independent of Λ0, since it appears in the Higgs-like field equation (3.35)
and in the Einstein field equations (3.40). The trace over Einstein’s field equations,
using the Higgs-like field equation, leads to a cancelation of the Λ0-term.

Using (3.47), (3.43) can be rewritten in the form

Rμν –
1

2l2

[
1 + 3/2�

1 + �

]
� gμν –

1
3

(1 + �)–1Λ0 gμν =

= –8πGeff

[
T̂μν –

1
2

(
1 –

1
3

q̂
)

T̂ gμν

]
– (1 + �)–1�,μ;ν , (ᾰ >> 1) , (3.48)
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with

1 + 3/2�
1 + �

=
1
2

(
3 –

Geff

G0

)
.

Obviously, for vacuum and for q̂ = 0 in general, the Ricci scalar is given by the scalar
field only. The matter term of (3.47) leads, however, to a different right-hand side
in the square bracket of the Einsteinian field equations where the Ricci curvature
has been inserted.

3.2.4

Outlook

To place the above in context, let us take a look at some important and relative-
ly simple symmetries analyzed in physics. An important realization of the field
equations is that with spherical (central) symmetry. It is used for many realizations
such as galaxies and the solar system, and its line element (which gives the metric
through ds2 = gμν dxμ dxν) is given by

ds2 = eν(dct)2 – eλ dr 2 – r 2 dΩ2 , (3.49)

with ν and λ as functions of the r and t coordinates only, and dΩ2 = (dϑ2 + sin2 ϑ

dϕ2) as the metric of a two-dimensional unit sphere.
Another main realization of symmetry is given by the Friedmann–Lemaître–

Robertson–Walker (RW) metric, used for general cosmology and cosmic evolution:

ds2 = (cdt)2 – a(t)2
[
d�2 + f (�)2

(
dϑ2 + sin2 ϑdϕ2

)]
. (3.50)

Here, � is the covariant distance, a(t) is the scale parameter (often found elsewhere,
especially as R), K ∈ {1, 0, –1} the curvature constant and f ∈ {sin �, �, sinh �} a pa-
rameter that depends on K. This last symmetry is based on the long-range well-
realized assumption that the cosmos is homogeneous and isotropic.

For both (3.49) and (3.50), the generalized Einstein field equations may be given
(and here, c will further be written explicitly, and Λ0 will be assumed as vanishing).

The line element (3.49), assuming an ideal liquid with energy density distribu-
tion ε = ρc2 and pressure p, leads to Einsteinian field equations in the form (ᾰ >> 1),

eν–λ
(

ν′′

2
+

ν′2

4
–

ν′λ′

4
+

ν′

r

)
–

1
c2

λ̈
2

–
1
c2

λ̇2

4
+

1
c2

λ̇ν̇
4

+
1

2l2
(1 + �)–1�

(
1 +

3
2

�
)

eν

=
8π

(1 + �)
G0

c4

⎡⎢⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝e–ν –
v2

1

c2 e–λ
⎞⎟⎟⎟⎟⎠–1 ⎛⎜⎜⎜⎜⎝ε +

v2
1

c2 p eν–λ
⎞⎟⎟⎟⎟⎠ –

1
2

(
1 –

1
3

q̂
)

(ε – 3p)eν

⎤⎥⎥⎥⎥⎥⎥⎦
+ (1 + �)–1

[
�̈
c2 –

ν̇
2c2 �̇ –

ν′

2
eν–λ�′

]
, (3.51)
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eλ–ν 1
c2

⎛⎜⎜⎜⎜⎝ λ̈2 +
λ̇2

4
–

λ̇ν̇
4

⎞⎟⎟⎟⎟⎠ –
ν′′

2
–

ν′2

4
+

ν′λ′

4
+

λ′

r
–

1
2l2

(1 + �)–1�
(
1 +

3
2

�
)

e λ

=
8π

(1 + �)
G0

c4

⎡⎢⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝e–ν –
v2

1

c2 e–λ
⎞⎟⎟⎟⎟⎠–1 ⎛⎜⎜⎜⎜⎝ v2

1

c2 ε + p eλ–ν
⎞⎟⎟⎟⎟⎠ +

1
2

(
1 –

1
3

q̂
) (

ε – 3p
)
e λ

⎤⎥⎥⎥⎥⎥⎥⎦
+ (1 + �)–1

[
�′′ –

λ̇
2c2 eλ–ν�̇ –

λ′

2
�′
]

, (3.52)

1
c

λ̇
r

= –
8π

(1 + �)
G0

c4

⎡⎢⎢⎢⎢⎣e–ν –
v2

1

c2 e–λ
⎤⎥⎥⎥⎥⎦–1 (

ε + p
) v1

c
– (1 + �)–1 1

c

[
�̇′ –

ν′

2
�̇ –

λ̇
2

�′
]

,

(3.53)

e–λ
(
1 +

r
2

(ν′ – λ′)
)

– 1 +
r 2

2l2
(1 + �)–1�

(
1 +

3
2

�
)

=

= –
8π

(1 + �)
G0

c4

⎡⎢⎢⎢⎢⎢⎣p r 2 +
1
2

(
1 –

1
3

q̂
) (

ε – 3p
)
r 2

⎤⎥⎥⎥⎥⎥⎦ – (1 + �)–1re–λ�′ . (3.54)

For � = 0, the original Einstein field equations for central symmetry are restored.
For these, the Birkhoff theorem is valid. Thus, for vacuum (ε = 0) all fields are static
and ν = ν(r) and λ = λ(r). For nonvanishing excitations �, however, this cannot be
stated directly.

The Higgs-like equation for the excited Higgs-like field � yields

1
c2 �̈e–ν – �′′e–λ –

1
c2

ν̇ – λ̇
2

e–ν�̇ –
ν′ – λ′

2
e–λ�′ –

2
r

e–λ�′+
1
l2

� = +q̂
8π
3

G0

c4

(
ε – 3p

)
.

(3.55)

Within GR, the vacuum solution for central symmetry with a vanishing cosmolog-
ical constant Λ0 is the Schwarzschild metric

ds2 =
(
1 –

rS

r

)
c2 dt2 –

dr 2

1 – rS/r
– r 2 dϑ2 – r 2 sin2 ϑdϕ2 , (3.56)

whereas the constant rS = 2M1G0/c2 = B is the so-called Schwarzschild radius,
valid for a constant gravitational coupling G0 which in GR is G0 = GN. Here, rS

represents the radius which a body of mass M1 must have so that its rest-mass M1c2

is equal to its internal gravitational potential energy VN � G0M2
1/rS (see [102]).

Within GR, no particle, not even a photon, can escape from a region of radius rS

around a body of mass M1. Hence, the Schwarzschild radius defines the horizon
of a black hole, so that for r = rS, there appears a horizon singularity. Then, e λ

diverges. However, within this model, for q̂ = 1, an exact analysis for the static
case and in the limit l → ∞ (for which the symmetry stays broken) leads to the
disappearance of this horizon singularity. There appears a quintessential-like effect
which is coupled to the integration constant A of the scalar field. The scalar field
gives the strength of a further term of gravitation added to the usual term from
the 1/r potential. This Newtonian and classical potential has B as the integration
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constant. The disappearance of the singularity is usually caused by the new factor
with integration constant A, even in the case when this constant is much smaller
than the constant B of the Newtonian term [40, 103].18)

For values as in [39], 1/l2� terms are negligible, and the strong equivalence prin-
ciple is then valid even for supra-solar as well as microscopic distances. However,
a linear analysis for q̂ = 1 leads to the necessity of re-scaling the appearing cou-
pling constant G0 as G0 = 3/4GN in the case l >> r, and G0 = GN for l << r,19) for
GN as the Newtonian coupling constant (see [80] or [105]). Linearization in the ν
and λ and not in � (which is valid), leads for length scales l of the order of magni-
tude of some galaxy radii (some kiloparsec, with 1 pc W 3 ~ 1013 km) to flattened
rotation curves (see Section 3.1.1) in a model of galaxies with polytropic density
distribution and with polytropic index 2, with or without assuming a very massive
core [39]. Further, for the strongest bars in isolated galaxies, a similar value of the
length scale, of about 10 kpc, is obtained in [104], within the general BW class
and with an arbitrary potential (but analogous field equations, with p = 0). This
value is beyond the accuracy of the experiments presented in [96], and represents
a mass M = �/(�l) ~ 10–26 eV/c2. Moreover, with such values, the dynamics of the
model seem to be able to give solar-relativistic effects, such as perihelion advance,
accurately [105].

Let us now take the linearized scalar field equation(
1
c2

∂

∂t
– Δ
)

� +
1
l2

� =
8πG0

3 c4 q̂
(
ε – 3p

)
(3.57)

and neglect all time derivatives. Then, the same for the linear form of the 0–0
Einstein field equation (3.51). This leads to a q̂-independent Poisson equation for
the density distribution ρ = ε/c2 after adding the linearized Higgs-like field equa-
tion (3.57) to (3.51),20)

∇2Ψ = 4πG
[
ρ + 3

p
c2

]
, whereas Ψ = Φ +

c2

2
� , (3.58)

with the gravitational potential Φ = νc2/2 related to the metric gμν in the linear
case.

18) A = –2/3G0/c4
∫

T
√

–gd3x is derived
from the Higgs-like field equation
�,μ

;μ = 1/
√

–g
(√

–g�,μ
)

,μ
= (8π)/3G0/c4T for

l → ∞ (cf. [40]). Note that A depends on the
density distribution and on the pressure p.

19) Actually, the same re-scaling can be found
in [104]. However, we have Geff as the actual
measured value and the one coupling term
when taking both terms of the potential into
account. For higher values of �, the rescaling,
taking all terms, may differ from the one
above.

20) For p =/ 0, the measured, effective
mass (defined through the asymptotic
“gravitational force” with r → ∞) differs from
the integral over the density distribution
because of terms from the energy of the
gravitational field [106, 107] which appear
in the Poisson equation (3.58). Further,
the Schwarzschild mass differs from the
integral over the density exactly by this term
(as a usual consequence of p =/ 0 within
GR). A changed energy of the gravitational
field may play an important role within this
model.
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Figure 3.1 Density ratio ρ̂/ρ∗ for different length scales, and

density contributions ρ̂(DM), ρ∗(1/r 2) and ρ(SF ) normalized to

v2
t /(4πGNa2) for la = 1/2.

If one assumes for q̂ = 1 that flat rotation curves are obtained through completely
linearized fields, then one may derive the form of the density for flat rotation curves
by demanding the constancy of the rotation velocity v2

t = r(dΦ/dr). It may then be
inserted into (3.58) for Φ, which possesses a Yukawa term from �. This leads to
a density term of Newtonian type and a contribution of the scalar field:

ρ̂ = ρ +
3
2

p
c2 =

v2
t

4πGNr 2 +
�c2

8πGNl2
:= ρ∗ + ρ� . (3.59)

The assumption that only usual density distribution of matter (ρ∗) acts as source of
the Higgs-like field leads to a pressure related to the (energy) density contribution
of the scalar field,

p =
2
9

ρ�c2 =
2
9

ε� . (3.60)

Analogously to [108], we have

� =
1

2ra

v2
t

c2

[
e–ra/la sinhInt

(
ra

la

)
– sinh

(
ra

la

)
expIntEi

(
–

ra

la

)]
, (3.61)

ρ̂ =
v2

t

4πGNa2

{
1
r2

a
+

1
4l2ara

[
e–ra/la sinhInt

(
ra

la

)
– sinh

(
ra

la

)
expIntEi

(
–

ra

la

)]}
,

(3.62)

with ra = r/a and la = l/a, and a as the length scale of the spherical system (e.g. the
distance at which galaxies possess flat rotation curves). These are analogous to the
solutions for [108]. We use following abbreviations: sinhInt == sinhIntegral, expIntEi
== ExpIntegralEi. For (3.61) and (3.62) the size of the halo is assumed larger than
a, and l of the order of magnitude of the radius R0 (the core) of the galaxy. Thus,
terms of (3.61) and (3.62) related to the halo radius B̂ through “expIntegralEi(–B̂/l)”
are neglected. Given this, the density for different l/a and of the different density
terms is as given in the figure ρ̂ is what is often known as the DM-profile ρDM.
For large l in relation to a, the inverse square contribution of ρ∗ dominates, while
for smaller l/a relations the scalar field (SF) contribution becomes more and more
dominant for the total density (see figure).
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For the Friedmann–Lemaître–Robertson–Walker (RW) metric in (3.50), the con-
tinuity condition (3.36) yields for the density ρ

1
c

ρ̇ + 3
ȧ
a

(
ρ +

p
c2

)
= –(1 – q̂)

1
2 c

Ġeff

Geff

(
ρ – 3

p
c2

)
, (3.63)

meaning that the scalar field produces no entropy process for q̂ = 1, other than with
q̂ = 0. Further, the Higgs-like field equation for (3.50) yields

�̈ + 3
ȧ
a

�̇ +
c2

l2
� =

8πG0

3
q̂

(ρ – 3p/c2)
(1 + 4π/(3ᾰ))

, (3.64)

or with

�̈
1 + �

=
1

G2
eff

(
2 Ġ2

eff – G̈eff Geff

)
, (3.65)

the Higgs-like field equation with the form

1
G2

eff

(
G̈eff Geff – 2 Ġ2

eff

)
+ 3

ȧ
a

Ġeff

Geff
+

c2

l2

(
Geff

G(v)
– 1
)

= –
8πGeff

3
q̂

(
ρ – 3p/c2

)
(1 + 4π/3ᾰ)

.

(3.66)

With (3.64) and (3.40), (3.50) leads to the generalized Friedmann–Lemaître equa-
tions in the forms (independent of the source parameter q̂)

ȧ2 + Kc2

a2 =
1

1 + �

[
8πG0

3
(
ρ + V(�)

)
–

ȧ
a

�̇ +
π
3ᾰ

�̇2

1 + �

]
(3.67)

=
8πGeff

3
ρ +

1
3

Λ(�)c2 +
ȧ
a

Ġeff

Geff
+

π
3ᾰ

Ġ2
eff

G2
eff

= (1 + �)–1
[
8πG0

3
ρ +
(

c2

4l2
�2
(
1 +

4π
3ᾰ

)
–

ȧ
a

�̇ +
π
3ᾰ

�̇2

1 + �

)]
,

and

ä
a

+
ȧ2 +Kc2

a2 = –
1

1 + �

[
8πG0

( p
c2 – V(�)

)
+ �̈ + 2

ȧ
a

�̇ +
π
ᾰ

�̇2

1 + �

]
= –8πGeff

p
c2 – (1 + �)–1

[
�̈ –

3c2

4l2
�2
(
1 +

4π
3ᾰ

)]
+ 2

ȧ
a

Ġeff

Geff
–

π
ᾰ

Ġ2
eff

G2
eff

,

(3.68)

with the density distribution ρ and pressure p and the cosmological function Λ(�),
known from (3.41).

Further, the second generalized Friedmann–Lemaître equation may be written
as

2
ä
a

+
ȧ2 +Kc2

a2 = – 8πGeff
p
c2 + Λ(�)c2 –

1
G2

eff

[
Ġ2

eff

(
2 +

π
ᾰ

)
– G̈effGeff

]
+ 2

ȧ
a

Ġeff

Geff
.

(3.69)
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Both the generalized Friedmann–Lemaître equations give the usual ones for � = 0.
If the scalar field excitation does not vanish, however, there appears a cosmological
function Λ(�) = Λ(Geff) which is dependent on the relation between the gravita-
tional coupling in the Higgs ground state (G(v)) and its effective term. Further-
more, other correction terms arise from the time dependence of the gravitational
coupling itself.

Here, the solution for the density is

ρ =
Mα

a3(1+α)

(
G(v)
Geff

)(1/2)(1–3α)(1–q̂)

, (3.70)

with a barotropic pressure parameter α = p/
(
ρc2
)

and an integration constant Mα

and a current Hubble parameter (α = 0) that may be written as

H0 = –
1
3

a3
0

M0
ρ̇0(1 + �0)–(1/2)(1–q̂) + (1 – q̂)

1
6

�̇0 (1 + �0)–1 (3.71)

= –
1
3

a3
0

M0
ρ̇0

(
G(v)
Geff0

)–(1/2)(1–q̂)

– (1 – q̂)
1
6

Ġeff0

Geff0
. (3.72)

It is easily noticed that an increase (decrease) in the density is related to a contrac-
tion (ȧ < 0) (expansion (ȧ > 0)) of the cosmos and that for q̂ = 0 the time variation
of the gravitational coupling plays a role in cosmic expansion, too (higher deriva-
tives reduce the value of H0). In the same way, this variation in the coupling leads
to a screening of the density parameter ρ in (3.70) in relation to the case where the
G-coefficient is negligible. The value of the density for q = 1 is smaller if � < 0, i.e.
Geff > G(v) (anti-screening of the gravitational constant).

At the same time, following the Friedmann–Lemaître equations (3.67) and (3.68),
the deceleration parameter q, defined by q = –1/H2 ä/a, is given by

ä
a

= –
4πGeff

3

(
ρ + 3

p
c2 – 2V(�)

)
+ f (G)

= –
4πGeff

3

(
ρ + 3

p
c2

)
+

1
3

Λ(�)c2 + f (G), (3.73)

with

f (G) =
1
2

⎡⎢⎢⎢⎢⎢⎣ 1
Geff

(
G̈eff +

ȧ
a

Ġeff

)
– 2

Ġ2
eff

G2
eff

(
1 +

π
3ᾰ

)⎤⎥⎥⎥⎥⎥⎦ . (3.74)

Apart from the fact that G and Λ are functional, it is f (G) which makes (3.73)
formally different from the usual equation in GR, where there is acceleration (q <
0) merely for ΩΛ > Ω/2. This new term gives the changes of dynamics caused
by the time dependence of the effective coupling constant and (together with the
correction to the first Friedmann–Lemaître equation) it can be compared with an
analog function derived within Modified Gravity (MOG) by Moffat [97], but here
with a functional cosmological term Λ and defining a scalar field �̌ = 1 + �.

The deceleration parameter q is a dimensionless measure of the cosmic accel-
eration of the expansion of the universe (seee Section 3.1.1), which is related to
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dark energy as measured in Super Novae of type Ia (SNeIa) [31–33]. Furthermore,
through q = Ω/2 – ΩΛ – (äa/ȧ2)f (G) (the way the deceleration parameter looks
within this model), f (G) is related to the cosmological density parameters Ωi,21) the
form of which is derivable from the Friedmann–Lemaître equations, so that the
following can be written, using (3.67):

a2 =
ȧ2 + Kc2

8πGeff/3
(
ρ + 3p/c2) + 1/3Λ(�)c2 + 1/3ΛI(�)c2 , (3.75)

with (α W 0 is valid for matter dominance ε >> p)

Ω =
8πGeff

3 H2 ρ (1 + 3α) , Ω ∗
Λ =

1
3

c2 (Λ(�) + ΛI(�)
)

H–2 == ΩΛ + ΩI , (3.76)

and with

ΛI(�) :=
3 H
c2

Ġeff

Geff
+

π
c2 ᾰ

Ġ2
eff

G2
eff

(3.77)

as part of an effective cosmological function Λeff(�) which derives from the correc-
tion to the first Friedmann–Lemaître equation and which depends on the Hubble
parameter H = ȧ/a and on the time variation of the gravitational coupling. Further,
the density of the cosmological term

ρΛ =V(�) –
3 H

8πG0
�̇ +

v2

8
�̇2

1 + �
(3.78)

=V(�) +
3 H
8π

Ġeff

G2
eff

+
Ġ2

eff

8ᾰ G3
eff

(3.79)

may be defined, so that

ȧ2 =
8πGeff

3
(ρ + ρΛ)a2 – Kc2 (3.80)

is valid for the scale factor a (with an effective value ρΛ eff = ρΛ/(1 + �)). The same
applies for a pressure term, so that for

ä = –
4πGeff

3

(
ρ + 3

p
c2 + 3

pΛ

c2

)
a , (3.81)

we have

pΛ = –
2
3

V(�) c2 –
c2

8πGeff

⎡⎢⎢⎢⎢⎢⎣ G̈eff

Geff
+ H

Ġeff

Geff
– 2

Ġ2
eff

Geff

(
1 +

π
3ᾰ

)⎤⎥⎥⎥⎥⎥⎦ . (3.82)

21) These parameters may differ from the
standard ones. For instance, Ωi in the
standard approach represent observed
quantities based on a screened value of the

gravitational constant (or of density), so that
Ωi = (Geff/G0) Ωstd

i , whereas the geometry of
the universe is determined by the constant’s
“bare” value .
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This pressure term is dependent on Geff and its derivatives, as is the case for ρΛ.
One can see that high effective values of the coupling parameter or, in general, high
values of the scalar field excitations, as well as positively valued (second) derivatives
of the gravitational coupling Geff, may lead to negative pressures. These strengthen
the cosmological acceleration, whereas Ġ2

eff may act as deceleration factor. The lat-
ter term, however, may be considered as negligible under normal circumstances,
and relevant only for the primordial universe, possibly in relation with primeval
inflation. The concept of primeval, cosmic inflation, first proposed by Alan Guth in
1981 [98] and later improved by Albrecht, Steinhardt [99] and Linde [100], assumes
a phase of very highly accelerated expansion in the early universe to explain hori-
zon and flatness problems of cosmology. Often, an hypothetical scalar field, namely
the inflaton field, is proposed in this context. “New” and “chaotic” inflation differ
from the original, old one, due to the initial conditions of this scalar field.

An inflationary universe with induced gravitation can be derived within this con-
text [86,87,101]. This model can indeed lead to primeval new or chaotic inflation. As
a matter of fact, the Penrose–Hawking energy condition 3p + ρ c2 v 0 [109,110] may
be broken for chaotic inflation, for which a Big Bounce would be expected (that
means no initial singularity before inflation). This case can be compared with the
case of the works in [111], according to which Yukawa interactions of the magnitude
of the nuclear density can lead to negative pressures that might play an important
role in early stages of the universe, so that the Penrose–Hawking condition may not
be satisfied. This Yukawa interaction in the primordial universe would be related
to a pressure like pΛ (coming from the potential V(�) and the scalar-field deriva-
tives, translated as the variable gravitational coupling), possibly contributing to the
mechanism of inflation and dark energy as part of the cosmological term Λ.
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4

Relating Simulation and Modeling of Neural Networks
Stefano Cardanobile, Heiner Markert1), Delio Mugnolo, Günther Palm, Friedhelm
Schwenker

The discontinuity between cells, the role of the axons, the functioning of the synapses,
the existence of synaptic microfissures, the leap each message makes across these fissures,
make the brain a multiplicity immersed in its plane of consistency or neuroglia, a whole
uncertain, probabilistic system (“the uncertain nervous system”).

G. Deleuze and F. Guattari [11]

4.1

Introduction

We give an overview of neuron models used in theoretical neuroscience for “bio-
logically realistic” modeling of single neurons, as well as several simplified models
used for simulations of large-scale neural networks. The article emphasizes the
connection between these models. It aims at describing how sophisticated biolog-
ically realistic neuron models can be simplified and reduced in order to end up
with simpler models often used in computer science, neuroinformatics or theoret-
ical physics. Our own specific compromise between simplicity and complexity is
presented that combines several neurons into neural populations working as asso-
ciative memories. The approach uses the so-called spike counter model, a particular
simple model of spiking neurons. This architecture permits one to build artificial
neural networks by using associatively connected populations of neurons as build-
ing blocks and then interconnecting these subnetworks into a larger network.

Modeling complex physical and biological structures and systems, such as
brains, always involves some degree of simplification. In theoretical neuroscience
there is no general agreement on the degree of simplification that is appropriate.
It may depend on the taste of the modeler, on the amount of details of the exper-
imental observations that are available on a particular functional or anatomical
part of a particular brain, or mostly, on the animal or the function to be modeled

1) Corresponding author.
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(e.g. the bending of the worm, the flying of the fly, the fly-catching of the frog, the
maze-running of the rat or the poem-writing of the human).

Usually, the unit of modeling is the single neuron, but it may be more micro-
scopical (a small patch of neural membrane, a single synapse, an ion-channel) or
more macroscopic (a column of cortical neurons that are all supposed to behave in
a similar way, an area of the cortex or a nucleus of the brain).

We are dealing here with models on the level of the single neuron, and perhaps
on a scale that is slightly below or above. If one wants to model interesting be-
havioral achievements of higher mammals, or even humans, these usually involve
more than half of the brain and in the order of 109 neurons (at least). In such mod-
els, it may seem desirable to use larger units for modeling than the single neuron.
In experimental recordings from single neurons one may get the impression that
their responses to the same repeated stimuli are rather sluggish, imprecise or “ran-
dom”. For this reason experimentalists use time averaging for the characterization
of neural responses and for some time it has been believed that the brain may use
space averaging across small populations of neurons with a similar response, in-
stead of time averaging, in order to pass the signal to the next level. This idea has
led to the modeling unit of a “column” or a small group of neurons, and to the de-
scription of the unit’s response in terms of firing rates instead of single spikes [41].
However, there is evidence that this kind of “mean field approximation” is not valid
for behaving brains i.e. in awake animals. In fact, the exact timing of single spikes
of individual neurons (for example, their response delay relative to the stimulus
onset) can be used effectively for a number of interesting tasks [8, 12, 22, 23].

4.2

Voltage-Based Models

To begin with, we review some of the minimal properties of a model that describe
the time evolution of a cell membrane potential (a so-called voltage-based model).
To this aim, we first ought to recall the structure of the components of a neural
network – the individual neurons. Subsequently, one can try to understand how
neurons communicate with each other – a task which has been extensively pur-
sued, but, almost a century after the first seminal investigations on synapses, still
not yet fully accomplished.

In the present overview we do not aim for a complete physiological description of
neurons and brain functions. An enormous number of books and research papers
have already been devoted to this subject, see e.g. [29] for a beautiful historical
overview. We will only point out some structural properties that are important for
the mathematical modeling of neurons and neural networks.

As one can see in Figure 4.1, neurons are complex ramified structures that share
some basic features. Several linear elements, the dendrites, compose the dendritic
tree, that converges into the cell body, the soma. The tiny fiber leaving the soma is
called the axon. Neural activity in these structures is represented by the voltage fluc-
tuation (of usually less than 100 mV) across the membrane of the neuron. All these
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Figure 4.1 Drawing of a Purkinje cell in a pigeon’s

cerebellum by Santiago Ramón y Cajal, pioneer of

neuroscience.

components possess transmembrane channels, that are responsible for the separa-
tion of ions. This results in a different concentration of ions inside the membrane
compared to outside.

In the case of so-called passive fibers i.e. if the transmembrane channels display
a behavior that is independent of the voltage, it is possible to derive differential
equations for the time evolution of the transmembrane voltage in a formal way.
A thorough discussion of this derivation can be found in [24].

While such dynamic laws were often studied on ideal fibers of infinite length,
determining correct boundary conditions is crucial whenever real fibers of finite
length are considered. The correct formulation of boundary conditions in each
branching point of the dendritic tree, as well as in the soma, is W. Rall’s main the-
oretical legacy. In a series of classical papers beginning with [33, 34] he suggested
a model for the transmembrane voltage v of a whole dendritic tree.

Dendritic trees satisfying Rall’s strong geometric assumptions are usually re-
ferred to as equivalent cylinders: they are represented as simple linear structures
whose behavior is governed by the cable equation2)

v̇(t, x) = v′′(t, x) – v(t, x) ,

where v(t, x) denotes the membrane potential at time t and position x.
Even if equivalent cylinders are only fictitious objects, Rall showed that their time

evolution is tightly related to that of the actual dendritic tree. Several attempts have

2) Here and in the following we denote by
v̇ and v′ the derivatives of the function v
representing the cellular potential with
respect to the time and spatial variables,
respectively.



140 4 Relating Simulation and Modeling of Neural Networks

been made in order to extend Rall’s ideas and his equivalent cylinder representation
to the case of a more extended and heterogeneously branched dendritic tree: see
e.g. [13, 25].

The investigation of excitable nerve fibers like axons is technically more demand-
ing. The presence of different voltage-dependent transmembrane channels con-
ducting specific ions – such as sodium, potassium, or calcium – is a distinctive
feature of axons. Such voltage-gated channels add considerable difficulties to the
study of biological neural networks, since the resulting system of partial differential
equations is nonlinear. In most cases, it can only be treated numerically, in order
to show that it correctly reproduces the dynamics observed in the experiments.
It was A.L. Hodgkin and A.F. Huxley who first performed the experimental work
leading to the formulation of a complete model for the most important individual
channels, [17], a work for which they were awarded the Nobel Prize in Medicine in
1963. Their thorough, heuristic approach is still the main basis for research activity
in theoretical neurobiology.

Up to renormalization, Rall’s linear cable model for dendrites states the trans-
membrane voltage v of the nerve fiber at time t and point x of the dendritic tree (or
rather, of its equivalent cylinder of length �1) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v̇d(t, x) = v′′d (t, x) – vd(t, x)
v′d(t, 0) = 0

v̇d(t, �1) = –v′d(t, �1),
(LC)

where the time-dependent boundary condition in �1 describes the leaky integration
properties of the neuron (the second equations simply prescribe that the other end
of the dendritic tree is sealed).

Rall’s equations are essentially a specialization of a general Hodgkin–Huxley-like
(H–H in the following) model of the form (see part 3 in [17]){

v̇a(t, x) = v′′a (t, x) + F(va(t, x)) – f(r(t, x))
ṙ(t, x) = g1(va(t, x)) + g2(r(t, x)),

(HH)

which is formulated for biological structures of infinite length, therefor not
equipped with boundary conditions. Without going into detail, r denotes in equa-
tion (HH) a generic activation variable (i.e. an Rn-valued function) that models
the activation of the voltage-gated channels (e.g. the dynamics of sodium and
potassium ions); g2(r) represent the internal dynamics of the activation variables;
g1(va) and f(r) are ad hoc terms that account for the voltage-recovery feedback. Fi-
nally, F(va) models a nonlinear threshold mechanism that lets the voltage converge
asymptotically toward the experimentally observed peak potential value of approx-
imately 40 mV during the transmission of action potentials (a.k.a. spikes, i.e., of
traveling peaks of electrical discharge) along axons, and toward the resting value of
approximately –70 mV after the action potential has moved forward. As we will see
later, action potentials are the method used by neurons to mutually communicate
across long distances.

In fact, it is possible to formulate boundary conditions satisfied by the voltage in
the soma, and consequently to formulate a biologically realistic model of a whole
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neuron. We avoid going into detail and refer to [5, 9] for more detail, where a com-
bination of (LC) and (HH) has been discussed.

As should be clear from the above anatomical description, neurons are not – bi-
ologically speaking – pointwise, dimensionless structures. On the contrary, their
spatial structure plays a key role in the delays associated with the transmission of
synaptic signals, as well as in synchronization and other nonlinear phenomena. In
order to study realistic neural networks, it is necessary to understand computation-
al features of single neurons. For that, the spatial structure of the latter cannot be
neglected, thus leading to models similar to (LC) and (NC). This has already been
recognised by Hodgkin and Huxley in [17].

Due to the great complexity of the nonlinear terms involved and of the dendritic
geometries, it is simply not possible to solve explicitly hybrid models that feature
Rall’s and Hodgkin–Huxley-like dynamics. A possible, more realistic, approach is
to study qualitative properties of these mathematical models by means of abstract
tools from operator theory, linear algebra, and graph theory. This approach has
been followed in [9], where a theoretical explanation of several experimental obser-
vations has been obtained. The main results state that:

– neuronal activity does not converge to an equilibrium point,
– solutions regularly transcend voltage thresholds set by initial conditions

(a consequence of the lack of so-called L∞-contractivity of the system), and
– neurons hyperpolarize during the undershoot period following an action po-

tential (possibly because the system is not positivity-preserving).

The mathematical terminology and background have been discussed in detail in [9].
A further feature of a system of the type (HH) that can be investigated by math-

ematical methods is the existence of traveling waves. In fact, several experiments
indicate that action potentials spread along the axon with constant velocity. More-
over, the shape of the action potential does not change during the transmission.
A common Ansatz in the mathematical neuroscience is therefore that solutions
v(t, x) and r(t, x) of (HH) satisfy

v(t, x) = v(x – ct) and r(t, x) = r(x – ct)

for some transmission velocity c. Such solutions are called traveling waves and they
are a relevant research subject, both in the mathematical analysis of network equa-
tions (see [6]) and in the theoretical neuroscience (see e.g. [31]). It can be said that if
the system (HH) correctly describes the spread of an action potential in an excitable
fiber (i.e., if the phenomenological functions F, f, g1, g2 properly fit the experimental
data), then it should be possible to find traveling wave solutions to (HH).

In the above discussion we have not even tried to model the interaction between
two neurons. The reason for this is the extremely complex behavior of synapses, the
junction points of two different neurons. Synapses are highly nonlinear objects.
They can be classified in several groups that display different behavior, and a de-
scription of their activity is often only possible at a statistical level. This is why very
few biologically realistic voltage-based models that also feature synaptical junctions
have been proposed in the literature. However, the formulation and mathematical
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analysis of mixed problems implementing both the synaptic and neuronal level of
information processing is necessary, thus justifying the use of theoretical models
on the level of neuron populations. In the next section we discuss the heuristic mo-
tivations leading to the introduction of such simplified models of single neurons.

4.3

Changing Paradigm – From Biological Networks of Neurons

to Artificial Neural Networks

Although most researchers nowadays agree with the Ansatz leading to models of
Hodgkin–Huxley type (and, to some extent, also of Rall type), the model is not
satisfactory due to its lack of simulation efficiency. The complexity and instabili-
ty of the nonlinear HH-equations have motivated researchers to propose different
approaches with the aim of simplifying the modeling and at the same time of fa-
cilitating neurophysiological tests. Morphological details have been neglected over
and over again, eventually performing cortical representations based on lattices of
point-like neurons, where functional investigation has been favored over anatomi-
cal realism.

Computational methods could be derived from the models described in the pre-
vious section by solving the equations presented in Section 4.2 numerically and
then analyzing their behavior. However, numerical analysis of a biologically real-
istic neural network is hardly feasible, due both to the large size of cortical pop-
ulations and to the typical lack of regularity exhibited by solutions of nonlinear
equations, thus making such an approach quite inconvenient.

A first approach to the derivation of efficient computational methods from the
models described in the previous section could be to coarsely discretize space pa-
rameters that appear in the equations of Section 4.2 and then try to formulate
equivalent equations on this discretized space. This has led to the introduction
of so-called compartmental models, where neurons are artificially disassembled in
comparatively few (two up to several hundred) sections or compartments, to be
analyzed by means of numerical methods. However, this requires extremely elab-
orate data-fitting for each compartment. Moreover, in order to obtain reasonably
precise results one needs a large number of compartments, which in turn leads to
extremely high computational costs.

Despite experimental measurements which suggest that a manifold of nonlinear
operations may be performed by dendrites, in order to further reduce complexity of
the models it is commonly assumed that postsynaptic potentials add linearly with-
in the dendritic tree. Thus, synapses and dendritic trees are ideally collapsed into
dimensionless structures whose only function is to transform presynaptic activity
into an input that will be processed by the soma or axon hill (this simplification
is also known as a point neuron model, ). As an additional simplification, somat-
ic output is then assumed to be further transmitted to proximal computational
units with a fixed velocity and amplitude that are characteristic for each couple of
connected neurons. Thus, signal processing in axonal trees is neglected for both
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computational and modeling purposes: the whole neuron has been ideally shrunk-
en to a single soma whose dynamics is described by a system of ordinary differen-
tial equations for the different ion channels. This class of simplified model may be
referred to as the multiple-channel models.

With the aim of further simplifying the model, a coarse quantitative analysis of
the system can be performed if one neglects the differences in dynamics of indi-
vidual channels and only considers the time evolution of the membrane potential
as in so-called leaky integrate and fire (LIF) models. In spite of their apparent lack of
biophysical accuracy, such models possess a competitive computational edge. They
permit a thorough functional analysis of information processing in dependence on
the connectivity implemented in the architecture of the neural network. The brain’s
well-documented robustness against noise, transmission failures, and further dis-
torsions suggests that these simplifications may be admissible in the simulation of
large networks.

Models based on such networks of spiking neurons are nowadays quite common
in neuroscience. We will thoroughly discuss them in the next section. For a math-
ematically more precise reduction of Hodgkin–Huxley-type equations to computa-
tionally simple models, see e.g. [1].

Numerical simulations of neural networks are useful in many areas of brain
research. While it is not (yet) possible to create truly intelligent machines, simu-
lations already allow one, for example, to verify theoretical models by comparing
their performance with measurements in real neural networks. Numerical simu-
lation is often used to verify the performance of simplified models (e.g. the leaky
integrate and fire model, see [21]).

The simulation of neural networks also has a background in computer science,
as artificial neural networks are often able to efficiently solve certain kinds of prob-
lems. For example, artificial neural networks typically use very simplified, techni-
cal, and biologically unrealistic neuron models and only allow for very simple con-
nectivity possibilities (e.g. only binary synapses). Typical problems that are solved
by artificial neural networks come from the area of pattern analysis, like visual and
auditive object recognition. Recent examples include recognizing music samples
or cheating CAPTCHA-tests [10]. The property of generalization and the easy possi-
bility of learning from large example databases makes them ideally suited to solve
such tasks. Other examples are the management of gearboxes in automotive engi-
neering, robot motion planning, data mining, financial prediction, marketing, and
recently very successful predictions in the modern energy market.

4.4

Numerical Simulation of Neural Networks

Typically, Hodgkin–Huxley-type neurons are used for biologically plausible simu-
lations. These kinds of models however are very complex to simulate and it re-
quires exceptionally fast high-end machines in order to simulate networks the size
of small mammalian brains and, even then, simplified neuron models have to be
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used or the size of the network has to be reduced [27]. Faced with such a huge
amount of computational requirements, one obviously wants to use simpler mod-
els that can be efficiently simulated: we mention e.g. the widely known and accept-
ed integrate-and-fire-type neuron with different modifications (e.g. [21]), the Spike
Response model ([14]) or the recently introduced model of E. Izhikevich (see [19]
for an overview or [18] for full details).

All these approaches share the property of trying to reduce the computational
cost of the simulation while still aiming to be as biologically realistic as possible.
This means that as many physiological properties of the single neurons and as
many functional properties of networks of neurons as possible should be retained.
Of course, some tradeoffs have to be made, but even with rather strongly simpli-
fied models, like the integrate-and-fire-type with adaptation, very good results can
be achieved (see e.g. [21]). However, the goal of such models is usually to repro-
duce or predict the activity of biological neural networks. An alternative approach
is to use neural networks to solve certain tasks or problems in an elegant way. These
kinds of models focus on functional properties of larger networks of neurons much
more than on the physiological features of single neurons, which are sacrificed in
favor of faster computation. Examples for such models are Hopfield-type networks,
Willshaw’s associative memory [42], the perceptron [35] and the multi-layer percep-
tron [36], Radial Basis Function networks [32, 37], the SpikeNet approach [12], etc.

Already, from the above mentioned examples, it becomes clear that it is hard to
draw a sharp line of separation between technical (or artificial) neural networks and
biologically realistic networks. There are models available to almost any degree of
biological realism, ranging from very technical to almost natural.

Usually for simulations of larger networks at least multiple-channel models as
introduced in Section 4.3 are used. We now introduce such a model explicitly and
propose a cascade of simplifications that can be performed in order to achieve en-
hanced computational efficiency. A set of N interconnected neurons is considered.
The synaptic couplings are represented in a coupling matrix (see (4.3) below).

In the multiple channel model, neurons are completely classified according to
the biophysical properties of their membranes (decay rate of excited fibers and
duration of refractory time) as well as to the kind of effect on postsynaptic neurons.
This classification results in a grouping of neurons labeled by indices l ∈ L and
k ∈ K, respectively.

Let uj be the membrane potential of the j-th neuron of type l(j) ∈ L. For the sake
of notational simplicity, the dependence on j is dropped and we write l := l(j) in the
following. Then, the membrane potentials dynamic is given by

τl · u̇j(t) = –uj(t) +
∑
k∈K

ak
j (t)
(
Uk – uj(t)

)
+ xj(t) . (4.1)

Here ak
j is the total input activity for the neuron j propagated through the input

channel type k at time t, the term τl > 0 is a time constant, and the value Uk is
called the reversal potential of the channel k ∈ K i.e. the potential where the effect of
the channel k ∈ K is zero. Crossing this potential reverses the effect of the channel.
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Additional external (sensory) input from outside the simulated neurons enters the
network in the variable xj(t).

Because of the linear input addition property, which we discussed before, the
total input activity of channel k is given by

ak
j (t) =

∑
i∈Ik

aij(t) , (4.2)

where Ik is the set of all indices of neurons belonging to channel type k ∈ K and
aij(t) is the activity transferred from neuron i to neuron j. For a neuron i of class
k ∈ K, this is given by

aij(t) =
∑
s∈Ti

rk(t – (s + dij))cij . (4.3)

Here, rk : R+ → R+ is the response function of the channel type k i.e. the form of the
effective postsynaptic potential. The term rk(t) models the effect that all synaptic,
axonal and dendritic activity has on the postsynaptic neuron for an input of channel
type k at time t when the presynaptic spike occurred at time s = 0. The parameter
cij is the synaptic coupling strength from neuron i and neuron j, dij is the (non-
negative) delay of the signal transfer from neuron i to neuron j.

The output activity of the j-th neuron is given by

yj(t) = [uj(t)vθj(t)] , (4.4)

where the threshold function θj : R → R for the neuron j of membrane type l is
defined by

θj(t) = ϑl(t – s∗j ) = max
s∈Tj

t

ϑl(t – s) . (4.5)

Here, Tj
t = {s < t : yj(s) = 1} is the set of spike times for the neuron j, s∗j = max Tj

s

denotes the time where the last spike occurred and ϑl : R+ → R+ is the monotoni-
cally decreasing threshold function for the neuron type with index l. The threshold
function ϑl(t) adjusts the firing threshold of the neurons of membrane type l and
gives the value of the threshold if the last spike of the neuron was at time t in
the past. In order to model an absolute refractory period during which spikes are
very unlikely and almost impossible, ϑl(t – s∗j ) is set to a very high value whenever
t – s∗j < Δl, where Δl > 0 is the duration of the absolute refractory period. For larger
values of t–s∗j , the threshold decreases towards its resting value, modeling a relative
refractory period.

Some of the equations of this model can be further simplified, resulting in sev-
eral commonly known models which will be summarized below in Table 4.1.

First, in (4.2), the spike response functions rk can be simplified to a total effect
wij ∈ R for the connection from neuron i to neuron j, giving

ak
j (t) =

∑
i∈Ik

wij · yi(t – dij) . (4.6)
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Again, Ik is the index set of all neurons belonging to channel type k.
Another simplification is given by replacing the reversal potential term Uk – uj(t)

in (4.1) by Uk, because the membrane potential uj(t) is small compared to Uk most
of the time. This yields

τl · u̇j(t) = –uj(t) +
∑
k∈K

ak
j (t) ·Uk + xj(t) . (4.7)

Here, it is possible to use either definition of ak
j (t). If the simplified variant

from (4.6) is used, the membrane potential’s equation reads

τl · u̇j(t) = –uj(t) +
N∑

i=1

wij · yi(t – dij) + xj(t) . (4.8)

Note that the sum now is over all neurons, instead of being over all channel types.
Further, the calculation of the total input activity per channel is not necessary be-
cause this simplification completely neglects channels.

Sometimes, an explicit reset of the membrane potential of a neuron j of class l is
performed allowing

uj(t) ← 0 if uj(t) v θl(t) , (4.9)

i.e. the membrane potential is forcefully set to zero whenever the threshold θl(t) ∈
R+ is reached. In many models with reset, a constant threshold is chosen, yielding

θl(t) = ϑl . (4.10)

Let us briefly mention the further class of so-called firing-rate models, based on the
assumption that the output function y in (4.4) satisfies the simplistic dynamic law

yj(t) = fl(uj(t)) , (4.11)

where fl : R→ R is typically a sigmoidal function for the neuron type l ∈ L, describ-
ing the spike rate of the neuron. A variation of this simple model is sometimes used
to generate quite realistic spike trains: in the so-called varying spike-rate Poisson

Table 4.1 Common neuron models in neuroscience and the

corresponding equations in the text above.

Model name Potential u Input ak
j

Output y Threshold θj

Multiple-channel model 4.1 4.2 4.4 4.5
Dynamic threshold model 4.1 4.6 4.4 4.5
Simple dynamic threshold model 4.7 4.6 4.4 4.5
Spike response model 4.7 + 4.9 4.2 4.4 4.5
Integrate-and-fire model 4.8 + 4.9 4.4 4.10
Firing-rate model 4.1 4.2 4.11
Simple firing-rate model 4.8 4.11
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model the output value yj(t) in (4.11) is used as the spike- or event-rate in a Poisson
process that models the output of the neuron [3, 4].

Table 4.1 shows which combination of equations results in which commonly
known model in the neurosimulation literature. In fact this literature is distributed
across several disciplines and much more chaotic than this simple table suggests.
Many additional small varieties and all sorts of different names are used for the
models (e.g. [15,19,24,39]). Clearly, the model variants can behave differently under
certain circumstances. Compared with the simple firing rate model, a spiking mod-
el can show qualitatively different dynamics under otherwise identical conditions.
Wennekers and Palm [40, 41] have created a simple architecture in which a popu-
lation of 1024 identically and fully connected neurons can be simulated with three
different models (firing rate model, Poisson model and simple dynamic threshold
model) that have the same input-output behavior on average or in the mean field

(a)

(b)

Figure 4.2 Qualitative behavior of the three

single-neuron variants described in the main

text in a fully connected excitatory network with

inhibitory activation control. In (a) and (b)

firing rate model neurons (type I) are used dur-

ing the initial 50 steps, from 50–150 Poisson

model neurons (type II), and afterwards simple

dynamic threshold neurons (type III). The

upper plots in (a) and (b) reveal spikes (black

dots) of 16 of the 1024 simulated cells. The

middle plot shows the membrane potential

and spikes (dots) of one individual cell. At

the bottom the time-course of the inhibitory

neuron, reflecting the average activity of the

whole population, is seen. In (a) the activity

of type I and II neurons is stationary (up to

fluctuations in the membrane potentials),

whereas for type III neurons it is oscillatory.

For higher external excitation as in (b) also

networks with type I and II cells oscillate.

Now type III shows a different frequency and

shape. Using plausible parameter values these

oscillations fall into the EEG-gamma range.
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approximation. One result is shown in Figure 4.2, where the simulation switches
between the three different models revealing qualitatively different dynamics.

Consider the cases depicted in (a) and (b). Note, that the temporally and spatially
constant mean value of noisy input to the model neurons is increased in (b). One
observes a breakdown of the mean field approximation due to emerging oscilla-
tions in (a) and due to almost complete spike synchronization in (b).

4.5

Population-Based Simulation of Large Spiking Networks

A relevant speedup of the simulation can be achieved by partitioning the neural
network into subnetworks that contain several neurons and share the same connec-
tivity and functionality. If the whole network is decomposed into “building blocks”
of this kind, a structural similarity Ansatz can be deployed in order to make the
simulation more efficient. Whenever populations of spiking neuron models are
used, the simulation is still carried on the level of single neurons, i.e., the model
keeps track of the precise spike timing of the basic units.3)

A very simple form of neural networks of spiking neurons is the binary neuron
model of Willshaw [42], which is a suitable building block for the above approach.
Although the model is very technical and the neurons and connections are only
binary, there is a strong relationship with brain research. Many models of the hu-
man brain suggest that associative memory structures, which feature feedback in
an essential way, are massively present throughout the neocortex. Examples of such
theories reach back to the 1980s (see [30]) but can be found also in more recent
research, although somewhat hidden in the explanation (see [16]). Furthermore,
associative memories even in the simple binary form reflect the process of synap-
tic plasticity, a concept that is basically used to model changing synaptic weights
in the neural network. Associative memories learn patterns by adjusting synaptic
weights, even in the binary model, where synaptic weights are adjusted between
the two possibilities zero and one using a simplified Hebbian learning rule i.e. the
connection is strengthened (set to one) when the pre- and postsynaptic neuron are
active at almost the same time.

Autoassociative memories can be considered as memories that can be addressed
with erroneous versions of stored patterns and, in the ideal case, respond with
the completed, error-corrected pattern. Willshaw’s model of autoassociative mem-
ory implements such a device using binary neurons, binary synapses and a huge
amount of feedback connections. We will not describe Willshaw’s model in detail,
for which we refer to Willshaw’s original work [42]. Instead, the so called “spike
counter” model will be introduced. In its very basic form, it is a slightly modified

3) This is in contrast to firing rate models, which
study the behavior of whole populations
under the assumption that they can be
described by a joint firing rate (i.e. detailed

information about spike timing of single
neurons is neglected) as we have shown in
Figure 4.2.
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variant of the Willshaw model: the external input of a neuron influences the time
evolution of its membrane potential in a linear fashion instead of directly adding
to the potential itself as in the Willshaw model.

The spike counter model is a model for a population of neurons that work toge-
ther to build one autoassociative memory. These memories can then be connected
to other memories modeled in the same manner in order to construct a large neu-
ral network. Each memory makes heavy use of local feedback connections, setting
the spike counter model apart from layered networks such as the perceptron which
has one dedicated direction for information flow. The spike counter model is com-
pletely characterized by its pattern storage and retrieval features.

Pattern storage works as in Willshaw’s binary model of associative memory. For
a population of N neurons, consider the set of vectors

W = {w1, w2, . . . , wK} . (4.12)

These vectors represent patterns that should be stored in the system. Note that the
vectors need to be binary and of length N i.e.

wi ∈ {0, 1}N ∀i ∈ {1, . . . , K} . (4.13)

Optimal patterns for the spike counter model are sparse i.e.
∑N

j=1 wi
j is small for all

i, and of equal “size” i.e.

N∑
j=1

wi
j =

N∑
j=1

wl
j for all i, l ∈ {1, . . . , K} .

The patterns are stored in a memory matrix A ∈ {0, 1}N~N by

A =
k∨

i=1

wi ⊗ (wi)� (4.14)

where ∨ means the entrywise maximum operation and ⊗ the outer product of two
vectors with N components.

For a population consisting of N neurons, the membrane potential of the i-th
neuron is given by⎧⎪⎪⎨⎪⎪⎩ ẋi(t) = a · cH

i (t) + b ·
(
cA

i (t) – α · cΣ
)

,
xi(0) = 0,

(4.15)

where α ∈ [0, 1], a, b ∈ R, a, b v 0. Typically, α is close to one and a is much smaller
than b e.g. a = 0.005 and b = 1. The values cH, cA, and cΣ are the “spike counter”
variables:

cA: It holds an individual value for each neuron in the population, i.e. cA ∈ RN.
For each neuron, it counts how many autoassociative feedback spikes the
neuron has received during the current retrieval. The value of cA changes
during the retrieval i.e. it increases by one if a feedback spike is retrieved for
a neuron.
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cΣ: It is constant for all neurons within the population i.e. cΣ ∈ R. It counts
the total number of spikes that have already been fired during the current
retrieval step. The value of cΣ changes during the retrieval i.e., it increases by
one with each occurring spike.

cH: It holds an individual value for each neuron, i.e. cH ∈ RN. It counts the num-
ber of external input spikes that a neuron receives during the retrieval. In the
basic spike counter model, this value is constant throughout the retrieval.

Define the output Zi of the i-th neuron by

Zi(T) =
{

1 if neuron i fired before time T,
0 if neuron i did not fire until time T.

(4.16)

The autoassociative spike counter is given by

cA
i (t) =

N∑
j=1

Aij · Zj(t – dij) , (4.17)

where dij v 0 is the delay of the autoassociation from neuron i to neuron j and Aij

is the i, j entry of the matrix A.
The cΣ-counter is defined as

cΣ(t) =
N∑

j=1

Zj(t) . (4.18)

The external input counter cH
i accounts for the strength of the external input to the

population.
During the retrieval, the membrane potentials of neurons that receive external

input start to grow linearly towards the firing threshold. If the first neuron has
fired, the spike is fed back through the autoassociation and affects the neurons
that are connected to the one that fired via cA. At the same time, cΣ counts how
many spikes have occurred during the retrieval. If α W 1 and several neurons have
fired, the term cA

i – cΣ becomes negative for a neuron that is not connected to the
firing neurons. Hence, the neuron will be inhibited and potentially, depending on
the value of b, will not fire at all. Neurons that are connected to the ones that have
actually fired, and thus probably belong to the same assembly, will receive positive
feedback through cA

i –α·cΣ , driving their membrane potential to the firing threshold.
For a thorough discussion of the (extended) spike counter model and how to

apply it to the understanding of simple languages, see [26].
In order to build large networks consisting of several autoassociative memories,

it is necessary to forward activation from one memory to the next. This can be
achieved by heteroassociative connections. Heteroassociations map an input vector
w ∈ {0, 1}M to an output vector w̃ ∈ {0, 1}N, corresponding to populations of M
and N neurons, respectively, and are thus describes by a nonquadratic M ~ N-
matrix H.
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A set of K pattern pairs
(
(w1, w̃1), . . . , (wK, w̃K)

)
is stored using

H =
K∨

i=1

wi ⊗ (w̃i)� , (4.19)

where ⊗ is the outer product and
∨

denotes the entrywise maximum function. The
retrieved pattern ũ ∈ {0, 1}N with an address pattern u ∈ {0, 1}M is given by

ũi = Θ∑M
j=1 uj

((
(u� ·H)�

)
i

)
, (4.20)

where

Θt(x) =
{

1 if x v t ,
0 otherwise ,

(4.21)

is the threshold function. In the case of the spike counter networks, heteroassoci-
ations neglect spike time. The input pattern u is equivalent to the output Z of the
whole retrieval i.e. u = Z(T), where T is the duration of the retrieval. When heteroas-
sociations are used to connect different populations of autoassociative memories,
often the threshold function Θ is not applied in (4.20). This forwards all pattern
activations unmodified into the autoassociative memory which is then responsible
for the processing of the inputs using its own retrieval algorithm.

Heteroassociations can be used to translate between different representations
that might be used in different autoassociative memories. If autoassociative mem-
ories are viewed as basic processing units, heteroassociations can be used as con-
nections between different autoassociative units. We call an autoassociative mem-
ory, together with the heteroassociations responsible for its input, a module. Two
of these modules can now be connected by connecting the output of one module
to the heteroassociative input of another module and vice versa. Using this kind
of architecture, it becomes possible to simulate rather large neural networks in
a relatively short time.

Biological neurons cannot transmit signals in arbitrary short time intervals. In-
stead, a spike needs some time to be transmitted along an axon, to pass a synapse
and travel down the dendrite until it reaches the next neuron. The time depends
on several factors, including the lengths of the axon and dendrites and the type of
synapse in between. This fact needs to be reflected in simulations of neural net-
works, both for the sake of biological realism and in order to exploit its functional
properties. Usually, it is represented by “synaptic delays” i.e. the signal is delayed
for a certain amount of time when it passes a synapse, whereas dendritic and axonal
delays are often not explicitly modeled. Positive delays are helpful to allow for bidi-
rectional but causal connections between two modules: without synaptic delays,
the output of the first module would determine the output of the second module
and, simultaneously, the second module would feed back to the first module and
modify its output.

While delays are easy to implement in numeric simulations of neural networks,
they are usually very hard to deal with in analytical models. Numerical simulations
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can thus at least be used to give a hint about the actual behavior of neuronal dy-
namics. To conclude, let us summarize what we have seen in the previous sections.
The building blocks of a neuron are the dendritical tree, the soma, and the axon:
each of these anatomical entities is associated with a functional activity both at
a modeling and a computational level. On one hand, Rall’s model of the dendriti-
cal tree is a linear partial differential equation, corresponding to time integration
of inputs. Moreover in the model presented in Section 4.2 the soma is assigned
an essential filtering role. If the gathered potential falls into the attraction basins
of traveling-wave solutions of equations (HH), then a traveling wave is started on
the axon. This behavior is represented in the threshold mechanisms discussed in
Section 4.4. Since traveling waves spread on the axon with constant velocity, the
signal transmission on the axon may be regarded as a purely linear transport. This
corresponds to the delay terms included in the computational model.

4.6

Synaptic Plasticity and Developing Neural Networks

As we have seen, the biophysics of spike transmission is nowadays comparatively
well-described and understood. On the contrary, much less is known about the way
in which a real cortex evolves during an animal’s learning phase.

In fact, many learning models have been introduced and are commonly used
in the neuroscientific literature. While most approaches favor feasibility in artifi-
cial neural networks over biological realism, some rules aim at describing learning
processes in actual cortical areas. They reflect an evolutionary behavior involving
reversible weakening or strengthening of synaptic coupling between single neu-
rons. These phenomena go under the name of synaptic plasticity.

We mention the set of heuristic rules that have been developed by the neuropsy-
chologist D. Hebb in the 1940s, based on the assumption that strengths of synap-
tic connections can vary over time. Hebbian rules were briefly introduced in Sec-
tion 4.4. They prescribe that simultaneous activity of pre- and postsynaptic neurons
results in the strengthening of their synaptic connection.

More recently, the alternative mechanism of so-called Spike-Timing Dependent
Plasticity (STDP) [2, 7, 20, 28, 38] has become increasingly popular in the neuro-
science community. In contrast to the simple Hebbian paradigm, STDP allows for
the weakening of a connection depending on the chronological order of neuronal
activity: if activity in a postsynaptic neuron follows in rapid succession upon a spike
in the presynaptic one, then the connection will be strengthened; if, conversely,
activity in a postsynaptic neuron precedes a presynaptic spike, then the connection
will be weakened. Observe that the biochemically natural direction of information
flow of (chemical) synapses, which is respected in the framework of STDP, is not
explicitly used in simple Hebbian rules. Implementing such plasticity rules in bi-
ologically realistic neural network models may simplify the study of asymptotics
of such systems, leading to a better theoretical understanding of firing patterns in
cortical networks that are commonly recorded in experiments.
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In conclusion, we observe that the standard theory of synaptic plasticity allows
the strength of mutual neuronal connections to vary, but assumes that the basic ar-
chitecture of the neural network remains constant over time. While this consider-
ably simplifies the analysis, it is in contrast to the observed behavior of neurons and
synapses in the developing animal cortex, whose topology irregularly evolves dur-
ing an animal’s maturation phase, providing a steady rewiring of the cortical tissue.
In recent years, this issue has aroused a great deal of attention in developmental
neuroscience. However, as yet there is no convincing approach for a mathematical
analysis of these phenomena. It is an open problem whether and how they can be
put into a framework of dynamic graph theory, allowing theoretical investigations
of rewiring phenomena.
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5

Boolean Networks for Modeling Gene Regulation
Christian Wawra, Michael Kühl, Hans A. Kestler1)

5.1

Introduction

Cells of living organisms and their interactions are highly complex biochemical
systems. By mutual interference genes build connected networks, called gene reg-
ulatory networks, to coordinate the behavior of cells. Using feedback mechanisms,
transcription factors, which are a certain class of proteins, regulate the synthesis
of other genes. Mathematical models of such networks can help one to understand
these complex mechanisms that are responsible for all living organisms. Almost
four decades ago Kauffman [17] studied random Boolean networks. His computer
simulations revealed an analogy between these discrete artificial networks and the
gene regulation of living organisms. He associated different types of cells to cycle
states of Boolean networks. Table 5.1 shows the analogies on which these models
are based.

Figure 5.1 shows the circuit diagram that represents the single Boolean functions
and the corresponding state transition table of a simple network.

In terms of biological systems, Boolean networks are mainly applied in two ways.
First, by building large artificial random networks to investigate the global behavior
and to draw conclusions from these findings, second, through modeling of a cer-
tain gene regulatory network based on various measurements and observations to
predict the behavior of the system.

This work is structured as follows. First we introduce the biological background
and the goals of modeling in the field of biology. In Section 5.4 we discuss differ-
ent modeling approaches with a focus on Boolean networks. Section 5.6 address-
es seminal characteristics of large randomly constructed networks and outlines
numerical as well as analytical results. Different algorithms to infer Boolean net-
works from measurements are explained in Section 5.7. In the end we discuss the
approaches presented and give a short outlook.

1) Corresponding author.
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Table 5.1 Analogies between discrete random Boolean networks and Gene Regulatory systems.

Gene regulatory system Boolean network

Genes that can be expressed or not expressed Nodes xi with one of the values 1 or 0

Promoter region that regulates the
transcription of a gene dependent on the
availability of transcription factors

Boolean function fi which determines the
next value for node xi dependent on the
current state.

Cell type Attractor

Cell cycle length Attractor cycle length

(See Section 5.2 and 5.5 for details.)

x2(t)

x1(t + 1)

x1(t)

x2(t + 1)

x3(t)

x3(t + 1)

Current gene status

Three Boolean functions represent-

ing the promoter regions

Gene status in the next step

(a)

001

000

100

010

101

110

011

111

Node 001 representing the state

x1 = 0, x2 = 0, x3 = 1

Three different attractor states

(corresponding to different cell types)

(b)

Figure 5.1 Circuit diagram (a) and state transition diagram (b)

are two different but equivalent representations of a Boolean

network. The circuit diagram is an abstract model of the

promoter region of a gene and determines their synthesis based

on the Boolean functions and their current availability. The state

transition diagram represents all possible states.

5.2

Biological Background

This section briefly explains essential steps of gene regulatory systems. Compre-
hensive work concerning this topic can be found in many textbooks about molec-



5.2 Biological Background 159

coding region regulatory region 

gene 1 
gene

cell

nucleus

transcription

mRNA 

translation

splicing

transcription
factor 3 

transcription
factor 1 

protein 1
transcription
factor 2 

Figure 5.2 The regulatory region of gene 1 has three transcrip-

tion factor binding sites. In this example, only transcription

factor 1 has to bind to the third binding site to activate the

transcription. The mRNA is spliced and translated into protein 1,

which acts as transcription factor 2 and binds together with

transcription factor 3 at the regulatory region of a further gene.

ular biology, for example Alberts et al. [5]. A human body, just as many animals
and plants, consists of millions of cells with many different cell types. Every sin-
gle cell has a nucleus2) containing the deoxyribonucleic acid (DNA) which stores all
the genetic information. This DNA is a long macromolecule made of four differ-
ent sequentially arranged nucleotides. It includes the genes which code for certain
proteins. A gene comprises the regulatory and the coding region. If one or more
specific molecules bind to the regulatory region the coding region is transcribed to
messenger RNA (mRNA) which can be translated into proteins. These procedures,
transcription and translation, are called the central dogma of molecular biology.
Since the mRNA is translated outside of the nucleus it must leave the nucleus and
in doing so, regions not contributing to the entire protein are cut off in a process
called splicing. This can take place at different locations on the mRNA allowing for
different proteins originating from one single gene. Proteins are specialized macro-
molecules and act as enzymes, antibodies, or structural proteins to name just a few.
A particular class of proteins which are able to bind to the DNA and regulate the
transcription are called transcription factors. They can bind to specific transcription
factor binding sites, called cis-regulatory elements and can either enhance or sup-
press the transcription. Normally several such binding sites are contained within
the regulatory region of a gene, and multiple transcription factors, acting some-
how together, are necessary to start the transcription of a gene (see Figure 5.2). It
is assumed that strong cooperation and also competition exist between regulatory
elements. Transcription factors can bind directly to the DNA or after the forma-

2) There are also organisms without a nucleus.
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tion of small complexes. Furthermore, other modifications like phosphorylation
can alter a transcription factor’s mode of action (Figure 5.2). Proteins and mRNA
molecules are degraded by several cellular mechanisms. Therefore, transcription
factors are only available for a certain period of time unless the corresponding
genes are permanently activated. Thus a living cell is a dynamic system with genes
temporarily switched on or off in a coupled manner. Although nearly all cells of an
organism have the same DNA they can develop into different specialized units per-
forming various tasks. To understand the gene regulatory mechanism underlying
these processes is one of the main tasks in developmental biology. Furthermore,
the interactions of many genes also play an important role in adult cells. Thus cells
are able to maintain a certain function and can undergo distinct programs like the
ordered cell death (apoptosis) or cell division. They are also able to react adequately
to perturbations of the environment.

The decoding of this complex mechanism would not only give insight into the
development of life, it would also help one to understand the reasons for complex
diseases like cancer and also to facilitate drug design.

5.3

Aims of Modeling

Due to the fact that gene regulation plays such an important role it is desirable
to fully understand living organism at the molecular level. Sequencing projects
like the human genome project revealed the whole genome of humans and other
organisms and now thousands of genes and their regulatory elements have been
identified [10, 22]. Presently the major challenge is to discover which genes are ex-
pressed at different cell states and how they interact. The complex and dynamic
feedback network of interwoven genes makes an intuitive understanding virtually
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impossible and formal methods are required, since they can describe the structure
of gene regulation unequivocally. Simulation of mathematical models can create
hypotheses in a systematic manner and provide biologists with useful predictions
in the case of expensive, ethically unjustifiable, or even impossible, lab experi-
ments.

The establishment of a model normally starts with the collection of data from the
literature or from new experiments. Dependent on the accuracy of the data and the
modeling goal, a first model is built and adapted until it fits to the data. Computer
simulations yield predictions which should be tested in further experiments. Fal-
sified predictions require a revision of the model and, in an iterative process, the
desired model is built. Figure 5.3 outlines this procedure.

5.4

Modeling Techniques

In the following we present common techniques used to model gene regulatory
systems. Comprehensive introductions can be found in the books of Bower and
Bolouri [8] or Klipp et al. [22], a concise review focusing on mathematical methods
is given by de Jong [10]. Markowetz et al. [29] provide an overview on inference
algorithms with a main focus on statistical methods. The choice of an appropriate
modeling approach can depend on several factors like the amount and accuracy of
the given data, the objectives which the model should address, and the computa-
tional power available.

Different modeling techniques can be divided into (1) dynamic models, which
allow for changes over time, or static ones, which do not, (2) quantitative or quali-
tative systems, (3) deterministic models or stochastic ones, which account for ran-
dom processes ubiquitously present in biochemical reactions, (4) discrete or con-
tinuous systems.

Bayesian networks (Friedman et al. [14]) are used to represent static dependen-
cies of gene interactions. They can be advantageously applied on incomplete and
noisy data and learning techniques allowing for the inference of such networks
from gene expression data. These models cannot represent dynamic aspects but
dynamic Bayesian networks (Dojer et al. [12]) address this problem.

Another static approach used to reconstruct network structures and capable
of dealing with indirect observations are nested effect models introduced by
Markowetz and coworkers [28]. Boolean networks are presumably the simplest
dynamic models, where only one of two logical values can be assigned to a sys-
tem’s component. They are explained together with probabilistic Boolean networks
below.

An extension of Boolean networks are generalized logical networks (see
Thomas [39]) in which not only two but an arbitrary number of discrete values
are allowed for one modeled component. Furthermore, a transition to the next
state can take place in an asynchronous manner. Differential equations are fre-
quently utilized to model dynamical systems in engineering or science. In terms of
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gene regulatory networks each component (e.g. protein, protein complex, mRNA)
is represented by a real number representing its concentration at a certain point
in time. Dependent on these concentration values the rate equations describe the
fluxes between components. Differential equations are suitable for precise dynam-
ic modeling but they require accurate kinetic data. In general, these systems of
differential equations are not linear and thus can only be solved numerically by
appropriate solvers. All approaches discussed so far neglect spatial dimensions
and thus assume an equal concentration of the components at any location, which
sometimes is an oversimplification. Compartmental models solve this problem
by introducing a spatial separation into two or more compartments, for example,
the cell nucleus and the remaining part of the cell. The use of partial differen-
tial equations allows continuous modeling of the spacial dimension. In principle,
many systems can be simulated very accurately by differential equations but the
assumption that components change their concentrations deterministically and
continuously is not appropriate if there are only a few interacting molecules. In
these cases discrete stochastic simulations, as proposed by Gillespie [15] for exam-
ple, are more convenient. Such algorithms model the exact number of molecules
and randomly (based on probability distributions) select a reaction and a time
period after which this reaction takes place.

Here we have discussed only some important approaches – a multiplicity of fur-
ther approaches exist, for example, piecewise linear differential equations and qual-
itative differential equations, two methods based on differential equations, rule-
based methods, Petri nets, or models based on process algebra, to mention just
a few.

5.5

Modeling GRNs with Boolean Networks

For consistency of notation with related work we define a Boolean network (BN) in
a similar way to Akutsu et al. [4]. A Boolean network G(V, F) consists of n nodes
V = {x1, . . . , xn} and n corresponding Boolean functions F = {f1, . . . , fn}. Each node
can take the value 0 or 1 resulting in one discrete state x out of the state space
S = {0, 1}n with |S| = 2n. The Boolean function fi(xi1 , . . . , xik ) ∈ F depends on k input
nodes and its result determines the value assigned to the node xi in the following
time step:

xi(t + 1) = fi(xi1 (t), . . . , xik (t)) , 1 u i u n (5.1)

The number of input nodes k may depend on the function fi and in the following
we define k as the maximum number of input nodes (indegree) among all functions
in F. The connection between a node and its input nodes is also called wiring. There
are 2k different input settings for the k input nodes of a Boolean function. For each
of these 2k settings the output value of this function can either be 0 or 1 resulting
in 22k

possible Boolean functions. Starting with a state x ∈ S the network updates
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Figure 5.4 State transition diagram (a), state transition table (b),

and the Boolean functions (c) are equivalent descriptions of

a Boolean network. This network has two basins of attraction.

One consists of the states 101 and the singleton attractor 010.

The other one comprises the remaining six states and has an

attractor cycle of length two.

its state synchronously at discrete time steps t = 0, 1, 2, . . ., that is the value of each
node at time t + 1 is derived based on the values of these nodes at time t. Thus
a trajectory in the state space S is passed as shown in the example of Figure 5.4.
Starting at an arbitrary state the system returns to a state visited before after at
most 2n states. This implies that the system has at least one cycle. Cycles are called
attractor cycles and their length is the number of states visited possibly more than
once within a trajectory. Attractor cycles with length one are called singleton attrac-
tors. Each attractor is assigned a basin of attraction comprising the cycle states, as
well as states yielding the system into this cycle. Consequently, each of the 2n net-
work states belongs to exactly one basin of attraction which in turn is associated
with exactly one attractor. States that are not part of an attractor are called transient
states and the number of states between such a state and the first state belong-
ing to a cycle is called the transient length. In terms of gene regulatory networks,
a single gene is associated with a Boolean variable where the values 1 and 0 imply
the dichotomized gene states expressed and not expressed, respectively. According
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to Kauffman [18], attractors are related to cell types and the trajectory before an
entire attractor is associated with cell development or the cells repair mechanism
after injury (see also Somogyi and Sniegoski [38]). The use of Boolean networks
to model gene regulatory systems involves two questionable simplifications. First,
the continuous expression of genes is reduced to two discrete states; second, the
Boolean functions are updated synchronously at discrete time steps. However, co-
operative behavior within biochemical reactions, induced or intensified by positive
feedback mechanisms, results in sigmoidal input output relations and resembles
switch-like behavior rather than linear relations [10, 38] as sketched in Figure 5.5.
Due to different kinetic behavior and further protein modifications, the availability
of transcription factors varies. Thus the assumption of synchronous updates, in-
cluding similar lifetimes of different components, may be an idealization which is
not able to render all aspects of cellular behavior [10].

Despite the fact that they are only an approximation [27], Boolean networks are
assumed to be an appropriate technique, or at least a good starting point, to model
gene regulatory systems [10, 41] for the following reasons. The models are simple
and thus enable both the concentration on major network features as well as the
computation of large, probably randomly constructed, networks to analyze their
general properties [16–18, 38, 41]. Biological data obtained by measurements like
microarray analysis are often binary and modeling large systems with thousands
of components with alternative continuous approaches like nonlinear differential
equations is barely manageable [18].

An extension of Boolean networks are probabilistic Boolean networks [34, 35]
where each function fi is chosen from a given set of possible functions.
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5.6

Dynamic Behavior of Large Random Networks

Randomly constructed Boolean networks are used to identify the global behavior
of large interconnected networks. Such models mainly address the long-term be-
havior revealing periodicity, self-organization, robustness, or redundancy. Further-
more, the relation between these global characteristics and local properties, that
is the rules under which single nodes are constructed, are of great interest. It is
unclear to which extent random networks with a distinct number of nodes or ana-
lytical results, where this number is infinite, can serve as a model for real gene reg-
ulatory networks found in living systems. However, Kauffman [17], who introduced
random Boolean networks in terms of gene regulation [36], pointed out many sim-
ilarities between the behavior of such artificially constructed and real gene regula-
tory networks.

We define a random Boolean network (RBN) as follows. Unless stated otherwise,
the Boolean functions fi ∈ F are chosen randomly and uniformly distributed from
the set of all 22k

Boolean functions. Models where the single functions are selected
according to an arbitrary probability distribution are also feasible. Hence models
where only a subset of all Boolean functions appear, for example, only canalizing
functions,3) are also possible. The k input nodes to every function are chosen inde-
pendently among all n nodes. After this two-stage random selection the networks
remain fixed. Kauffman [18] calls these nets random NK Boolean networks.4) It is
clear that all RBN with k < n are a subset of all totally connected nets with n = k.
A further subset of RBNs are networks were the single nodes are arranged in a spa-
tial order and the input to each node is restricted to their immediate neighbors.
These networks are called cellular automata. In general, they are too restrictive to
represent the potential wiring of gene regulatory networks [38].

Kauffman not only introduced RBNs to study gene regulatory behavior but al-
so gave some interesting links between his networks and living organisms [17]
which can be seen as a kind of justification for the great interest in Boolean net-
works which have now existed for almost 40 years. Therefore we summarize the
main results of Kaufmann’s pioneering work in the following, although his con-
clusions concerning the length and number of attractor cycles were improved in
later years. He first focused on RBNs containing Boolean functions connected to
two other nodes (k = 2). Kauffman numerically simulated networks of various
length up to approximately 8000 nodes. He observed that the median of the cycle
lengths is rather short with a majority of even values and growth approximately
with

√
n. Kauffman’s simulations suggest also that the expected number of cycles

is about
√

n.

3) In canalizing Boolean functions at least one
state of one input variable determines one
state of the function’s output, regardless of
other input variables.

4) Somogyi and Sniegoski [38] use the term
randomly wired Boolean network or general
Boolean network if the number of inputs is
not restricted (k = n).
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If we assume a network consisting of 25 000 nodes, which is about the current
estimate for the number of protein coding genes of a human [9], the median cycle
length and also the number of attractors in such a random network would be about
160. Compared to the state space, which is 225 000, this is an extremely small num-
ber, indicating the origin of a highly ordered system. Thus Kauffman established
a relationship between these findings and various biological organisms such as
bacteria, protazoans, or vertebrates (including humans) by comparing the cell cy-
cle time subjected to the number of genes, on the one hand, and the estimated cycle
time based on cycle lengths of RBNs, on the other hand. The function describing
the median cell cycle time of several organisms lies between two functions describ-
ing the estimated cell cycle time of RBNs either with all 16 functions (k = 2) or
with 14 Boolean functions where constant ones are not used. The predicted num-
bers of cell types were compared to data from organisms where these numbers
are known and they are of the same magnitude. The hypothesis that attractors can
be associated to cell types is substantiated by these findings and is probably one
of the reasons why it has been accepted widely. However, the number of cycles in
k = 2 RBNs, which has been assumed to be

√
n for a long time, was revised by

Bilke and Sjunnesson [7] and assumed to grow linearly with increasing network
size n. Bilke and Sjunnesson applied a decimation algorithm that allowed one to
neglect variables which are irrelevant for the long-term behavior of the network.
Together with more computational power (the study was published approximately
30 years after Kauffman performed his numerical simulations) they were able to
run simulations that enumerated the whole state space for a network size of up to
32, which is still small compared to networks comprising thousands of nodes as do
gene regulatory networks. For larger networks they were forced to go back to the
following sampling method already applied by Kauffman. Starting with arbitrari-
ly chosen initial states the trajectories are observed and the number of different
cycles is counted. Simulations by Socolar and Kauffman [37] suggested that the
medium number of attractors grows “faster than linear” with n. A recent analyti-
cal study by Samuelsson and Troein [32] showed that the number of cycles grows
faster than any power law with the network size n. It turned out that the sampling
techniques underestimate this number. This can be explained by the fact that cy-
cles with a small basin of attraction or those which occur rather seldom are not
detected [13, 32]. Recently Klemm and Bornholdt [21] proposed RBNs with slight-
ly modified updating rules that abolishes the strict synchronous update paradigm
proposed previously (see (5.1)). For networks with indegree k = 2 their simulations
indicated that the majority of attractors in parallel updated RBNs are artifacts as
a result of this synchronous update. For a certain subset of nodes they delay the
effects of these nodes for a short time period ε (smaller than the updating peri-
od), that is, some nodes which would change their states at a given point in time
stay unchanged until the time ε has elapsed. Now an attractor is called stable if the
system resides in this originally chosen attractor after applying all possible pertur-
bations mentioned above (i.e. delaying every possible subset of nodes), otherwise
the attractor is termed unstable. Simulations for a network size up to n = 40 reveal
that, with increasing n, almost all attractors are unstable in the above sense and that
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the number of stable ones grows approximately with
√

n. Furthermore, the basin of
attraction of unstable attractors are much smaller than in case of stable attractors.

Also, in the case of the attractor cycle length it seems that the network size of
Kauffman’s first simulations [17, 18] was too small to specify the behavior of larger
networks. Lynch [26] could show that the mean cycle length is superpolynomial in
the network size n but they further state that this large average cycle size is due to
few RBNs with very large cycles and that most of the networks could have rather
small cycles. Furthermore, the primarily assumed cycle length of

√
n still holds

as an approximation for small n and thus the interesting link between random
networks and living organisms is not invalid at all [6].

Kauffman [17] also investigated the activity and robustness of RBNs and found
that the number of nodes which change their value within a cycle in nets consisting
of 100 nodes is at most 35, implying similar states within one cycle. Nodes that
stop to change their values at some time are called frozen nodes. For systems with
up to 2000 nodes Kauffman could also show that flipping one node of an attractor
cycle’s state lets the network return to the initial cycle with a probability between
0.85 and 0.95, demonstrating a strong robustness against such perturbations. The
nodes which, when flipped, do not influence the entire cycle are called weak nodes.
By simulations he also observed that networks where functions have three input
nodes behave in a similar manner, although he only made simulations with at most
50 elements. He therefore concluded that these characteristics of RBNs are not
restricted to functions with two input nodes. However, analytical studies showed
a substantial difference between k = 2 nets and those where k v 3 (see below).
These results reinforce the hypothesis that living organisms are based on randomly
constructed gene interactions with a rather low connectivity.

Subsequently Kauffman and other authors discussed many further aspects of
Boolean networks and a comprehensive summary is given in his book [18]. We will
only discuss some of these results briefly. If every node in a RBN is connected to all
other nodes (k = n) the number of attractors is of the order of n/e. However, these
attractors have a median cycle length of

√
2n/2. This exponential length can be

calculated as follows. If every node receives input of all other nodes the successor
state to an initial one can be considered as a random choice and thus the probability
for a cycle length of 1 is 1/2n . Similarly, the probabilities for longer cycle lengths
can be stated and thus the above-mentioned cycle length follows. The fact that we
can regard successor states as randomly chosen also shows a vulnerability against
small perturbations. Compared to the k = 2 networks, where a temporal flip of one
node rarely leads the system into another basin of attraction, such a perturbation
can lead the k = n system to any other attractor.

The opposite to these fully connected networks are networks where each node
has only one single input from another node (k = 1). These systems are rather
modular, building many single cycles whose number increases exponentially as n
increases. With a median cycle length of

√
π/2

√
n the attractor cycles are quite

short.
Derrida and Pomeau [11] approximated these RBNs by an annealed model where

the functions and the wiring are re-chosen randomly in every single time step. For
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this model they could proof an existing phase transition between k = 2 and k v 3
nets. Here we follow Kauffman [18] giving a simplified sketch of the proof.
Consider two arbitrary states ut0 and vt0 at time t0 and let ht0 be the Hamming
distance between them, that is the number of nodes which have different values.
With At0 we denote the set of all n – ht0 nodes which are equal in the two states ut0

and vt0 . Let pt be the probability that one input node is contained in the set At at
a certain time point t. Since the input nodes for the functions are chosen arbitrarily
pt0 equals (n–ht0 )/n, and the probability that all k input nodes of one function belong
to At0 is (pt0 )k. The expected number of nodes receiving all their inputs from A at t0

is therefore n(pt0 )k. Clearly, these nodes are equal in the next time step t1. Each of
the remaining n

(
1 – (pt0 )k

)
nodes has at least one input node with different values

and the probability that it becomes equal in the successor states ut1 and vt1 is 1/2.
Thus the expected number of equal nodes after one time step pt1 is

E(|At1 |) = n(pt0 )k +
1
2

n(1 – (pt0 )k) . (5.2)

For the next time step we have to distinguish between the RBNs introduced earlier
and the approach by Derrida and Pomeau. In RBNs the Boolean functions and
the input nodes are chosen at random and remain fixed thereafter. This is also
called the quenched model. The proof here uses the annealed model where both
the functions and their input nodes are re-chosen every single time step. Of course,
this is a rigorous assumption compared to the networks introduced by Kauffman.
In the annealed model we do not have to consider the fact that the states u and v
are correlated to the fixed functions fi and thus we can write:

pt = (pt–1)k +
1
2

(1 – (pt–1)k) . (5.3)

Equation (5.3) reveals a crucial difference between networks with k = 2 and k > 2
since for k = 2 the two states u and v align and their distance becomes zero over
time. If k is greater than 2 the distance approaches to a certain value, that is given
by (5.3). Figure 5.6 compares the fraction of equal values at time t and t + 1. Despite
the assumptions made in the annealed model, numerical simulations comparing
these results to the RBNs show very good accordance between both models [11]
and it is assumed that the annealed model approach shows a phase transition for
RBNs with a critical value of k = 2 [18].

A further analytical approach used to analyze the conclusions Kauffman drew
from simulation results is given by Lynch [27]. Dependent on the probability dis-
tribution of the Boolean functions used to construct a network, he derived an al-
gebraic parameter λ. If λ u 1 almost all nodes are weak nodes and become frozen
ones very quickly. Thus the network exhibits ordered behavior. He applied his re-
sults to k = 2 networks with all possible 16 Boolean functions and to networks
with only 14 functions where the two constant ones are not used. For the first case
his analyses predict an ordered behavior but not for the second class of random
Boolean networks. This is a slight contradiction to the computational simulation
results of Kauffman who supposed the high fraction of constant functions in k = 2
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Figure 5.6 Expected fraction of equal values at time t and t + 1
for various k. For k = 2 this number approaches 1, i.e. the

arbitrarily chosen initial states become the same (1). If k > 2
the equal values of these states approach a certain value given

by the intersection with the straight line, where the number of

equal values of successive states remains constant (2).

networks (two out of 16) to be responsible for the ordered behavior but received
similar results for both cases.

Based on Lynch’s findings Schober and Bossert [33] analyze random networks
with biased Boolean functions for arbitrary indegree k. The bias p of a Boolean func-
tion is the number of 1 in its truth table divided by the number of total entries
(2k). In case of randomly selected Boolean functions one can distinguish two pos-
sibilities. (1) The truth table entries are selected according to the probability p. (2)
Functions where the number of 1-entries in their truth table is exactly p2k are se-
lected with equal probability, other function are never chosen. This is called fixed
bias. Schober and Bossert showed that, for random networks where the functions
are chosen in this way, the expectation of the average sensitivity equals the parame-
ter λ introduced by Lynch. Interestingly, their analysis for example shows that also
networks with k = 2 can be unstable, that is λ > 1, if the bias is fixed.

5.7

Inference of Gene Regulatory Networks from Real Data

The previous section dealt with large randomly constructed networks and their
properties. Needless to say, Boolean networks can also be constructed to model
a concrete gene regulatory network or a part of it, as mentioned in the Introduc-
tion. Models can be based on measurements combined with literature studies and
reliable assumptions whereas rather small networks can be constructed manually.
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However, in recent years high-throughput technologies, such as microarray analy-
sis, have improved, allowing for simultaneous measurements of gene expressions
of thousands of genes within one experiment. This progress comes with the need
for fast inference algorithms to determine the underlying biological mechanism.
Boolean networks provide a good framework for reconstructing a gene regulatory
network from time series data for the same reasons as discussed in Section 5.4.

5.7.1

Problem Definition

The problem, which can be assigned to the field of reverse engineering, can be de-
fined as follows (similar to Akutsu et al. [4]). Given a pair of states (u, v) where u
and v are states of the state space S, a Boolean network G(V, F) is consistent with
this pair if the following holds

vi = fi(ui1 , ui2 , . . . , uik ) , 1 u i u n . (5.4)

That is, the network G in state u (input state) switches to state v (output state) after
one state transition. Given a set of such input-output pairs {(u(1), v(1)), (u(2), v(2)), . . . ,
(u(m), v(m))} the consistency problem (also called extension problem) is to state
a Boolean network G consistent with all pairs (u(l), v(l)) if one exists. The enu-
meration problem is to list all such networks G consistent with all input-output
pairs and identification problem is to decide whether there is a unique Boolean
network with this property and to state it, if it exists. Clearly, if we have solved the
enumeration problem the other problems are close at hand.

Often we are given time series data in the form of an (m + 1) ~ n matrix where
each of the m + 1 rows corresponds to one observed network state (with n nodes) at
a given time point. In this case we have m input-output pairs where, for every such
pair, the input state u corresponds to the j-th row and the output state v corresponds
to the j + 1-th row (1 u j u m). In the following we assume that m input-output pairs
are given, no matter whether they origin from time series data or from single mea-
surements. To reduce the computation time the indegree k of Boolean functions
is often reduced to small values (often k = 3). This may be justifiable since the
mean connectivity is approximately 2 or 3 in Escherichia coli and 4 to 8 in higher
metazoa [23]. Also used to reduce the algorithm’s time complexities and to limit the
number of results, only a subset of all 22k

Boolean functions with indegree k can be
allowed. This subset may contain only biologically reasonable functions. All algo-
rithms described below begin with the inference of one out of n possible functions.
The whole network is derived by applying the methods n times.

5.7.2

Identifying Algorithms

An obvious algorithm derives Boolean functions which are consistent with the giv-
en data for every single node by testing the consistency of each Boolean function
and each possible wiring with the given data. There are

(
n
k

)
possibilities to connect
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a Boolean function with indegree k to n nodes. Each such wiring is combined with
all 22k

possible functions and has to be tested if it is consistent with all input-output
pairs according to (5.4). Note that we do not have to consider functions with less
than k connections (which is equal to the multiple selection of input nodes) because
the test of all possible Boolean functions with indegree k already implies such cir-
cumstances. The function of x1 in Figure 5.4, for example, has only two effective
inputs which would be covered by the k = 3 Boolean function that corresponds to
the (reducible) truth table expressed by column four of Figure 5.4 (b). If the test for
one such pair and a given function is done in O(k) time, the algorithm performing
this test for all n nodes has a time complexity of [4, 20]

O
(
22k ·
(
n
k

)
·m · n · k

)
. (5.5)

If k is fixed, which is justifiable for biological systems, the algorithm works in poly-
nomial time and it is often stated that this algorithm has a time complexity of
O(nk+1m). Akutsu and colleagues who proposed this simple algorithm reduced the
time complexity to O(nkm) by using a trie data structure [1] and achieved a fur-
ther improvement by using a randomized algorithm based on matrix multiplica-
tion [2] which we will sketch in the following. They presented an algorithm for
the counting problem but claimed that the order of the time complexity does not
change if modifications are made to solve the consistency and identification prob-
lem. The algorithm counts the number of consistent functions of the form x1 ∧ x2

similar to the algorithm proposed in Kearns and Vazirani [19] and Valiant [40] for
learning Boolean conjunctions (PAC learnable) and by using fast algorithms for
the matrix multiplication. Other AND and OR functions are treated likewise, XOR
functions are counted by applying the trie data structure. It is explained how to ex-
tend the algorithm to an indegree greater than 2 and the total time complexity is
given as O(mω–2nk + mnk+ω–3), where ω is the exponent of the matrix multiplica-
tion.5)

5.7.3

Noisy Data and the Data First Approach

Although the inferring methods discussed so far can be very interesting from an
algorithmic point of view, as the algorithm based on matrix multiplication impres-
sively demonstrates, their application to time series data from biological experi-
ments is limited. The reasons are, first, the uncertainty of gene regulatory sys-
tems, and secondly, the measurement errors involved in biological methods [23,31].
Therefore it is necessary to use methods that allow for inconsistency. Algorithm 1
shows a simple algorithm for the identification problem very similar to that pro-
posed by Akutsu and coworkers [3]. The algorithm allows for a fraction θ of the m
state transitions not to be consistent with Boolean functions f. Clearly, if we set the

5) ω < 2.376, at the time the algorithm was
published.
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threshold θ to 0 the algorithm allows no inconsistent input-output pair and can be
seen as the simple identification algorithm proposed previously. If the threshold θ
is set too high probably two or more functions are found and thus the algorithm
stops without a result. Therefore it would be better to select that function f which
has a minimum number of inconsistencies among all input-output pairs. To do so,
one has to store the input combination and function which cause the lowermost
mismatches while running the algorithm.

Algorithm 1 Identifying noisy Boolean networks

for i = 1 to n do
count = 0
for all combinations of k nodes (ii, i2, · · · , ik) do

for all Boolean functions f do
mismatch = 0
for j = 1 to m do

if v(j)
i =/ f(u(j)

i1
, u(j)

i2
, . . . , u(j)

ik
) then

mismatch = mismatch + 1
if mismatch u θ · m then

output f as a function for node i
count = count + 1

if count =/ 1 then
output “Not identified”; halt

An algorithm to find Boolean networks which minimize the error rate accord-
ing to weighted states has been proposed by Lähdesmäki et al. [23]. They were
also able to solve the consistency problem with a significant improvement in the
time complexity. In terms of machine learning, the problem of inferring a func-
tion fi for one node xi can be defined as follows [23]. Separate all states u(l) of the
input-output pairs (u(l), v(l)) into the sets T and F such that u(l) belongs to T if the
output corresponding to node xi equals 1, that is v(l)

i = 1, otherwise u(l) belongs
to F. These two sets define a partially defined Boolean function pdBF(T, F). A func-
tion fi is now called a consistent extension of pdBF(T, F) if fi(si1 , si2 , . . . , sik ) = 1 for
s ∈ T and fi(si1 , si2 , . . . , sik ) = 0 if s ∈ F. That is we want to find a perfect Boolean
classifier.

Assume that we are given positive weights W(s) for each s ∈ T∪F and the weight
of a subset of T ∪ F is the sum of the single weights. The error size of a function
fi is defined as the weight of all misclassified states, that is the weight of all states
s in T for which fi(si1 , si2 , . . . , sik ) = 0 and vice versa. The best-fit extension problem
is now to find a function f with minimal error size. Obviously, the consistency and
enumeration problem are special cases of the best-fit extension problem where the
error size is zero.

For unbound indegree (k = n) Lähdesmäki and colleagues [23] proposed the fol-
lowing inferring algorithm which is also called the “data-first approach” by Nam
et al. [31] who stated the same idea. A so-called generalized truth table with 2n en-
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tries maps each possible state out of the state space S = {0, 1}n to a vector f ′. Initially
its entries are filled with the symbol ?. Let f ′s be the entry of f ′ that corresponds to s.
The algorithm now processes all states s ∈ T ∪ F and updates the vector f as fol-
lows:

if s ∈ T then
if f ′s = 1 or f ′s =? then

f ′s := 1
else

output “No solution”; halt
if s ∈ F then

if f ′s = 0 or f ′s =? then
f ′s := 0

else
output “No solution”; halt

The algorithm outputs “No solution” if and only if there is at least one state which
is contained in T and in F. In this case no classifier can be found. If all entries
in f ′ contain 0s or 1s there exists one Boolean classifier f and the corresponding
truth table is f ′. However f ′ may contain some ?s indicating an under-determined
system. For the consistency problem these entries can be filled arbitrarily with 0 or
1 resulting in one consistent Boolean function. Let h be the number of remaining
?s. In case of the enumeration problem all possible settings ({0, 1}h) can be assigned
to the entries with a ? resulting in 2h solutions.

If the time for the initialization of f ′ is ignored, the time complexity is

O((|T| + |F|) · n) = O(m · n) . (5.6)

Note that we consider unbound indegrees and thus the processing of one state
takes O(n) time. For bound indegree of k variables this algorithm can be applied
to all

(
n
k

)
variable combinations. Up to now we considered the search for a perfect

Boolean classifier, that is we determined one Boolean function. To infer a Boolean
network we simply have to apply the algorithm n times. Thus the consistency prob-
lem can be solved in time

O
((

n
k

)
·m · n · k

)
. (5.7)

which reduces the complexity by a factor of 22k
compared to (5.5).

In the case of the best-fit extension problem a similar algorithm can be applied.
Instead of the vector f ′ two vectors, c(0) and c(1), initialized with zeros, are used to
store the weights of the single states s ∈ T ∪ F. If s is contained in T (F) the cor-
responding entry of the vector c(0) (c(1)) is set to the weight of s. Finally, the vector
entries are compared pairwise and the corresponding truth table entry of the re-
sulting function f is set to 0 or 1 depending on which of the values is greater. Thus
an optimal function f with minimal error size is determined. Clearly, the time com-
plexity is the same as for the consistency problem. The restriction to an indegree
of k and the extension to a Boolean network is the same as in the consistency prob-
lem. From a biological point of view it may be desirable not only to search for the
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Boolean function with the lowest error size but also for a set of functions with lim-
ited error size. Among this set of functions a biologist could select the most reliable
one based on experiments or verifications by means of literature research. Adapted
from the above sketched method Lähdesmäki et al. [23] proposed a recursive greedy
algorithm to perform the search of functions with a limited error.

An additional gain in the time complexity by a factor of (log(m))(k–1) was achieved
by Nam and coworkers [31]. The authors proposed a randomized algorithm which
they called “top down search algorithm”. It is based on the fact that if a set G of
input nodes is consistent with an output node, any superset of G still has the same
property. The algorithm randomly selects a consistent set of more than k genes and
determines whether it contains a consistent subset of size k.

5.7.4

An Information Theoretical Approach

Based on the mutual information between input-output pairs Liang et al. [24] pro-
posed an inference algorithm, called REVEAL6). To determine one Boolean func-
tion fi assume we are given m input-output pairs. Let u(l)

h be the value of the h-th in-

put node and let v(l)
i be the corresponding output node of the l-th input-output pair

with respect to the function fi. Let Uh and V be the series of input and output values,
that is Uh = (u(1)

h , u(2)
h , . . . , u(m)

h ) and V = (v(1)
i , v(2)

i , . . . , v(m)
i ). Liang et al. determine

the wiring of a Boolean function fi based on the mutual information as follows.
If M(V, Up) = H(V) then V is exactly determined by Up, whereas H(..) and M(..)
denote the entropy and the mutual information, respectively. Since M(V, Up) =
H(V) + H(Up) – H(V, Up) it is sufficient to check if H(Up) = H(V, Up). The entropy
H(V, Up) is calculated from the frequency of how often one of the four input-output
settings ((up = 0, vi = 0), (up = 0, vi = 1), (up = 1, vi = 0), (up = 1, vi = 1)) oc-
curs. If V is exactly determined by Up the rule table can be directly stated from
the input-output pairs, otherwise the function fi has more than one input node
and the mutual information between V and pairs of input nodes is tested. Conse-
quently, if M(V, [Up, Uq]) = H(V) (i.e. H(Up, Uq) = H(V, Up, Uq)) the pair [Up, Uq]
determines V. The entropy H(V, Up, Uq) is determined from the frequency of the
eight input-output pairs (up = 0/1, uq = 0/1 , vi = 0/1). Repeating this analysis
with increasing number of input nodes allows the inference of networks with any
indegree. Liang et al. made simulations to test their algorithm and observed that
a small numbers of input-output pairs were sufficient to identify a network. Akutsu
and colleagues [4] could explain this observation analytically. They proved that for
fixed k only O(log(n)) state transitions are necessary and sufficient to infer a Boolean
network.

6) Abbreviation of Reverse Engineering Algorithm.
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5.7.5

Using the Chi-Square Test to Find Relationships Among Genes

Kim and coworkers [20] proposed a method to infer large gene regulatory networks
using the chi-square test. Based on this test they implemented a variable selection
method which efficiently selects likely candidates as input nodes. Thus, there is no
need for an exhaustive search testing each possible wiring among all n nodes. Their
program, however, is restricted to functions with an indegree of k = 3 and focuses
only on the Boolean relations AND, OR, and NOT. We will briefly outline the idea
of this selection method in the following. Let Uh and V be defined as in the former
section. A 2 ~ 2 contingency table comprising the four cells {0, 0},{0, 1},{1, 0}, and
{1, 1} is constructed. The entries correspond to how often each input-output setting
was observed within Uh and V. By analyzing all pairs of nodes with the chi-square
test based on this contingency table, only significant ones are selected and exam-
ined in the following. Assume two nodes are significant 2 ~ 2 ~ 2 contingency
tables for these two nodes and each of the remaining nodes are constructed. As-
sume that after applying the second chi-square test the set C of nodes are selected
as significant candidates. Now every combination of two nodes of C are considered
together with the node selected in the first step to get three candidates that arise as
input nodes for xi, which corresponds to Vi. Two significance levels α1 and α2 are
used to vary the sensitivity of the two chi-square tests.

This method is applied together with the best-fit extension problem. They con-
structed an artificial network with 40 nodes, compared their inferring method with
the algorithm proposed by Akutsu et al. [4], and observed that their algorithm is
approximately 6.9 times faster.

5.8

Conclusion

Here we have reviewed the interesting field of Boolean networks – discrete dy-
namical systems that can display remarkable properties. The first part focused on
random Boolean networks and how microscopic properties, namely the way of con-
necting single functions, can affect the macroscopic dynamic behavior of the whole
network. The first application of such networks in terms of gene regulation dates
back some decades but interesting theoretical results have emerged only recently.
From a theoretical or mathematical point of view, the analytical study of random
Boolean networks and also familiar systems is without doubt a fascinating field.
However, it is questionable to what extent an asymptotic result – the number of
nodes is often assumed to be infinite – can be useful for real biological systems
where the number of genes is limited. On the other hand, the number of genes
of a human, for example, is so high that a systematic processing of each possi-
ble state is absolutely impossible. This problem becomes obvious in the case of
the number of cycle attractors in random Boolean networks as discussed in Sec-
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tion 5.6. Further simulations, with more computational power, yield improved es-
timations.

Since there is currently little known about how genes really interact, some of
the theoretical results obtained so far seem to have no connection to biological
reality, such as the findings for biased Boolean functions. However, if biological
methods improve at the same rate as they did in recent years there could one day
be enough knowledge of gene regulatory systems – perhaps supported by reverse
engineering methods – to apply mathematical results which up to now have had
only a theoretical impact.

In the second part, we addressed the problem of reverse engineering to recon-
struct gene regulatory networks. We presented some interesting algorithms to infer
Boolean networks that are consistent with the given data. A machine learning ap-
proach discovers a perfect Boolean classifier to obtain networks that best fit to the
data, based on individually assigned weights. One drawback of these algorithms is
their efficiency since they exhaustively test all wiring combinations. For an analysis
with thousands of genes the method based on the chi-square test, introduced by
Kim et al. [20], might be more suitable. In the case of numerous genes this algo-
rithm probably has to test many combinations in its last step and a combination
of this algorithm and the methods proposed by Nam et al. [31] may result in a re-
duced runtime. Furthermore, the algorithm of Kim and coworkers is restricted to
k = 3 and an extension to more than three input nodes could be useful in some
cases.

In our work we inferred a Boolean network from time series data [25] but for
some genes this resulted in hundreds of consistent functions, while for other genes
no consistent function could be found. Clearly, the problem that there is no func-
tion at all can be approached by using the best-fit extension paradigm but there is
still the challenge to cope with many consistent functions for certain genes. One
solution would definitely be the collection of further biological data, although this
involves expensive and time-consuming experiments. Another way to reduce the
number of possible Boolean networks obtained by a reverse engineering method
might be a selection of networks that show a certain and biologically reasonable
long-term behavior like small attractor cycles or a robust behavior against small
perturbations – which are again the properties exhibited by many random Boolean
networks. Such an algorithm, that uses additional dynamic characteristics of the
consistent networks found is given by Martin et al. [30].

Until now we have assumed that the data resulting from experiments are binary
values representing one of two states of the genes. In fact, the biological meth-
ods are based on the measurement of the amount of mRNA, which is assumed to
be proportional to the number of corresponding proteins. However, the impact of
transcription factors depends not only on their amount but also on their affinity
towards binding partners. Therefore, it is not clear at which mRNA level a com-
ponent should be assumed to be active or inactive and, due to different affinities,
a reasonable threshold can vary for every single gene. Thus inferring algorithms
that incorporate this uncertainty could be a further step towards robust and reli-
able reverse engineering methods.
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6

Symmetries in Quantum Graphs
Jens Bolte, Stefano Cardanobile, Delio Mugnolo1), Robin Nittka

6.1

Symmetries

In most branches of physics, symmetries play an eminent role. They are behind
regular patterns that help one to understand the structure of a physical system,
and identifying its symmetries often serves as an important step towards a correct
description of a system. This is not only true on the level of the basic building
blocks of a system, but also on a dynamical level where symmetries are relevant in
finding the structure of forces that act in a given situation. Furthermore, symme-
tries can be used to reduce the complexity of a physical system and therefore help,
for example, to solve the equations of motion describing the dynamics of a system.
Moreover, they can also have an impact on the degree of regularity of the dynamics.

An important consequence of the presence of symmetries is its connection with
conserved quantities. This connection can already be illustrated in the case of
a point particle moving in euclidean three-dimensional space when it is described
in terms of classical (Newtonian, Lagrangian, or Hamiltonian) mechanics. A sym-
metry then means a space–time operation (such as a translation or a rotation) that
maps any possible motion of the particle to some other possible motion. For ex-
ample, if the forces are such that any translation is a symmetry, linear momentum
is conserved; in contrast, if rotations are a symmetry, angular momentum is con-
served. Probably the best-known conserved quantity, however, is energy: its con-
servation follows from motions being symmetric with respect to time translation,
meaning that any motion that is possible at a given time is also possible at any
other time.

Within the framework of classical mechanics the connection between the “clas-
sical” symmetries described above and the associated conserved quantities can be
established rather easily and has been known for a very long time. Roughly ninety
years ago, however, Emmy Noether discovered that this connection extends far be-
yond what was known before [1]. She proved what later became known as Noether’s
Theorem and which, for example, plays a fundamental role in the theory of elemen-

1) Corresponding author.
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tary particles. Forces between elementary particles are described in terms of gauge
theories in which an abstract “charge space” is attached to every point in space–
time. The freedom to perform, typically unitary, transformations in these charge
spaces is referred to as a gauge symmetry which, via Noether’s Theorem, eventual-
ly enables the identification of conserved charges and currents.

The basic idea behind Noether’s Theorem can, however, already be explained
in the context of the classical mechanics of a single particle where it can be stat-
ed as follows. Let x = (x1, x2, x3) be the vector of the particle’s position in three-
dimensional euclidean space, and denote by v = (v1, v2, v3) the associated vector of
velocity. When the particle has mass m, its momentum is p = mv. Then the state
of the particle is specified in terms of (x, p) so that the state space of the system is
R3 ~ R3. This space is usually called phase space. A symmetry then is a transforma-
tion g on R3 ~ R3 that leaves the form of Hamilton’s equations of motion invariant
(canonical transformation) and maps (x, p) to (x ′, p′) = g(x, p) such that any solu-
tion of the equations of motion is mapped to a solution of the same equations.

Often it is not only one such operation which is a symmetry. In such a case,
typically, the set of symmetries is a group. This can be finite, infinite discrete, or
continuous. An example of a finite symmetry group would be that of rotations
about an axis with angles, say, 2πn/N, n = 0, 1, 2, . . . , N – 1. If arbitrary angles
are permitted the group will be continuous; in fact, it will be the group SO(2). If,
moreover, rotations about any axis are symmetries, the symmetry group will be
SO(3). These rotation groups have additional properties that qualify them as Lie
groups (see [2]). In the first case, SO(2) is a Lie group of dimension one since
any rotation about a fixed axis is specified by a single parameter; its angle. In the
second case, SO(3) is of dimension three since one requires three Euler angles to
characterize a rotation about an arbitrary axis. Noether’s Theorem now provides
a connection between such Lie symmetry groups and conserved quantities. Before
presenting the precise statement, however, we allow for somewhat more general
cases. More precisely, the physical system should have d degrees of freedom. The
phase space then is, in general, a (symplectic) manifold of dimension 2d.

Theorem 6.1 (Noether, 1918) Let G be a Lie group of dimension r acting on the phase
space in terms of symmetries. Then there exist r independent conserved quantities.

In the case of a single particle in three-dimensional euclidean space, where d = 3,
rotations about any axis could be symmetries. Then G = SO(3), r = 3, and the
associated conserved quantities are the three components of the vector of angular
momentum. In the general case the conserved quantities are the generators of one
parameter subgroups of the symmetry group.

An obvious consequence of Noether’s Theorem is that the presence of a Lie sym-
metry group helps to solve the equations of motion (partially). To this end one uses
the fact that the motion is confined to a submanifold of the phase space that is
defined by the conserved quantities to take fixed values. This way the complexity
of the problem is reduced since the relevant submanifold is of lower dimension.
In particular, if the number of conserved quantities equals the number of degrees
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of freedom (and a further condition is fulfilled) the system is integrable. This does
not necessarily mean that the integration of the equations of motion is a simple
task, but it does imply that the motion is of a very regular type: in the phase space
its trajectories regularly wind around tori of half the dimension of the state space
itself. While the very concept of integrability goes back to Liouville [3], its full conse-
quences – including the existence of the invariant tori – were only later recognized
by Einstein [4]. The dynamical behavior of integrable systems is in stark contrast
to that of chaotic systems, which possess no conserved quantities (apart from ener-
gy). A characteristic property of chaotic systems is ergodicity, implying that typical
trajectories uniformly fill the entire surface of constant energy in the phase space.

When some obvious modifications are carried out, many of the ideas outlined
above in the context of classical physics can be carried over to quantum physics.
The modifications have to account for the fact that in quantum mechanics the state
of a system is not specified by position and momentum, but rather in terms of
a (complex-valued) function, often called the wave function of the system. This
function typically is a function on position space, and is denoted as ψ(x). The state
space then is the space L2(R3) of square integrable functions and is a Hilbert space.
More precisely, not every square integrable function may serve as a quantum state,
but only normalized ones, fulfilling∫

R3
|ψ(x)|2 dx = 1 .

Then |ψ(x)|2 is interpreted as a probability density for outcomes of position mea-
surements. Obviously, ψ(x) and eiαψ(x) yield the same probability density, so that
quantum states are indeed equivalence classes of normalized wave functions under
the multiplication with complex numbers of unit absolute value. Therefore, strictly
speaking, the quantum state space is not a Hilbert space, but its associated pro-
jective Hilbert space. Symmetry operations must hence map equivalence classes to
equivalence classes. However, Wigner showed that any such map can be realized in
terms of either a unitary or an anti-unitary operator on the Hilbert space itself [5].
Moreover, when these operators provide realizations of symmetry transformations,
they can be chosen to define a (projective) representation of the symmetry group,
so that a composition of two symmetries fulfills

Ug1g2 = eiω(g1,g2)Ug1 Ug2 (6.1)

where ω is a suitable real phase.
Often it is more convenient to work with Hilbert spaces and only later refer to

their projective spaces. For example, when a symmetry acts on position in the form
x �→ gx, and is measure-preserving, an appropriate operation of the symmetry on
the wave function is given by

(Ugψ)(x) = ψ(g–1x) . (6.2)

That way Ug is a unitary operator on the Hilbert space and already provides the uni-
tary realization of the symmetry as predicted by Wigner. In the example considered
in (6.2) the phase ω occurring in (6.1) vanishes, hence yielding a proper unitary
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representation of the symmetry group. Furthermore, for an operation of this type
to qualify as a symmetry it has to take solutions of the equations of motion again to
solutions. In quantum mechanics the time evolution of a wave function is governed
by the Schrödinger equation

i�
∂

∂t
ψ(x, t) = Hψ(x, t) (6.3)

where H is the so-called Hamiltonian operator which is a self-adjoint operator on
the Hilbert space and represents the energy; � is Planck’s constant divided by 2π.
Solving this Schrödinger equation is equivalent to finding the spectral decomposi-
tion of H. In the case of a discrete spectrum this amounts to finding eigenvalues
and eigenfunctions of the operator.

In this quantum mechanical context a unitary operator U represents a symmetry
if it commutes with the time evolution,

[e–itH/�, U] := e–itH/�U – Ue–itH/� = 0 . (6.4)

When the symmetry group is a Lie group of dimension r, the statement of
Noether’s Theorem, if interpreted appropriately, can be carried over verbatim:
there exist r constants of motion for the quantum system. Typically, these are the
quantum analogs of the respective classical conserved quantities. In analogy to the
classical case a Lie group symmetry in quantum mechanics can be used to solve
the equations of motion partially, in this case by employing complete reducibility of
unitary representations, i.e. the possibility of decomposing the unitary represen-
tation of the symmetry group into irreducible subrepresentations. The irreducible
subspaces are then invariant under the dynamics and one only needs to solve the
dynamics up to these subspaces.

In classical physics the presence of finite or discrete symmetry groups can be
used to reduce the phase space to a certain relevant subset which, however, is of
the same dimension as the phase space itself. Hence, the reduction of complexity is
very modest. In quantum mechanics, however, a finite or discrete, nonabelian sym-
metry group does have noticeable consequences. In that case unitary irreducible
representations and hence the invariant subspaces (typically) are of dimension
greater than one. This situation is in close analogy to that of a Lie symmetry group
and, in fact, a certain amount of regularity occurs in the dynamics although no
conserved quantity exists. For the associated classical system this means that it is
expected to behave “generically”; it may even be chaotic.

When a discrete symmetry group is present one often applies the procedure
of a “desymmetrization” to the quantum system i.e. a restriction to one irre-
ducible component. The reduced quantum systems are then expected to behave
quantum chaotically, if they are sufficiently complex. In particular, this is conjec-
tured to be the case when the associated classical system behaves chaotically [6].
The only symmetries that are exempt from desymmetrization are those that are
represented through anti-unitary operators, the most prominent example being
time reversal. The (anti-unitary) time reversal operator squares to (–1)2s, where
s ∈ {0, 1/2, 1, 3/2, . . . } is the spin quantum number characterizing the behavior of
the quantum system under rotations.
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The plan of this article is as follows. In Section 6.2 we introduce quantum graphs
and then, in Section 6.3, we summarize the precise definition of networks and
quantum graphs by specifying an appropriate abstract Cauchy problem. Subse-
quently, in Section 6.4 we identify symmetries and invariant subspaces. Section 6.5
contains an extension to quantum graphs with magnetic forces and, finally, in Sec-
tion 6.6 we summarize our findings.

6.2

Quantum Graphs

Typically, the configuration space of a physical system is a manifold (such that the
associated phase space is the cotangent bundle of that manifold). The Hilbert space
of quantum states then is that of the square integrable functions ψ on the con-
figuration manifold. The quantum Hamiltonian that appears in the Schrödinger
equation (6.3) is often of the form

H = (i�∇ + A)2 + V .

Here, A, V are suitable potentials representing forces that are applied to the system.
In the absence of magnetic fields, when A = 0, the magnetic Laplacian (i∇ + A)2

reduces to the positive definite Laplacian Δ = –∇2.
Obviously, via the Schrödinger equation the quantum dynamics are closely re-

lated to spectral properties of the Hamiltonian. Details of the latter are, however,
notoriously difficult to obtain. One approach, which plays a prominent role in the
field of quantum chaos, makes use of a trace formula. This relates the spectrum
of H to the periodic orbits of a classical dynamic system associated with the given
quantum system [7]. Usually, such a trace formula is an asymptotic relation that
is valid in the limit of short wavelengths (semiclassical limit). However, there are
a few exceptional cases in which the relevant trace formula is an identity. Lapla-
cians on flat tori or on manifolds of constant negative sectional curvatures are the
most prominent examples, in which the trace formula is essentially the Poisson
summation formula or the Selberg trace formula [8], respectively.

Quantum graphs were introduced by Kottos and Smilansky [9] to provide exam-
ples for the above setting in which the trace formula takes a particularly simple
form, while the spectrum of H is still sufficiently complex. In particular, in ex-
tensive numerical calculations it was found that the distribution of eigenvalues in
quantum graphs is the same as that of the eigenvalues of random hermitian ma-
trices (with respect to appropriate probability measures i.e. the Gaussian orthog-
onal, unitary, or symplectic ensemble). Such behavior is generally viewed as one
essential characteristic of quantum chaos, since it is usually observed in quantum
systems whose classical counterparts show chaotic dynamics. Therefore, quantum
graphs have since become popular models in the field of quantum chaos, in which
a central issue is to identify and understand fingerprints of classical chaos in the
associated quantum systems (see [10]). For example, recently quantum graphs have



186 6 Symmetries in Quantum Graphs

been among the first model systems in which the random matrix behavior of eigen-
value statistics has been confirmed analytically to a certain extent by making ex-
tensive use of the trace formula [11]. In another application of the trace formula,
Gutkin and Smilansky were able to answer the question “Can one hear the shape
of a graph?” [12]2). In order to solve this inverse problem they identified a class of
quantum graphs that are uniquely characterized through their spectra.

In this context, a quantum graph is usually a finite metric graph (a network)
equipped with a suitable self-adjoint realization of the differential Laplacian, such
that the Hamiltonian is H = Δ. Here, for convenience, the value of Planck’s con-
stant is set to � = 1. Thus, the network is viewed as a caricature of a manifold and
serves as a simplified model for the configuration space of a physical system as
it typically occurs in quantum mechanics. The trace formula for quantum graphs
relates the spectrum of H to the closed paths on the network. It thus appears that
the classical counterpart of the dynamics provided by a quantum graph is given
as a motion of a particle along the edges of the network, with nondeterministic
decisions taken at the vertices.

As noticed already in [15], quantum graphs can possess discrete symmetry
groups. For example, if some edges are of equal length a permutation of these
edges may be a symmetry. Since quantum graphs are generally expected to possess
typical quantum chaotic properties, in this article we identify situations in which
invariant subspaces of quantum graph Hilbert spaces arise, and to relate them
to symmetries. One aim is to identify cases in which no invariant subspaces can
occur. This question is also related to the inverse problem, since symmetries and
invariant subspaces would obstruct a unique specification of a quantum graph in
terms of its spectrum.

6.3

Energy Methods for Schrödinger Equations

We now want to discuss at an intuitive level what are the main ideas for the math-
ematical analysis of the Schrödinger equation on a network. In particular, we will
focus our attention on connected networks.

We will always consider a network as a (possibly infinite) set of vertices V :=
{vi : i = 1, 2, . . .} connected by edges chosen from a set E := {ej : j = 1, 2, . . .}. The
connections within the network are encoded in the incoming connectivity function
Γ+ : V → 2E, that expresses which edges ej ∈ Γ+(vi) are directed into the i-th
node, and in the outgoing connectivity function Γ–, defined analogously. These two
functions contain the complete information about the topological structure of the
oriented network (V, E). Further, all graph-theoretical features of the nonoriented
network (V, E) are encoded in the connectivity mapping Γ := Γ+ ∪ Γ–, since for

2) This problem is related to a famous general
question first addressed by Kac in [13] and
also discussed in [14].
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each i, Γ(vi) := Γ+(vi) ∪ Γ–(vi) is the set of all edges emerging from vi. We assume
throughout that the network is uniformly locally finite i.e. the number |Γ(vi)| of
edges emerging from the vertex vi is bounded from above by a uniform constant.

We also want to define a metric structure of the network, allowing edges to have
(possibly different) lengths �j. After rescaling we will, however, parametrize all
edges as intervals [0, 1].

Consider now on each of these edges the one-dimensional, time dependent
Schrödinger equation

i
∂

∂t
ψj(t, x) = –

1
�2j

∂2

∂x2 ψj(t, x)

where the function ψj denotes the wave function on the j-th edge ej. Observe that we
introduced the factor �–2

j in order to compensate the edge-dependent scaling. Our
aim is to give a rigorous mathematical meaning to this equation, if considered on
a network. To do that, one has to prescribe the transition behavior in the nodes. The
first (quite natural) assumption is that at each moment the wave functions ψj, ψ�
attain the same value (denoted by ψ(t, vi)), if the edges ej, e� meet in the node vi.
As a second condition we want to impose conservation of the quantum mechanical
probability current in each node. This can, for example, be realized by imposing in
each vertex vi nodal conditions∑

j∈Γ+(vi)

∂ψj

∂x
(t, vi) =

∑
j∈Γ–(vi)

∂ψj

∂x
(t, vi) . (6.5)

of Kirchhoff type.
Summarizing, the Schrödinger equation on a network (V, E, Γ) has the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i∂ψj(t, x)/∂t = –
(
1/�2j
)
∂2ψj(t, x)/∂x2 ej ∈ E, x ∈ (0, 1), t ∈ R

ψj(t, vi) = ψ�(t, vi) j, � ∈ Γ(vi), vi ∈ V, t ∈ R∑
j∈Γ(vi) ∂ψj(t, vi)/∂x = 0 vi ∈ V, t ∈ R.

(6.6)

There are several ways to investigate the above differential problem.
First, one can reformulate the system (6.6) as an abstract Cauchy problem{

idψ/dt(t) = Hψ(t) t ∈ R
ψ(0) = ψ0

(6.7)

in the Hilbert space L2(0, 1; �2(E)) of square integrable wave functions taking a value
in �2(E). That is, ψ(t) =

(
ψ1(t), . . . , ψm(t), . . .

)
∈ L2(0, 1; �2(E)) for all t ∈ R, a vector of

square summable wave functions defined over the edges of the network. Moreover,
the action of the Hamiltonian H is given by

Hψ := H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ψ1
...

ψm
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:= –

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/�21
d2ψ1
dx2

...
1
�2m

d2ψm
dx2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Notice that H does not map the whole space L2(0, 1; �2(E)) into itself i.e. it is an un-
bounded operator. In fact, we incorporate the boundary conditions into the domain
of H, which is a suitable subspace of H2(0, 1; �2(E)). Here H2(0, 1; �2(E)) denotes
the Sobolev space of twice weakly differentiable, square integrable functions.

More precisely, the domain of H has to be defined as the space of all functions
ψ ∈ H2(0, 1; �2(E)) that are continuous on the whole graph and satisfy the Kirch-
hoff condition (6.5) in the nodes. A direct computation shows that the operator
(H, D(H)) is self-adjoint and positive definite. In particular, iH generates a unitary
group on L2(0, 1; �2(E)), which we denote by eitH. That is, there exists a family eitH,
t ∈ R, of (linear, bounded) unitary operators on L2(0, 1; �2(E)) such that for all t, s ∈ R

eitH eisH = ei(t+s)H (6.8)

and such that the mapping

t �→ eitHx (6.9)

is continuous for all x ∈ L2(0, 1; �2(E)). For each initial value ψ0 ∈ L2(0, 1; �2(E)) this
group yields the solution of (6.7) in the form ψ(t, x) = eitHψ0(x).

The abstract Cauchy problem⎧⎪⎨⎪⎩ dψ
dt (t) = –Hψ(t) t v 0
ψ(0) = ψ0 ,

is formally obtained by dropping a coefficient –i from the first equation of (iACP).
In this way one obtains a parabolic system of heat equations over a network, whose
solution is given by the C0-semigroup e–tH, see [16,17]. By a C0-semigroup we mean
a family of bounded linear operators etH, t v 0, on L2(0, 1; �2(E)) such that condi-
tions (6.8)–(6.9) are only satisfied for t v 0.

It is known that the mathematical behavior of parabolic and Schrödinger differ-
ential problems is fundamentally different. Nevertheless, we will develop a theory
that permits to deduce symmetry properties of the system of linear Schrödinger
equations introduced above as an application of so-called energy methods3) that are
typical of parabolic problems.

The basic tool we will use is the following result, [18, § 5.2].

Theorem 6.2 Let Y be a closed subspace of L2(0, 1; �2(E)). Then the following assertions
are equivalent.

(a) The operators of the group eitH map Y into Y;

(b) The operators of the semigroup e–tH map Y into Y.

3) These are a class of results that allow one to
check a property of the evolution equation by
showing that a certain condition is satisfied
by the energy form.
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In other words, the subspace Y is invariant under the time evolution of the
diffusion problem if and only if it is invariant under the time evolution of the
Schrödinger equation.

Thus, it suffices to characterize those closed subspaces that are invariant under
the action of the semigroup e–tH in order to find a class of symmetries of the quan-
tum graph.

To this end we consider the space H1(0, 1; �2(E)) of weakly differentiable func-
tions and its subspace

V =
{
ψ ∈ H1(0, 1; �2(E)) : ψ is continuous in the nodes

}
. (6.10)

For this class of functions we introduce an energy form E : V ~ V → C by

E(ψ, φ) :=
∑
ej∈E

1
�2j

∫ 1

0

dψj

dx
(x)

dψ�
dx

(x)dx . (6.11)

Observe that

E(ψ, ψ) =
∑
ej∈E

1
�2j

∫ 1

0

∣∣∣∣∣∣ dψj

dx
(x)

∣∣∣∣∣∣2 dx ,

defines the energy of our system. For functions ψ that vanish in the nodes one easi-
ly sees that the value E(ψ, ψ) of the energy functional coincides with the expectation
value (Hψ, ψ) of the Hamiltonian H in the state ψ i.e. with the expected outcome
of energy measurements if the quantum system is prepared in the state ψ. More
precisely, a tedious computation shows that the Hamiltonian satisfies

D(H) = {ψ ∈ V : ∃ϕ ∈ L2(0, 1; �2(E)), E(ψ, φ) = (ϕ | φ) for all φ ∈ V}
Hψ := ϕ

i.e. it is the operator associated with E. By abstract methods going back to Kato and
Lions that are, for example, described in [19], one can prove that H is self-adjoint.

All invariance results for etH, and hence all symmetry properties of (6.6) present-
ed in this note, will be deduced from the following characterization.

Lemma 6.1 Consider a closed subspace Y of the space L2(0, 1; �2(E)). Denote by P the
orthogonal projection onto Y. The following assertions are equivalent.

(a) The solution ψ(t) of the abstract Cauchy problem (6.7) remains in Y for all initial
values ψ0 ∈ Y.

(b) For every ψ ∈ V the invariance condition Pψ ∈ V, and for all ψ ∈ Y, φ ∈ Y⊥ the
orthogonality condition E(ψ, φ) = 0 is fulfilled.

The proof of Lemma 6.1 is purely functional analytic. It is based on the self-
adjointness of the Hamiltonian and a result due to E.M. Ouhabaz, see [19, The-
orem 2.2]. Notice that if Y is invariant under the time evolution of the quantum
graph, by Lemma 6.1, the complement Y⊥ is also invariant.
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6.4

Symmetries in Quantum Graphs

Typical potential symmetry operations in quantum graphs are of the form

ψ �→ Uψ , (Uψ)j(x) :=
∑
e�∈E

Πj�ψ�(g–1x) (6.12)

where Π is a permutation matrix interchanging the edges and g is a measure pre-
serving map of the interval (0, 1). Hence (6.12) is the equivalent to (6.2) in networks.
This clearly is a unitary operator on the Hilbert space L2(0, 1; �2(E)), and is indeed
a symmetry if it commutes with the time evolution, see (6.4). A simple example,
which is a symmetry for every quantum graph, is given by choosing Π as the identi-
ty and g the orientation-reversing map gx = 1–x. In this case, consider the subspace
of L2(0, 1; �2(E)) consisting of functions that are invariant under U i.e. their com-
ponents ψj are even with respect to the reflection g. Then, since (6.4) holds, this
subspace is invariant under the symmetry U.

Often several symmetries are present, and the associated unitary operators
U1, U2, . . . form a group or, more precisely, they are operators of a unitary repre-
sentation of the symmetry group. This representation can then be decomposed
into irreducible subrepresentations. Since the unitary representation operators
commute with eitH, the time evolution respects the decomposition of the total
Hilbert space into the invariant subspaces.

In order to cover a larger class of examples we now approach the problem from
a different perspective, in that we aim to identify invariant subspaces directly. For
this purpose we first introduce a particularly relevant class of closed subspaces of
L2(0, 1; �2(E)) that can be constructed as follows. For a linear closed subspace X of
�2(E) consider

Y :=
{
f ∈ L2(0, 1; �2(E)) : f(x) ∈ X for a.e. x ∈ (0, 1)

}
. (6.13)

Thus, a function f ∈ L2(0, 1; �2(E)) belongs to Y if and only if f satisfies pointwise
the linear relation defined by X.

Denoting by K the orthogonal projection from �2(E) onto X, the orthogonal pro-
jection PK from L2(0, 1; �2(E)) onto Y satisfies(

PKf
)

(x) = K
(
f(x)
)

for almost every x ∈ (0, 1). (6.14)

Recall that orthogonal projections are self-adjoint, hence PK is an observable of
the system. It is also relevant to note that Y is isomorphic to L2(0, 1;Cd), if X is
finite-dimensional with dimension d. Thus, also in this context, finding symme-
tries helps to reduce the complexity of the system.

Whenever considering the above orthogonal projections and the energy form E
defined in (6.11), condition (b) of Lemma 6.1 reads

– PKψ is a continuous function over the network whenever ψ is continuous on
the network;

– E(PKψ, (I – PK)ψ) = 0 whenever ψ ∈ V.
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In the following these two conditions will be referred to as admissibility of PK and
orthogonality with respect to the lengths �j, respectively.

In the following, Ĩ and K̃ will denote the operators

Ĩ :=
(
(I+)T

(I–)T

)
and K̃ :=

(
K 0
0 K

)
(6.15)

where I+ and I– are the incoming and outgoing incidence matrices of the network,
respectively, describing its connectivity. That is, I+ is a (possibly infinite) matrix
satisfying I+

ij = 1 if ej ∈ Γ+(vi), and I+
ij = 0 otherwise; I– is defined accordingly

replacing Γ+ by Γ–. The following statement is [18, Theorem. 3.4].

Theorem 6.3 The projection PK is admissible if and only if the range of Ĩ is K̃ -invariant,
i.e., K̃ Range Ĩ ⊂ Range Ĩ.

Let L now be the diagonal matrix with entries �–2
j on the diagonal and consider

the sesquilinear form on L2(0, 1; �2(E)) defined as in (6.11). The following is [18,
Prop. 3.9].

Theorem 6.4 The orthogonality condition with respect to the lengths �j is satisfied, i.e.

E(PKψ, (I – PK)ψ) = 0 for all ψ ∈ V

if and only if the matrix L leaves the range of K invariant,

L Range K ⊂ Range K .

Thus, the following characterization of time evolutions leaving invariant pointwise
proportions is a direct consequence of the above results.

Corollary 6.1 Let K be an orthogonal projection onto a closed subspace of �2(E) and
define a closed subspace Y as in (6.13). Then the following assertions are equivalent.

(i) The solution ψ(t) of the time evolution (6.7) of the quantum graph belongs to Y for
all t ∈ R provided that the initial data ψ0 belongs to Y.

(ii) The lengths �j, the incidence matrices I+, I–, and the proportion matrix K satisfy
the conditions

K̃ Range Ĩ ⊂ Range Ĩ and L Range K ⊂ Range K .

Corollary 6.1 can be directly applied in several cases, reducing the investigation of
an (infinite dimensional) system of partial differential equations to checking that
two purely algebraic conditions are satisfied. As an easy, yet nontrivial, example we
mention the following.
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Example 6.1 Consider a finite oriented star, i.e. a graph with a single “central” node and
m outgoing edges of lengths �1, �2, . . . , �m. The projection PK is admissible if and only if
the vector = (1, 1, . . . , 1)T is either in Y or in Y⊥, as the matrices I+ and I– have range
span( ) and Cm, respectively.

Moreover, there exist nontrivial4) subspaces X with ∈ X or ∈ X⊥ such that
K̃ Range Ĩ ⊂ RangeĨ, if and only if at least two lengths in the graph are equal,
i.e. there exist i =/ j such that �i = �j.

We hence conclude that, on a finite star graph, nontrivial invariant subspaces of the kind
discussed above exist if and only if at least two edges have the same length.

6.5

Schrödinger Equation with Potentials

We now briefly discuss the generalization to Hamiltonians associated with the
forms Ẽ : V ~ V → C defined by

Ẽ(ψ, φ) = –
∑
ej∈E

1
�2j

∫ 1

0

(
–i

dψj

dx
+ ajψj

) (
–i

dψj

dx
+ ajψj

)
+ vj(x)ψj(x)φj(x)dx .

These correspond to a Schrödinger equation on a quantum graph with electric and
magnetic potentials vj, aj, respectively. Notice that we allow for different potentials
on different edges of the graph. We can extend the invariance results of the pre-
ceding section to this more general setting, which is also discussed in [20]. For
convenience, assume the potentials aj, vj of class L∞(0, 1;R) and L2(0, 1;R), respec-
tively, for all j. In fact, we only have to check the conditions of Lemma 6.1 for this
form. Again, one can prove that the operator H̃ associated with the symmetric form
Ẽ is self-adjoint. Thus, it can be considered as a new Hamiltonian and it generates
a unitary group, denoted by eitH̃.

In the statement of the following theorem L, A(x) and V(x) denote the diagonal
matrices with entries �–2

j , aj(x) and vj(x), x ∈ (0, 1), respectively.

Theorem 6.5 Let K be an orthogonal projection of �2(E) and define a closed subspace Y
as in (6.13). Assume the lengths �j, the incidence matrices I+, I–, the potential functions
vj, and the proportion matrix K satisfy the conditions

K̃ Range Ĩ ⊂ Range Ĩ, L Range K ⊂ Range K, as well as

A(x)Range K ⊂ Range K and V(x)Range K ⊂ Range K

for all x ∈ (0, 1). Then the solution ψ(t) of the Schrödinger equation with magnetic and
electric potentials on the quantum graph belongs to Y for all t ∈ R provided that the
initial data ψ0 belongs to Y.

4) That is, different from X = Cm and X = {0}.
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Proof We first have to check admissibility of the orthogonal projection PK associ-
ated with K. Let ψ ∈ Ṽ. By the theorem of Pythagoras

|ψ(x)|2 = |Kψ(x)|2 + |(I – K)ψ(x)|2 for all x ∈ (0, 1)

and therefore∑
ej∈E

∫ 1

0
vj(x)

∣∣∣(PKψ)j (x)
∣∣∣2 dx u

∑
ej∈E

∫ 1

0
vj(x)

∣∣∣ψj(x)
∣∣∣2 dx < ∞

since vj ∈ L2(0, 1) for all j. Similarly one shows that the assumption aj ∈ L∞(0, 1)
for all j implies integrability of the magnetic potential term. Thus, also due to the
inclusion K̃ Range Ĩ ⊂ Range Ĩ, the admissibility condition Pψ ∈ Ṽ follows. Fur-
thermore, since PK commutes with d/dx, due to the self-adjointness of P and V we
have

∑
ej∈E

1
�2j

∫ 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝–i
(
Pk

dψ
dx

)
j
aj((I – PK)ψ)j + aj(PKψ)j

⎛⎜⎜⎜⎜⎜⎝–i
(
(I – PK)

dψ
dx

)
j

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

= –i
(
(I – PK)LAPK

dψ
dx

| ψ
)

L2(0,1;�2(E))
+ i
(
ψ | PKLA(I – PK)

dψ
dx

)
L2(0,1;�2(E))

= 0

because, by assumption, LAPKRangeK ⊂ ker(I – K). Under the above assumptions
it can thus be shown that

Ẽ(PKψ, (I – PK)ψ) = 0

in a manner similar to that of Theorem 6.4. Again by Lemma 6.1 we conclude that
Y is left invariant by e–itH̃. q

6.6

Concluding Remarks and Open Problems

Example 6.1 has provided us with a simple model whereby we can verify that an
obvious symmetry of the network is preserved by solutions of the corresponding
Schrödinger equation. In that particular situation it is very easy to apply the criteria
we have introduced. But as a rule of thumb most common-sense symmetries can
be represented and analyzed in term of some invariant subspace of the state space.

To give a slightly more complex example than a star, consider a rooted complete
binary tree of finite depth. The left and the right subtree of the root are identical,
hence interchangeable. Thus the subspace of functions whose values on the right
subtree are the mirror image of the values on the left (i.e. functions symmetric
with respect to the root node), is an invariant subspace, i.e. a symmetry in the
sense of this article, which can easily be checked using the above characterizations.
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There are a lot more invariant subspaces to find, as there obviously are a lot more
symmetries in a complete binary tree.

Observe that strange phenomena occur when the graph fails to be locally finite.
For example, consider an (outward oriented) graph with infinitely many incident
edges. Since each function in V as in (6.5) is of class H1(0, 1; �2(E)), one has f(0) =
(f1(0), f2(0), . . .) ∈ �2(E), and due to continuity in 0, f1(0) = f2(0) = . . ., hence f(0) = 0.
That is, a function in the form domain V necessarily vanishes in the center of the
star. In particular, if the support of the initial data ψ0 of (6.7) lies in a single edge
ej of the infinite star, then the solution ψ(t) will also have support contained in the
edge ej only. This suggests that the energy form E with domain V in the phase
space L2(0, 1; �2(E)) does not lead to the correct solution Ansatz for the Schrödinger
equation on such quantum graphs and motivates one to consider weighted spaces
instead.

Further, infinite graphs are interesting from a spectral theoretic point of view.
While the free Schrödinger equation on the real line has a purely essential spec-
trum, it has a purely discrete spectrum on a finite network. Nevertheless, the
Schrödinger equation on an infinite network features essential spectrum and
eigenvalues alike, see [21, Sections 4–5].

Let us also mention that two noncongruent, isospectral graphs have been exhibit-
ed in [12]. The construction exploits the existence of a discrete group of symmetries
of a specific graph. This relates to the well-known question addressed by Kac, [13].
A more general theory linking discrete symmetries and isospectrality has recently
been announced by Band, Shapira and Smilansky in [22].

We also remark that, in the previous sections, we have restricted ourselves to the
most basic example of an energy form that is related to a Schrödinger operator.
However, the techniques can be applied to a variety of related problems, for exam-
ple, allowing nonlocal coupling of the edges, or different behavior at the nodes, like
an absorption term or nonlocal interactions. Most of these modifications have in
common that they do not change the domain of the energy functional, thus leading
to the same notion of admissibility as for our model case. On the other hand, the
form itself changes significantly, hence our interest then lies in the second condi-
tion which we above called “orthogonality”. Some of these extensions have been
investigated in [18].

A class of nodal conditions that does lead to the consideration of a different do-
main of the energy functional (and also a larger phase space) consists of dynamic
ones like

∂ψ
∂t

(t, vi) =
∑

j∈Γ+(vi)

∂ψj

∂x
(t, vi) –

∑
j∈Γ–(vi)

∂ψj

∂x
(t, vi) . (6.16)

These are, among others, motivated by the results concerning approximation of
shrinking thin domains, [23, 24]. A variational approach to such problems based
on energy methods has been performed in [25]: in fact, it can be shown that the
results on symmetry discussed in Section 6.4 also hold when the Kirchhoff-type
condition (6.5) is replaced by (6.16) (for example, whenever a star with a dynamic
condition in the central node is considered).
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Another interesting issue can be formulated as follows. Does a quantum graph ad-
mit local symmetries? Adopting the notation of Section 6.4, if we consider a family of
orthogonal projections Kx, x ∈ [0, 1], then we also have a family of closed subspaces
Xx of �2(E), x ∈ [0, 1]. If these families are constant, and hence we have a single
projection K, then we end up with the theory of global symmetries presented in
Section 6.4. In fact, it is possible to show that, if the subspace

Y := {f ∈ L2(0, 1; �2(E)) : f(x) ∈ Xx for a.e. x ∈ (0, 1)}

is invariant under time evolution of the quantum graph, then necessarily Xx ==
X. Thus, we cannot investigate this more general class of symmetries by means
of Lemma 6.1. Searching for local symmetries of a graph requires sophisticated
methods in order to determine the covariant derivative associated with a suitable
gauge field. This is work in progress.
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7

Distributed Architecture for Speech-Controlled Systems

Based on Associative Memories
Zöhre Kara Kayikci1), Dmitry Zaykovskiy1), Heiner Markert1), Wolfgang Minker,
Günther Palm

7.1

Introduction

Distributed speech recognition enables people to have easy and flexible access to
the full range of computer systems, without the need to be able to type or to be in
front of a computer. Around this objective, we have developed a distributed speech
recognition architecture that can easily be adapted to various speech-controlled sys-
tems. It can be divided into four parts: feature extraction, Hidden Markov Model
based subword unit recognition, associative memory based word recognition and
semantic parsing. In the architecture, the feature extraction part can be carried out
on a mobile device or on a server, depending on the application. The architecture
was designed by combining the advantages of distributed speech recognition and
associative memories such as flexible usage in different environments, handling of
ambiguities, and simple and fast incrementing of task vocabulary.

Starting in the early 50s, speech understanding made significant progress from
the isolated word recognizers to modern speaker-independent systems capable of
dealing with natural language. The rapid development of hardware and software
technologies during the last decades gave rise to such concepts as speech-to-text
processing, speech-controlled appliances, spoken language dialogue systems, and
speech-enabled services. Common to all these systems is the use of the human
voice for human–machine communication.

In the present work we focus on a wide class of applications involving remote ac-
cess to the robotic or information systems using speech. Among others, typical ex-
amples of such applications are remote home automation, pedestrian navigation,
or ticket-reservation systems. These are scenarios where the user has to operate
a device which is too weak to perform speech recognition itself and the paradigm
of remote speech recognition has to be employed. Our approach merges interdis-
ciplinary technologies from engineering science, communication technology and
neuro-informatics.

1) Corresponding authors.
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State-of-the-art automatic speech understanding systems are commonly installed
on powerful computers and make use of the Hidden Markov Models (HMMs),
a very flexible way of modeling speech data vectors of variable length, which are
typically used to model the speech signals for every word known to the system. In
particular, recognition systems based on HMMs are effective and allow for good
recognition performance under many circumstances, but suffer from some lim-
itations concerning increasing dictionary size and robustness to environmental
conditions. Starting from the late 1980s, HMMs and artificial neural networks
(ANNs) have been combined within a hybrid architecture and a variety of differ-
ent approaches have been proposed in the literature in order to overcome these
limitations.

An ANN operates by creating connections between many processing elements
like neurons. These neurons can be simulated by a digital computer. Each neuron
takes many input signals and produces a single output signal that is typically sent
as input to other neurons. The neurons can be fully or partly interconnected and
are typically organized into different layers. The input layer receives the input and
the output layer produces the output. Usually one or more hidden layers are used in
between. An ANN realizes a mapping between an input space and an output space,
which can be specified by learning from a finite set of patterns. Due to their pattern-
matching and learning capabilities, artificial neural networks have proven useful in
a variety of real-world applications that deal with complex, often incomplete data.
The first of these applications were in pattern recognition and speech recognition,
in particular.

Early approaches to hybrid speech recognition were based on ANN architectures
that attempted to emulate HMMs [1]. In some ANN/HMM hybrids, ANNs are
used to estimate the HMM state-posterior probabilities from the acoustic obser-
vations [2]. In other approaches [3], the ANN is used to extract observation feature
vectors for a HMM.

In contrast to these approaches, in the proposed architecture, HMMs are used
on the elementary phonetic level and the neural associative memories (NAMs) are
used on higher levels such as words and sentences. A NAM is the realization of
an associative memory in a single-layer artificial neural network. The proposed
architecture yields both the advantages of distributed speech recognition and of
artificial neural networks (ANNs).

In our contribution we concentrate on two aspects, which are different from the
classical systems. First, we will show how the generic architecture can be modified
to support remote speech processing. Secondly, we demonstrate how HMM-based
systems can be extended by NAMs.

The chapter is organized as follows. In Section 7.2 we briefly review the con-
ventional state-of-the-art automatic speech-understanding systems, provide in-
sights into the building blocks of our system and introduce the proposed sys-
tem architecture. The third section targets speech processing on mobile de-
vices. Considering the feature extraction process on handhelds we review the
required processing steps and discuss implementation issues. The results of ex-
periments with real mobile devices are also given there. Section 7.4 presents
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a speech recognition system based on associative memories. The system based
on HMMs for features-to-phonemes conversion and on Willshaw’s model of neu-
ral associative memory for phoneme-to-word mapping is introduced. Handling
ambiguities like unclear sequence of phonemes generated by Hidden Markov
Models and online learning of new patterns are also presented here. The follow-
ing section focuses on the extraction of the semantic meaning from recognized
text, i.e. words-to-semantic conversion. Unlike Willshaw’s simple model of as-
sociative memory from the previous section, the so-called spike counter mod-
el of associative memory is used for words-to-semantic conversion. Section 7.6
demonstrate the functionality of the architecture on some sample tasks. The
presented architecture is compared with Hidden Markov Models on word lev-
el for different speech corpora. Finally, the last section presents some conclu-
sions.

7.2

System Architecture

In order to understand the architecture of the proposed system, let us first consider
the structure of a generic speech-controlled system as shown in Figure 7.1. The
goal of a speech-controlled system is to initiate certain actions triggered by the
human voice. To make this possible, a multi-stage analysis of the spoken utterance
is performed most commonly as follows.

The first stage is the feature extraction. At this stage the digitalized speech sig-
nal is converted into a sequence of vectors carrying a transformed version of the
original data suitable for further processing. Feature extraction may be viewed as
a special form of dimensionality reduction, that is the methodology which allows
one to shorten the dimension of the classifier (speech recognizer in our case) input
without much loss in classification (recognition) accuracy.

Figure 7.1 Generic architecture of a speech-controlled system.
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At the second stage the sequence of feature vectors is mapped into a sequence of
words. This process is called automatic speech recognition (ASR) or ASR decoding.
It is commonly performed by searching for the most probable sequence of words
on the graph of all possible alternatives. The search graph is built using a language
model (which describes the probability of the given combination of words) and
a dictionary (which specifies how words are composed of phonemes). The optimal
path is found by applying the Viterbi algorithm, which scores the observed features
on the search graph by the acoustic model. The latter describes each phonetic unit
as Hidden Markov Models (HMMs) [4]. This type of system attempts to match
subword units, words and sentences in one step.

The final stage of the speech understanding process is semantic parsing. Here
certain linguistic analysis is performed to extract the semantic content of the utter-
ance based on the recognized text. Commonly some set of predefined grammatical
rules is used. The results of this stage are data structures (queries) containing spo-
ken information in a form suitable for processing.

Figure 7.2 shows the structure of the speech-controlled system based on associa-
tive memories (AM), which we suggest. As in the case of generic architecture, first
the feature extraction takes place. However, the process of the features-to-text con-
version is now performed in two steps: subword unit matching and word match-
ing.

First of all the sequence of the feature vectors is mapped into a sequence of
some subword units. Generally these units can be any phonetic entities, for exam-
ple, phonemes, diphones, triphones or syllables. In order to perform features-to-
subword unit conversion we use the HMM-based ASR system as before. However,
the Viterbi search is performed not on the graph containing the possible combina-
tions of words, but on the graph having subword units as nodes. This can be easily
implemented if we define a new, trivial dictionary containing single subword units
as words. The language model should then describe the probability for a subword

Figure 7.2 Architecture of a speech-controlled system based on associative memories.
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unit combination to occur.2) The acoustic models undergo no change compared to
the former system.

The obtained sequence of subword units then serves as an input for the sec-
ond module – an associative memory-based subword units-to-words converter. This
word recognizer consists of a number of interconnected neural auto- and hetero-
associative memories. The associative memories are trained such that they reflect
the information contained in the original dictionary. Using the activation levels of
neurons, the recognizer outputs the most probable word for the given sequence of
phonetic units.3) The detailed procedure is described in Section 7.4.2.

The sequence of words generated by the word recognizer is forwarded to the
semantic parser, which is also built on using the neural associative memories. In
this case the neural associative memories store the information concerning the
language model and syntax. After parsing, the system is able to assign the rele-
vant recognized words to the task-specific categories like color, date, destination,
action, etc. Using such category-value pairs allows the initiation of the required
actions.

The proposed system architecture uses a speech-understanding engine based on
the associative memory. However, contrary to the previous case the overall setup is
now distributed (see Figure 7.3), by spreading over the client and the remote server.
The following will give a short description of the system.

First, the speech signal is captured on the client device. Then the acoustic fea-
tures are extracted from the speech signal. Finally, the compression of the feature
vectors takes place. This results in a bit-stream to be packaged and transmitted.
Since via transmission over the wireless channel some data can be corrupted, some
mitigation algorithm against the effect of transmission errors has to be applied on
the server side [5].

Figure 7.3 Architecture of a distributed speech-controlled

system based on the associative memories.

2) Note that this language model and dictionary
are not the same as those pictured in
Figure 7.1.

3) Since the sequence of words produced on
the previous step is generated without use
of a language model, it can generally be
grammatically inconsistent.
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7.3

Feature Extraction on Mobile Devices

Our system adopts a client-server architecture. However, the successful deploy-
ment of distributed speech-controlled systems is only possible in practice, if both
the client and the server assume the same standardized procedure for the feature
extraction and feature compression. A number of such standards [6–9] was devel-
oped by the Aurora working group established within the European Telecommuni-
cations Standards Institute (ETSI). In our system we use the front-end conformed
with ETSI standard ES 201 108.

7.3.1

ETSI DSR Front-End

The ETSI standard ES 201 108 defines the feature extraction algorithm, feature
compression algorithm, the mechanism for transmission error protection and the
feature packaging process [6].

7.3.1.1

Feature Extraction

After capturing the analog speech signal the relevant features have to be extract-
ed. The waveform itself is not suitable for speech recognition since it is rather
redundant. In order to obtain the feature vectors, the signal is divided into sections
(frames) of several milliseconds. For each frame a spectral analysis is performed.
This results in a parameteric representation of the spectral content of the signal.

The process of feature extraction is shown in Figure 7.4. First, the speech signal is
captured from the devices’ microphone as a 8 kHz 16 bit/sample data stream. After
segmenting the speech data into overlapping frames of 25 ms, an offset filter is
applied to remove the constant offset. For each frame, the logarithm of the energy
is computed. Then the high-frequency signal components are emphasized using
a digital filter. For better spectral resolution the frame is weighted with a Hamming

Figure 7.4 Detailed architecture of the client side.
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window. In order to compute the magnitude spectrum of the frame, an FFT of
length 256 is applied. The mel filter block divides this spectrum into 23 equidistant,
weighted, half-overlapping channels in the mel frequency domain using triangular-
shaped frequency windows in the range between 64 Hz and 4000 Hz. A nonlinear
transformation is applied by taking the logarithm of the 23 channel-values. The
obtained values are subject to a discrete cosine transform resulting in 13 cepstral
coefficients. The cepstral coefficients together with the log-energy value build up
a feature vector.

7.3.1.2

Feature Compression

After feature extraction, one second of the speech is represented by 100 feature
vectors, while a single feature vector consists of 14 elements described by four bytes
each. Hence the feature vectors can be represented by 44.8 kbit s–1, which already
constitutes an impressive reduction in the data rate compared with 128 kbit s–1 for
the raw speech signal. However, further reduction of the data rate is possible by
means of the split-vector quantization algorithm.

The principle of two-dimensional vector quantization is illustrated in Figure 7.5.
Prior to the actual quantization a set of reference points (codebook) has to be de-
fined in order to quantize some point from the two-dimensional space and the
distance to each reference vector is computed. The closest reference point will be
used instead of the original vector. Note that, if the codebook is also known on the
server side, it is sufficient to transmit only the index of the corresponding refer-
ence point. This means that with a codebook of size 64, quantization of a couple of
cepstral coefficients is possible using only 6 bits. The standard ES 201 108 specifies

Figure 7.5 Vector quantization based on space clustering.



204 7 Distributed Architecture for Speech-Controlled Systems Based on Associative Memories

codebooks of size 64 for cepstral coefficients (c1, c2) . . . (c11, c12) and of size 256 for
the pair (c0, ln E). The final data rate constitutes 4800 bit s–1.

7.3.2

Implementation of the Front-End on Mobile Phones

As a framework for the implementation of the client side we have used the Java
Platform Micro Edition also known as Java ME. Even though there are some alter-
natives, for example, Symbian OS, Windows Mobile, .NET Compact Framework,
de facto Java ME is the only solution for the development of software for consumer
cell phones.

In addition to the fact that Java by itself is meant to be a slow programming lan-
guage, the development of the application for mobile phones is further challenged
by the limited resources of the handhelds. The most critical issues are the small
amount of available memory and the slow processors of cellular phones. In this
regard the use of multi-threading and fixed-point arithmetic has been shown to be
beneficial.

7.3.2.1

Multi-Threading

The client front-end shown in Figure 7.4 consists of two main blocks: feature ex-
traction and encoding. Both modules can be launched either sequentially (single-
threading) or in parallel (multi-threading).

In a single-threaded architecture the encoder waits until all the feature vectors
are computed and saved in a buffer. Thus, for long utterances, the feature buffer
may become very large. In the case of multi-threading the encoder works in parallel
with the feature extraction block and processes the feature vectors upon availability.
This might require some additional processing power, but saves memory usage
considerably.

7.3.2.2

Fixed-Point Arithmetic

In general, mobile phone processors do not have a floating-point unit. This im-
plies that the operations with real values are software-emulated, which leads to an
additional processing time.

This problem can be resolved by using fixed-point arithmetic, where a fixed num-
ber of digits before and after the radix point is used. Since most programming lan-
guages, including Java, do not support a native data type for fixed-point real values,
this has to be simulated by using integer values. The floating-point values are first
scaled up by a certain factor, then the remaining fractional part is truncated and
the time-efficient operation on the integer values is performed. Finally, the result is
scaled down. Example: 12.345+0.11|·100 and truncate⇒ 1234+11 = 1245|·1/100 ⇒
12.45. Even though this may lead to a precision loss, our experiments revealed that
the use of fixed-point arithmetic for the feature extraction does not effect recogni-
tion accuracy.
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7.3.2.3

Processing Time on Real Devices

In order to assess the processing time required for feature generation we have
performed a number of tests, where the same spoken utterance was processed by
different mobile appliances. Some of the results are presented in Table 7.1. The
processing time is expressed as a real-time factor – the time required for the pro-
cessing divided by the utterance duration.

As it is evident from the table the multi-threaded architecture requires only mi-
nor additional processing time. It is also clear that on most of the tested devices
the use of the fixed-point arithmetic can significantly shorten the processing time
(by a factor of four in some cases). This makes real-time feature extraction possi-
ble on devices like the Nokia N70 or the Nokia 6630. It is also interesting that on
some Nokia phones the front-end using floating-point arithmetic outperforms the
one with fixed-point. This may be explained either by an installed FPU on those de-
vices or our fixed-point algorithm has some operation being computationally costly
on these devices.

Table 7.1 Time required for feature extraction (FE only) and

compression (FE+VQ) related to the utterance duration.

Name of cellular phone FE FE+VQ

only Single-Thread Multi-Thread

Float Fixed Float Fixed Float Fixed

Nokia 6630, N70 1.3 0.7 1.8 0.9 2.0 1.4
Nokia E70 1.3 0.9 1.8 1.2 1.9 1.3
Nokia 7370 1.2 2.7 1.6 3.7 1.7 3.8
Nokia 7390 0.9 1.6 1.3 2.2 1.4 2.3
Nokia 6136, 6280, 6234 1.1 2.2 1.5 3.0 1.5 3.1
Siemens CX65, CX75 3.1 2.1 4.4 2.7 5.0 3.8
Sony-Ericsson W810i 7.9 2.0 12.5 2.9 13.4 3.1

7.4

Speech Recognition Systems Based on Associative Memory

Unlike conventional back-end processing of speech recognition, the feature for
word conversion on the remote server are split into two parts as shown in Section 2;
features to subword units (such as context-dependent phonemes, syllables) conver-
sion and subword units to words conversion. The features to subword units con-
version is performed by Hidden Markov Models (HMMs) [4], a statistical speech-
modeling method, whereas the subword units to words conversion is done using
neural associative memories (such as Willshaw’s model) [10]. The last part of the
speech recognition system is a parsing process in which word sequences are ana-
lyzed with respect to a set of grammar rules extracting the semantic information of
spoken commands, which can then be used in control systems. The speech recog-
nition system also has ability to handle ambiguities at the subword unit and word
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levels due to the fault-tolerance of neural associative memories. Further learning of
new command words in real time is possible by adjusting the synaptic connections
in the associative memories accordingly, given that the HMMs generate a plausible
subword-level representation for the new command word.

7.4.1

Features to Subword Units Conversion using HMMs

Given a sequence of feature vectors, the next stage in speech understanding is map-
ping between the sequences of feature vectors and the underlying sub-symbol se-
quences (such as context-dependent phonemes or syllables). This is implemented
using HMMs. For a given sequence of feature vectors, the subword unit recogni-
tion system should determine the best sequence of sub-symbols that maximizes
the a posteriori probability:

argmax
S

{P(S|O)} . (7.1)

Using Bayes’ Rule, (7.1) can be written as

P(S|O) =
P(O|S)P(S)

P(O)
, (7.2)

where S is the sequence of sub-symbol models and O is the sequence of feature
vectors. The first term in (7.2), P(O|S), is generally called the acoustic model, as it
estimates the probability of a sequence of acoustic observations. The second term,
P(S) is commonly referred to as the language model, describing the probability as-
sociated with a postulated sequence of sub-symbols [4].

7.4.1.1

Acoustic Models

In acoustic modeling, each sub-symbol is modeled with a HMM using a three-state
left-right topology with no skips, shown in Figure 7.6.

The output probability is specified by a Gaussian distribution [4]. For this study,
context-dependent phonemes (such as triphones) are used as basic acoustic mod-
els. While generating context-dependent phoneme (triphone) models, monophone
HMMs are first created and their parameters are estimated with the flat-start
Baum–Welch reestimation strategy [4]. The models are then cloned to yield the
context-dependent phoneme models which are defined as pL – p + pR, where pL

is the phoneme preceding p and pR is the phoneme following p. Based on this

Figure 7.6 Left-right three-state HMM. aij is

the transition from state i to state j and bj(ot)
is the output probability of being in state j at

time t.
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definition the first state of a HMM represents the transition from pL to p, its
middle state represents the center of p and its last state represents the transition
from p to pR. Due to insufficient data associated with many of the triphone states,
the states within triphone models are then tied to share data to make robust pa-
rameter estimates using the Baum–Welch re-estimation strategy [4]. At the last
stage of the triphone-model generation, the output distributions of the HMMs are
approximated by eight Gaussians per state.

7.4.1.2

Language Model and Dictionary

The goal of the statistical language model is to provide an estimate of the probabil-
ity of a subword unit sequence:

P̂(w1, w2, ....., wm) =
m∏

i=1

P̂(wi|w1, ...., wi–1) . (7.3)

However, it seems to be impossible to reliably estimate the conditional probabilities
for all sequence lengths in a given language. Therefore, n-gram language models,
which predict each symbol in the sequence given that its n – 1 predecessors, are
used. However, even n-gram probabilities are difficult to estimate reliably. Hence,
in practice, the bi-gram or tri-gram models are applied.

A subword unit recognizer also requires a dictionary which contains an entry for
each subword unit and a corresponding triphone-level transcription.

The most probable sequence of subword units is obtained by using a Viterbi
search on the recognition network compiled from the language model, the dictio-
nary and a set of acoustic models [4]. This sequence is then forwarded to the next
stage where subword units to words conversion is performed.

7.4.2

Subword Units to Words Conversion using Neural Associative Memory

In this sub-section, we will introduce a neural associative memory-based approach
to the subword units to words conversion. In this approach a subword unit se-
quence generated by HMMs is applied to the architecture composed of a number
of binary neural associative memories to retrieve the best matching word sequence.

7.4.2.1

Neural Associative Memories

An associative memory is a system that stores patterns and associations between
pairs of patterns, which can be represented as vectors with binary components [11].
A neural associative memory is the realization of an associative memory in a single-
layer artificial neural network, where neurons are interconnected by binary synap-
ses [12, 13]. In this framework, Willshaw’s model, shown in Figure 7.7, is used as
the basic architecture of binary neural associative memories [10, 14].

In heteroassociative memories, a mapping m : x → y is stored. This is called pattern
mapping, where x is the input pattern and y is the content (output) pattern. The
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Figure 7.7 Willshaw’s model of binary neural associative memory.

patterns need to be sparsely coded binary vectors in which the number of 1s is very
low in comparison with the pattern vector length. The pattern activation ak for the
k-th pattern vector is

ak =
∑

j

xk
j . (7.4)

By using the sparse coding scheme, a larger number of memory patterns can be
stored since the patterns do not have too much overlap. The set of pattern pairs
{(xk, yk), k = 1, ......, M} is stored in a binary memory matrix by using the Hebbian
learning rule [15]:

wij =
M∨

k=1

xk
i yk

j , (7.5)

where M is the number of patterns, xk is the input pattern, yk is the output pat-
tern and wij corresponds to the synaptic weight of the connection from neuron i in
the input population to neuron j in the address population. In (7.5), each synaptic
weight wij in the matrix memory is set to 1 if xi (input) and yj (output) units are
simultaneously active in the presentation of at least one pattern pair (xk, yk) [11].
In the case of autoassociative memory, the address pattern is assumed to be equal
to the corresponding content (output) pattern. Such memory models can be used
for pattern completion. The idea of pattern completion is that a noisy or incom-
plete version of a stored pattern should be completed to a pattern, which has been
previously stored. The patterns are stored using (7.5), where yk

j is equal to xk
j . For

retrieval of content patterns, we will use the so-called one-step retrieval strategy
with threshold:

yt
j = 1 ⇐ (Axt)j = Θ , (7.6)

where the threshold Θ is set to a global value and y is the content pattern. A special
case of this strategy is the Willshaw’s strategy, where the threshold is set to the
activity of the input pattern given.
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7.4.2.2

The Neural Associative Memory-Based Architecture for Word Recognition

The architecture proposed for the conversion of subword units to words uses the
neural associative memories. Given a subword unit sequence from HMMs, its task
is to generate a sequence of the best matching words. The architecture consists of
one auto- and four heteroassociative memories that are connected via hetero- and
autoassociative connections. Figure 7.8 provides an overview of the architecture.
Each box in Figure 7.8 denotes a binary associative memory.

The memories used in the architecture are based on subword units, such as
context-dependent phonemes or syllables, and the words are processed in the ar-
chitecture using their subword unit representations. The type of subword unit used
in the architecture depends on the size of the vocabulary. The memory usage of the
architecture is proportional to the number of subword units.

The memories used in the architecture are given as follows.
HM1. This heteroassociative memory is the input area of the architecture. It

stores the subword units columnwise by using binary sparse representations. The
memory is a matrix of dimension L ~ n, where L is the length of the input vector
and n is the number of subword units. During retrieval, the memory activates the
subword unit received from HMMs and represents it to the architecture.

HM2. This is the same as the memory HM1, but it activates the subword unit
that is currently expected by the architecture with respect to the subword unit and
word hypothesis recognized in the previous step.

HM3. This heteroassociative memory is a matrix of dimension n ~ n and stores
the subword units which typically follow each other with respect to the words in
the vocabulary. Given an input subword unit, its output is a list of subword units
that typically follow that specific input.

These three heteroassociative memories work together as a subword-unit recog-
nizer by summing up their outputs and applying a global threshold. In this way, the
input subword unit received from the HMMs may be corrected by using contextual
internal information given by the architecture. In the subword-unit recognizer the
total weight of the memories HM2 and HM3 equals the weight of HM1.

HM O. This is a memory that represents the output of the subword-unit recog-
nizer consisting of HM1, HM2 and HM3.

DL. Its structure is the same as that of HM1. Its task is to hold a list of subword
units that have been processed up to the current step.

Figure 7.8 Neural associative memory-based architecture

for the subword units to words conversion. Each box is

an associative memory. The dashed arrows denote auto-

associative and solid arrows denote hetero-associative

connections.
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HM4. This memory is a matrix of dimension n ~ m, where m is the length
of the word code vector. It stores heteroassociations between subsymbolic rep-
resentations and the corresponding binary sparse word vectors. It is responsible
for generating word hypotheses with respect to the subword units activated by
DL.

AM5. The autoassociative memory is a matrix of dimension n ~ n and stores the
words in the vocabulary using their subsymbolic representations. During retrieval
it predicts the subword unit expected in the next step with respect to the input
word(s) and subword unit(s) in the current step.

7.4.2.3

The Functionality of the Architecture

The architecture can be split into three modules: a subword-unit recognizer con-
sisting of the memories HM1, HM2 and HM3, a word recognizer consisting of
the memories DL and HM4 and a next-subword-unit predictor that is the memory
AM5.

Given a sequence of subword units to the architecture, then each time, a sub-
word unit from the input sequence is first presented to the memory HM1 in the
subword-unit recognizer. The other memories HM2 and HM3 do not receive any
input at the beginning of each word. Therefore, they do not activate any output
neurons, consistent with the fact that no expectation can be generated in the be-
ginning of the word-recognition process. Afterwards, the subword-unit recognizer
generates the output subword unit.

The output of the recognizer is then forwarded to the memory DL in the word
recognizer, where it is stored as the recognized subword unit. The subword unit(s)
stored in DL is then sent to the memory HM4 which retrieves the words that best
match the subword units stored in DL.

The subword units generated by the subword-unit recognizer and the word hy-
potheses generated by the word recognizer are forwarded together to the next-
subword-unit predictor AM5 which predicts the subword unit(s) expected in the
next step with respect to the word and subword-unit inputs.

In the same way, the next subword unit in the input sequence is processed in
HM1, whereas HM2 activates the subword units from the next-subword-unit pre-
dictor and the memory HM3 activates its output subword units through a back-
propagated connection from the subword-unit recognizer. The outputs of HM2
and HM3 represent the expectation generated by the architecture and this infor-
mation may be used to correct erroneous input subword units that HMMs did not
correctly recognize.

The iterations for the current word end when a small pause (silence) is detect-
ed in the input subword unit sequence. Note that the architecture cannot decide
a unique word representation for a given input-subword-unit sequence that the
HMMs did not correctly recognize. In this case, a superposition of word hypothe-
ses matching the input sequence is generated by the architecture. After recognition
of each single word in the input stream, it is forwarded to the network that is re-
sponsible for words to semantics conversion (see Section 7.5).
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7.4.2.4

Learning of New Words

The system is able to learn new words without further training the HMMs or
changing the structure of the system. The online learning performance of the sys-
tem strongly depends on the performance of the HMMs that need to be trained
with enough speech data and also need to have a comprehensive language model
in order to allow for generating a plausible subword-unit representation for novel
words. In one application [16], learning a new word is initiated by a sentence of
the type “This is cup”, where “cup” is the word that has to be learned. “This is”
arouses the system to learn a new object word. During learning of a novel word,
the memories HM1 and HM2 in the subword recognizer are not updated, whereas
HM3 is updated according to the subword-unit representation of the novel word.
To store the new object word in HM4 and AM5, a new binary vector representation
is randomly generated and stored in the associative memories.

7.5

Words to Semantics Conversion using Associative Memory

In order to extract the semantics from the stream of words that the system recog-
nized using the methods introduced in the previous sections, a network of neural
associative memories is used. Instead of Willshaw’s model of associative memory,

Figure 7.9 Overview of the neural network for semantic

processing. Each box corresponds to one autoassociative

memory. The memories are connected to each other via

heteroassociative connections (not shown, see Figure 7.10).

In each box the kind of information that the corresponding

memory processes is displayed, for example, A6-S is dealing

with subject words.
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Figure 7.10 Overview of the networks connectivity. Each straight

arrow corresponds to a heteroassociative connection between

two autoassociative memories. Each circular arrow corresponds

to short-term memory mechanism (see text for details).

a slightly version is used, the so-called Spike Counter model. It enhances Will-
shaw’s model with the possibility of activating and dealing with superpositions of
patterns, a feature that we use to represent ambiguities. For a detailed explanation
of the model underlying the semantic parser, see the appendix in [16].

The language model in its current form is implemented using a total of 17 as-
sociative memories that are heavily interconnected with heteroassociative connec-
tions. Figure 7.9 gives an overview of the model’s architecture and its connectiv-
ity. Each box depicts one associative memory, each straight arrow corresponds to
a heteroassociative connection and circular arrows denote strong autoassociative
feedback from one memory onto itself. Strong autoassociative feedback is gener-
ally used to keep patterns active longer than the input is available to the network
(short-term memory).

The model shown in Figure 7.9 consists of two main parts; namely, the spoken
word memory and the language parsing part. The spoken word memory just keeps
track of the words that were input into the system in order to be able to look up
later exactly what the input words were. The language parser is used to parse the
input words with respect to a given grammar.

7.5.1

Spoken Word Memory

The spoken word memory, consisting of areas A1, S1 and S2, keeps track of the in-
put word sequence. The connectivity of that area is pretty simple, A1 projects down
into S1, S2 projects into S1. A1 serves as input area, it represents the output of
the word-recognition software. S2 holds a fixed, arbitrary sequence of fixed length
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(10 elements. See the appendix of [16] for a description of how sequence memories
work) and the projection from S2 to S1 possesses fast hebbian synapses. If a word
enters A1, it is associated with the sequence element that is active in S2 at the giv-
en moment through the fast synapses between S1 and S2. If the next input word
enters A1, S2 is switched to the next sequence element and again an association
is stored in the heteroassociative connection between S1 and S2. In the beginning,
a dedicated start state is activated in S2. This allows the recall of the input words
by activating the corresponding sequence elements in S2 while no input is active
in A1. However, recalling the input is possible only for a certain amount of time,
because the synapses between S1 and S2 also forget what they learned in several
simulation steps.

7.5.2

Language Parser

The language parsing part of the network mainly consists of the areas A4-G, A6-T
and A6-XX. There are additional fields drawn in grey in Figure 7.9. They serve sev-
eral control tasks, that is activating or inhibiting specific areas at certain times to,
for example, switch sequences to the next state, initialize the S2 sequence memory
in the word memory with its starting state, etc.

Area A4-G holds the grammar information. For each possible sentence type,
a sequence of the corresponding word types is stored. There are not many sen-
tence types in the current implementation, we have a total of 10 sentence types
(e.g. SPO or SPAOO, standing for “subject predicate object” or “subject predi-
cate adjective object1 object2”, respectively). However, expanding this to more sen-
tence types is not problematic, although the memory requirements obviously in-
crease.

While the input is entered into the word memory, A4-G continuously compares
the entering words with respect to their possible grammatical functions with its
sequences. To do this, A4-G follows all sequences that match the input in parallel
(with a superposition of several active sequences). This is realized by a heteroas-
sociative projection from S1 to A4-G. If a subject word (e.g. bot) is active in S1, it
projects onto subject word representations in A4-G. Together with the current state
of the grammatical sequence, A4-G can decide which sequences match the input.
In the beginning, A4-G is in a starting state that all sequences have in common.
If, for example, a subject is now entering S1, A4-G switches into a superposition of
all sequences that start with a subject. If now a predicate is entered, A4-G activates
only those sequences that start with a subject (these are the only ones that are ac-
tive) followed by a predicate, and so on. If at the end of the input stream there is
only one unique sentence type left, the sentence can be uniquely interpreted. Oth-
erwise, there is either no valid interpretation if there is no activity left in A4-G (the
sentence was grammatically incorrect) or a superposition remains active in A4-G
(the sentence was ambiguous on a grammar level, e.g. “bot put orange orange or-
ange”, which could either mean “bot put orange orange (to) orange” or “bot put
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orange (to) orange orange”. Note that the simplified grammar for testing does not
use any prepositions).

A6-T stores the recognized sentence type after a sentence has been heard. If A6-T
has a unique pattern activated (e.g. SPO), the system detects an SPO-type sentence
and starts assigning the words from the input to the correct output boxes.

The A6-XX memories hold the final output of the system. After a sentence has
been successfully parsed, A6-S holds its subject, A6-P its predicate, A6-A1 the ad-
jective of the first object, A6-O1 the first object and A6-A2 and A6-O2 hold the
second adjective/object pair, if applicable. Note that in our current grammar, only
one attribute per object is allowed.

Further processing units can now use the sentence type available in A6-T togeth-
er with the corresponding words in A6-XX to plan further actions.

7.5.3

Ambiguities

The language model is able to deal with ambiguities on the grammar and the
single-word level. Section 7.5.2 gave an example for an ambiguity on the gram-
mar level that cannot be resolved. Consider, however, the sentence “bot put or-
ange orange orange plum”. This sentence is grammatically ambiguous until the
last word “plum” is heard, meaning that no unique grammatical interpretation is
possible until the last word enters the system. The complete sentence however is
of “SPAOAO” type meaning “bot put (the) orange orange (to the) orange plum”.
The system solves the ambiguity by keeping all possible states active concurrently
in a superposition in the grammar area A4-G.

The same mechanism can be applied on the single-word level. If the word recog-
nition network was not able to decide for a unique interpretation of one word, it
forwards a list of alternatives to the language parser. These alternatives are activated
concurrently as a superposition in A1 and S1. They project onto all possible word
types in A4-G and all possible interpretations are processed in parallel due to the
superpositions. If at the end a unique interpretation is remaining, it is activated as
final output. If this is not possible, a superposition of all possible interpretations is
kept. In that case, additional contextual input from other parts of the system can
be used to resolve the ambiguities later.

For example, the sentence “bot show/lift green wall” (with an artificial ambigu-
ity between “show” and “lift” in the input) is interpreted as “bot show green wall”
because a wall is not liftable. Similarly, the sentence “bot lift/put green apple” is
interpreted as “bot lift green apple” (put needs two object words) and “bot lift/put
apple plum” is interpreted as “bot put apple (to) plum” (lift needs only one object).
Obviously, the sentence “bot lift/put orange orange” cannot be disambiguated, be-
cause “orange” can refer to either an attribute or an object.
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7.5.4

Learning of New Objects

It is possible to add new object words to the language model. If a sentence of the
type “this is XX” is recognized by the system, where “XX” is a novel word, new
object word representations are generated in areas A1, S1, A6-O1 and A6-O2 while
the sentence is processed. This happens automatically: As soon as “this is” is un-
derstood, a special learn signal is activated in all areas dealing with object words.
If the input now does not match well with a previously learned object word, the
system considers this as a new input and generates a matching new pattern. After-
wards, corresponding heteroassociative connections are updated. After successful
parsing of a “this is XX”-sentence, the new object word can be used as any other ob-
ject word, for example the system can successfully parse sentences like “bot show
XX” or “bot put red XX apple”.

7.6

Sample System/Experimental Results

The proposed speech recognition architecture can be applied to various speech-
controlled systems either working in a distributed environment or not. In this
section, we present two sample systems. In the first one, speech is captured via
a mobile phone and features are extracted and transmitted to a remote server to
recognize the spoken command, whereas in the other system, the whole speech
recognition process is implemented in one device.

In the first system, the user utters a single command word or word phrase, which
is a bus stop name, to a mobile phone and then the speech recognizer on the re-
mote server, correctly recognizing the command, implements the corresponding
task that is to send information about the spoken bus stop name from the remote
server to the user. Due to the single word commands, the grammatical parser part
of the speech recognition architecture is not used here. The system works on a set
of 279 German bus stop names, which originated from the Institute for Informa-
tion Technology, University of Ulm. The training set consists of 14 speakers, where-
as the test set contains 5 speakers. The speakers both in training and test sets speak
these 279 bus stop names. The number of word tokens in the test set is 1395 while
it is 3906 in the training set.

In the system, triphones are used as subword units. Therefore, a triphone recog-
nizer is designed by using HMMs, in which an acoustic model for each triphone is
generated and trained on a training set and a triphone-based simple-task grammar
is used [17]. The number of triphones is 1284 based on the training and test sets.
The dictionary contains an entry for each “triphone” such that the triphone and the
pronunciation are the same. The word-recognition architecture is then designed
based on triphones and the words are stored using their triphone-level transcrip-
tions.
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The designed system has been tested on the test set, yielding a word-recognition
accuracy of 98%. Compared with a HMM-based word recognizer, which achieves
99% word recognition accuracy, there is a slight difference between the present-
ed architecture and the pure HMMs. This difference can decrease using larger
word parts, such as syllables, instead of triphones and a more efficient language
model.

In the second system, the commands are simple english sentences like “bot lift
ball” or “bot put orange (to) red plum”. The system vocabulary consists of 43 words.
The speech data consists of 105 different sentences, spoken by 4 speakers, 70 sen-
tences of which were used for training and the remaining 35 sentences for testing.
The test set is a total of 504 words. Beside our training set, we also used TIMIT
training set without SA-type sentences [18]. In the architecture, the HMMs used
triphones as subword units and words were stored in the word recognizer using
their triphone-level transcriptions. To enable the learning of new words, a triphone-
level bi-gram language model is used based on TIMIT training and test sets and
our speech data. During the experiment on our test set, the proposed system recog-
nized 98% of the words, whereas the HMM-based word recognizer with 8 Gaussian
mixtures, recognized 96%.

For large-vocabulary continuous-speech recognition, a similar system to the pre-
sented one with a different language model was tested on TIMIT [18]. In com-
parison to an HMM-based triphone recognizer [19] achieving 91.9 ± 0.6% word
accuracy, this system obtained a promising result of 92.97% word accuracy.

7.7

Conclusion

In this chapter we have presented a distributed architecture for speech-controlled
systems based on HMMs and NAMs. The system works in a hierarchical man-
ner such that the speech vectors are first mapped to subword units like context-
dependent phonemes or syllables; at the next stage this subword unit sequence is
converted to a word sequence and the word sequence is finally parsed to obtain the
semantics.

Depending on the complexity of the task to be performed, the system can be
trained by using the subword units that are most convenient. For small vocabu-
laries, context-dependent phone-like units such as diphones or triphones can be
appropriate, whereas syllables can be used for large vocabularies. It is also impor-
tant to effectively choose the type of subword unit, due to the fact that it has a great
effect on memory usage. The computational complexity of the system is heavily
dependent on the size of vocabulary and the type of subword units.

We have also addressed the problems of handling ambiguities on the word lev-
el in case the user does not clearly speak a command, and also of learning new
command words during performance.

The proposed system can be readily used with a mobile device such as a mobile
phone. In this case, the feature extraction is done on the mobile device in the same
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way as in ASR systems. Then, the feature vectors are compressed and transfered to
a remote server to recognize spoken commands.

The system is also well-suited for adaptation to different tasks due to its architec-
ture where the associative memory-based modules are used on word and sentence
levels. The performance of the system is comparable with other systems such as
conventional HMM-based speech recognizers, but it has the advantages that pre-
processing can be done on mobile devices, the task dictionary can be enlarged by
learning during performance, and ambiguities can be transfered between modules
to be resolved at the most appropriate level.
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Machine Learning for Categorization of Speech Utterances
Amparo Albalate1), David Suendermann, Roberto Pieraccini, Wolfgang Minker

8.1

Introduction

As a result of accelerated technological development and, particularly, due to the
progressive advances in the field of automated speech recognition, first Spoken
Language Dialog Systems (SLDSs) emerged in the mid 1990s as a new, important
form of human-machine communication.

As their name suggests, SLDSs are interactive, voice-based interfaces between
humans and computers, which allow humans to carry out tasks of diverse com-
plexity (travel ticket reservations, bank transactions, information search or problem
solving, etc.).

The typical architecture of an SLDS [1] is depicted in Figure 8.1. Input acous-
tic vectors generated from the speech signal are first processed by an Automatic
Speech Recognizer (ASR), resulting in a raw text transcription2) of the input ut-
terance. Subsequently, the transcribed text is interpreted in a semantic analysis
block which extracts the utterance meaning in the form of an appropriate semantic
structure. This semantic representation is processed by the dialog manager which
also communicates directly with an external application, namely a database inter-
face. The dialog manager keeps control of the overall interaction progress towards
task completion. During this process, the user may be queried for confirmations,
disambiguations, necessary additional information, etc. Finally, the interaction re-
sult is presented to the user in the form of speech (text-to-speech synthesis or pre-
recorded prompts), text, tables or graphics.

Among the SLDS modules, speech recognition and semantic analysis play a de-
cisive role for global system performance [2]. In particular, this chapter deals with
the semantic analysis block, often referred to as natural language understanding. The
extracted semantics from each user utterance can be viewed as an internal knowl-
edge representation used (by the dialog manager) to trigger a certain action in the
context of a particular task [3].

1) Corresponding author.
2) Most probable sequence of words detected.
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Figure 8.1 Overview of an SLDS.

In first- and second-generation SLDS, frequently used in applications such as
banking and travel reservations, semantic analysis commonly relies on the def-
inition of semantic or case-frame grammars [4]. A semantic gramar formalism
provides a model for the sentence structure in terms of semantic constituents:
words or phrases. The semantic analysis decodes the text of an input utterance by
extracting the correspondences between the sentence constituents and their se-
mantic labels. For example, in the framework of a flight booking application, the
user utterance “I would like to fly from Munich to New York on July, 24th” may
be decoded into the following semantic sequence: <book>(airport-origin)(airport-
destination)(depart-day)(depart-month).

For the grammar implementation, two major tendencies exist: in a rule-based
approach, a set of grammar rules is manually defined for a specific task or ap-
plication. Rule-based methods provide the best performance for a restricted task
for which they are originally designed. However, these methods turn out to be
inflexible regarding their adaptation and portability to new application domains.
Alternatively, in data-oriented approaches, stochastic models are used, such as Hid-
den Markov Models [5], which automatically infer the model parameters from
training corpora of semantic representations. These techniques are more flexi-
ble and portable to different domains. Examples of systems using rule-based and
stocastically-based parsing principles are the ATR translation system from Japanese
to English (SL-TRANS) [6] and the AT&T-CHRONUS (Conceptual Hidden Repre-
sentation of Natural Unconstrained Speech) speech understanding system [7],
respectively.

However, third-generation SLDSs, deployed in applications dealing with prob-
lem solving, education and entertainment, have shown higher levels of complexity.
In this chapter, we focus on the problem-solving domain, in particular on auto-
mated troubleshooting agents. These agents are specifically designed to perform
customer care issues over the telephone in a similar way to human agents.

Today, natural language understanding is typically performed by a speech
recognition module followed by a speech utterance classifier. Such classifiers
are a sophisticated replacement of menu-based systems using dual-tone multi-
frequency (DTMF) [8] technology (. . . push 1 for billing, push 2 for sales . . . ) or
speech-recognition-based directed dialog (. . . you can say billing, sales, or. . . ). These
simple solutions are often impractical for several reasons.
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– In certain applications, the number of classes can be too large to be han-
dled in a single menu. Even a succession of menus hierarchically structured
would prove unwieldy with hundreds of classes, not to mention the bad-caller
experience when five or six menu levels are required to reach the correct rout-
ing point.

– Even when prompted with a clear menu, callers often describe the reason
why they are calling in their own words, and that may not be covered by the
rule-based grammar typically used with directed dialog systems.

– For complex domains, callers may not understand or be familiar with the
terms used in the menu. For example in response to the prompt: Do you have
a hardware, software, or configuration problem?, they may respond unexpect-
edly (My CD-ROM does not work!) or choose one of the options at random
without really knowing if it applies to their case.

For these reasons, state-of-the-art troubleshooting agents [9] leave the dialog initia-
tive to the users by presenting an open welcome message: “please briefly describe
the reason for your call”. Unconstrained, natural language user responses describing
the general problem or symptom they experience are then classified by a speech
utterance classifier mapping the user utterance into one of a set of predefined cat-
egories [10].

Supervised statistical classifiers are algorithms trained with a corpus of tran-
scribed utterances and their associated problem categories. The parameters learned
in the training phase are applied to predict the classes of new utterances, not nec-
essarily observed in the training corpus. A crucial factor on which a classifier’s
effectiveness depends is the size of available data for training.

However, the significant cost of hand-labeling a large amount of training data
is one of the main problems associated with the use of such classifiers. Achieving
appropriate classification performance even with small training sets [11] recently
became the focus of research in the field. Also, the set of categories used for data
labeling is subject to alteration. It is not rare to observe situations in which the set
of problems handled by the automated agents needs to be updated. In such cases,
algorithms which require only a few training data can be helpful to rapidly adapt
the system.

In this chapter, we first provide an overview on the utterance categorization mo-
del and propose different schemes which use only one labeled example per catego-
ry. With these minimal training data, considerable degradation of the categoriza-
tion performance is expected with respect to categorizers that make use of large
labeled corpora. One main reason is that semantic variability may not be adequate-
ly captured in small labeled sets. We therefore analyze word clustering as a means
of extracting semantic relationships of words and, in consequence, boost the clas-
sification effectiveness. A similar task in the field of information retrieval is the
efficient search of information on the Internet. In fact, one of the first applications
of word clustering was the lexical term expansion of user queries to search engines
with automatically discovered synonyms of the original query terms [12].
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We also provide a comparison of formulations used in text-processing applica-
tions for estimating the different relevance of terms. Term scoring was applied to
the categorization of utterances with different numbers of labeled examples.

The chapter is organized is as follows. An overview of general pattern recognition
and its application to the categorization of texts is given in Sections 8.2 and 8.3. In
Section 8.4 a description of the utterance corpora used in our experiments is provid-
ed. The utterance preprocessing is explained in Section 8.5. Details about feature
extraction and term weighting are outlined in Sections 8.6 and 8.7 respectively. Fi-
nally, we evaluate the described algorithms in Section 8.8 and draw conclusions in
Section 8.9.

8.2

An Overview of Pattern Recognition

Pattern recognition is an important problem addressed by scientists in a number of
research fields: biology, geography, engineering, computer science, artificial intelli-
gence, etc. [13]. In pattern recognition, patterns are defined as entities which can be
subjected to classification. This is possible as long as their similarity can be calculat-
ed. Examples of patterns are genes, human faces, handwritten characters, or texts.

The classification task consists of (i) the mapping of patterns into one or more
classes out of a pre-defined category set (supervised classification or discriminant
analysis), or (ii) the grouping of patterns into previously unknown classes accord-
ing to their affinities (unsupervised classification or clustering). In the latter case,
the classes are also detected as a result of the classification process. A typical pat-
tern recognition scheme is shown in Figure 8.2.

In supervised classifiers, pattern recognition operates in two separated modes:
training and classification or test. In the case of unsupervised classification, the learn-
ing step is absent. In addition, one distinguishes between three phases: preprocess-
ing, feature selection/extraction and classification.

Preprocessing, also known as preparation, aims at optimizing the representation
and quality of the input observations in order to produce reliable data for statistical
analysis [14]. This process involves operations such as segmentation, normalization
and elimination of noise or irrelevant information.

Classification
Algorithm

Test

Patterns

Classes
Preprocessing

Feature
Extraction/
Selection

Set

Feature
Extraction/
Selection

LearningPreprocessing
Training

Learned ParametersTraining (Supervised Classification)

Figure 8.2 Pattern-recognition scheme. For supervised

classification, a training module is required.
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A segmentation stage decomposes the input data into pieces, thereby enabling
the multi-dimensional representation of patterns. In certain cases, input objects are
already presented segmented as a set of measurements captured by an array of sen-
sors (for example, temperature and humidity in the classification of metereological
phenomena). However, in many other situations, the objects to classify are the re-
sult of individual acquisitions. This is the case of images in computer vision. A data
segmentation (sampling) may be used here to split continuous images into M pix-
els or blocks, so that an image can be observed, for example, as an M-dimensional
array of pixel intensities. The output elements obtained after segmentation are also
termed classification features, since they represent different properties of the objects
to be classified. In consequence, patterns are also referred to as feature vectors.

Normalization procedures can be applied to features or patterns. Feature normal-
ization is especially convenient and necessary if the classification features repre-
sent different object attributes in different scales. Common feature normalization
techniques are linear scaling to unit variance, transformation to uniform [0-1]
random variables and rank normalization, among other methods [15]. Moreover,
pattern normalization applies to the feature values inside an individual pattern. An
example is the normalization of image intensities for object recognition in images.

Feature selection and extraction techniques help in reducing the dimensionality
of feature sets. As is broadly accepted, an optimal feature set should capture the
relevant characteristics of the data in the most compact way.

Feature selection aims to retain the subset of the original features that best rep-
resents the input patterns. Typically, this process is carried out by sorting the
initial features according to their relevance and filtering out those features which
do not exceed a minimum relevance threshold. The resulting feature vectors are
thus the projections of the original patterns over the selected feature sub-space.
In contrast, feature extraction performs a transformation of the input pattern
vectors into a different feature space through a statistical analysis of the input
data. Examples of feature extraction techniques are principal components analy-
sis (PCA), independent component analysis (ICA) or feature clustering [24, 32].
The feature selection/extraction module has proved to be very important for pat-
tern recognition. A correct scheme may not only help in reducing computational
costs associated with very high-dimensional data sets, but can also increase the
classification effectiveness.

Finally, the classification algorithm maps input feature vectors to output classes.
Supervised algorithms rely on the existence of training sets with labeled examples.
The mapping is typically defined by a certain number of parameters whose values
are usually adjusted to a training data set during learning. Some examples of su-
pervised classifiers include, among others, the Naïve Bayes classifier, polynomial
classifiers, neural networks or support vector machines.

Unsupervised techniques are suitable when no labeled examples are available.
The output classes/groups are not known a priori, but are detected during the
classification process. Hierarchical and partitioning clustering algorithms are used
to group the input patterns according to distance-based criteria. Hierarchical ap-
proaches build the cluster solution gradually, resulting in cluster hierarchy struc-
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tures or dendograms. Two kinds of hierarchical algorithms can be distinquished, de-
pending on the dendogram construction methods: agglomerative (bottom up) and
divisive (top down) [16–18]. In contrast, partitioning approaches learn a flat clus-
ter structure, typically through an iterative search for the optimum of the criterion
function (K-means, K-medoids, etc.) [19, 20]. More recent approaches have been
developed to discover dense regions in a dataspace. Usually, the density notion is
represented by two parameters, minpts and epsilon, denoting the minimum number
of points to be enclosed in an epsilon-radius neighborhood of certain objects called
core points (DBscan [21], Optics [22], Denclue [23], Clique [24], etc.). These algo-
rithms are resistant to outliers3) and more flexible than distance-based approaches,
insofar clusters of irregular shapes and sizes can be detected [25]. Further, if the set
of observations can be drawn from an underlying probabilistic distribution, model-
based approaches can be applied in order to fit a probabilistic model to the input
patterns. A common example is the Expectation Maximization algorithm, used to
fit a mixture of Gaussians to a dataset [26].

A compromise between supervised and unsupervised techniques are semi-
supervised approaches [27]. These methods make use of both labeled and un-
labeled data for training. In co-training algorithms [11], two or more supervised
classifiers are applied to different subsets of the original feature set. A new train-
ing data set is generated following a confidence evaluation of the classification
results (e.g. agreement between classifiers). The main condition for the use of co-
training approaches is the statistical independence between feature subsets used
by the classifiers. Another kind of semi-supervised learning involves clustering
algorithms in which certain constraints about the input data are manually defined
(Clustering with constraints) [28]. The constraints specify whether two data instances
must or cannot be linked together in a single cluster.

8.3

Utterance Classification as a Text-Classification Problem

Since speech utterances are transcribed into text by ASR, utterance-to-symptom
categorization is a particular case of text classification, traditionally applied to doc-
uments. In this section, we describe how pattern recognition is applied to text and,
in particular, to utterance classification.

During preprocessing, all words in a text corpus are reduced to units of seman-
tic meaning: stems or lemmas. As a next step, an n-gram model4) can be applied
to extract and count subsequences of terms up to length n. A particular case is

3) Outliers are noise patterns which do not
belong to any cluster, but fall in the regions
between two or more clusters. Outliers are
often unreliable patterns which need to be
discovered and accordingly treated.

4) An n-gram model is a sentence structure
specification based on the assumption that

the probability of occurrence of a given word
is conditioned upon the prior N – 1 terms.
While the n-gram specification is of high
relevance for the development of grammars
and lexical parsers, it is less important
for capturing the underlying semantics
(meaning) of texts.
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the uni-gram model where only single words are extracted, ignoring any possible
order in which the words appear in the text. Due to their simplicity and adequate
performance for classification, uni-grams are possibly the most frequently used ap-
proach for the representation of texts. When used for the representation of texts or
utterances, uni-gram structures are commonly referred to as bags of words. Usually,
texts are represented as vectors over a basis of terms or n-grams in what is called
a vector space model [29]. A simplistic approach is to use binary vector components
denoting the presence or absence of the respective terms in a text. Also, other vec-
tor components may be used to reflect term frequency counts in the text, or terms’
discriminative significance estimated through relevance scores. A popular metric
for estimating a word’s relevance is the term frequency – inverse document frequency
(TF-IDF) (Refer to Section 8.7.2 for more details about term scores).

Common feature-selection algorithms are based on the aforementioned rele-
vance scores in order to filter out unimportant terms that do not exceed a rele-
vance treshold. In contrast, feature-extraction approaches provide a transformation
of the initial term features into a new feature space in which semantic effects re-
lated to terms can be mitigated, namely synonymy and polysemy. Synonymy refers
to the fact that multiple terms can be used to denote a single concept – words with
identical meaning.5) Polysemy, on the other hand, indicates the existence of terms
with multiple related meanings, which can therefore be observed in different con-
texts. These semantic artifacts are pointed out as one of the fundamental problems
to be faced in text categorization, as they introduce a clear obstacle for capturing
the semantic proximity between texts [30]. Attempts to address synonymy and/or
polysemy have relied on Latent Semantic Analyis (LSA) [30,31] and feature cluster-
ing [32], among other methods.

8.4

Utterance Corpus Description

For the experiments and results reported in the following sections, we used two
corpora of transcribed and annotated caller utterances gathered from user interac-
tions of commercial troubleshooting agents of the Internet and Cable TV domains.
Some examples of transcribed utterances are:

– Internet troubleshooting:
– The Internet was supposed to be scheduled at my home today.
– I’m having Internet problems.

– Cable TV troubleshooting:
– I have a bad picture quality.
– I don’t get HBO channel. (ChannelMissing).

5) In text-processing applications, the synonymy
concept is used in a general sense, to indicate
not only terms with identical meaning
but also terms with similar meaning (soft
synonyms).
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Table 8.1 Corpus definition. Number of categories (L) and

number of utterances of test and training sets

Corpus Number of Symtoms Training (# utt.) Test (# utt.)

Internet 28 3313 31 535
Cable TV 79 10 000 10 000

Further details about the corpora including the number of categories considered
in this work as well as the dimensions of training6) and test sets are shown in
Table 8.1.

8.5

Utterance Preprocessing

The preprocessing module consists of part-of-speech (POS) tagging, morphological
analysis, stop-word filtering, and bag-of-words representation.

First, the Stanford POS tagger [33] performs an analysis of each sentence and
tags the words with their lexical categories (POS tags).

Subsequently, a morphological analyzer [34] is applied to reduce the surface word
forms in utterances into their corresponding lemmas.

As a next step, stop words are eliminated from the lemmas, as they are judged
irrelevant for the categorization. Examples are the lemmas a, the, be, for. In this
work, we used the SMART stop-word list [35] with small modifications: in particu-
lar, we deleted confirmation terms (yes and no) from the list, whereas typical words
for spontaneous speech (eh, ehm, uh) were treated as stop words.

For example, the input utterance My remote control is not turning on the television
is transformed through the described steps (POS tagging, morphological analyzing
and stop-word filtering) as follows:

– POS tagging: my/PRP remote/JJ control/NN is/VBZ not/RB turning/VBG
the/DT television/NN7)

– Morphological analysis: My remote control be not turn the television
– Stop-word filtering: remote control not turn television

The salient vocabulary is then defined as the set of distinct lemmas in the prepro-
cessed training utterances: W = (w1, . . . , wD). The vocabulary dimensions in Inter-
net and Cable TV troubleshooting corpora are D = 1614 and D = 1022, respectively.

Finally, the lemmas for each utterance are combined as a bag of words, i.e. each
utterance is represented by an D-dimensional vector, BW, whose binary elements,

6) Note that, since the approaches described
in this chapter make reference to small
numbers of examples, we refer to the part
of the available corpora used to select the
categorizers examples as a training set and, if
necessary, perform certain statistical analyzes

which do not require the use of utterance
labels.

7) For a detailed inventory of POS tags used
by the Stanford parser and their meanings,
please refer to the parser homepage:
http://nlp.stanford.edu/software/lex-
parser.shtml
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be, represent the presence/absence of the respective vocabulary element in the cur-
rent utterance:

BW = (b1, . . . , bD) . (8.1)

8.6

Feature Extraction Based on Term Clustering

One of the simplest categorization algorithms is the nearest-neighbor (NN) ap-
proach. Given a set of M labeled examples per category (prototypes), the NN algo-
rithm assigns each input pattern to the category of the closest prototype. In this
work, we only use one prototype per category (M = 1), selected from the training
corpus. One should therefore expect a degradation of the classifier performance
with respect to categorizers making use of all utterance labels in the training set.
This is partly due to the prevalence of synonymy and polysemy, which may be in-
sufficiently represented in a small amount of prototypes. Also what is considered
to belong to a class can be arbitrary and is up to the system design and to what the
classification result is used for further down in the application.8)

In effect, by using one labeled utterance per category, the effective vocabulary
available to the categorizer is reduced to less than 10% of the vocabulary in the
training set (W). This results in a large amount of utterances mapped to a nomatch
class, provided the existence of out-of-vocabulary terms. As an example, we want to
look at the category representing a problem related to sound (NoSound). One would
select a typical caller utterance reporting this problem, no sound, as the category
prototype. However, the user may utter other alternatives, such as problem with
volume or lost audio, which cannot be matched to the desired prototype due to the
bag-of-words’ orthogonalities (absence of overlapping terms with the prototype).
This problem could be partially solved if one could detect that sound has a similar
meaning to audio or volume.

The feature-extraction methods described in the following paragraphs aim to
capture semantic relationships between words. We analyze two approaches to the
classification of words based on hard and fuzzy clustering.

In hard clustering, each input pattern is unequivocally allocated to one output
cluster. This approach may be adequate for capturing semantically related terms
(e.g. synonyms) in output semantic classes. In contrast, a soft-clustering algorithm
associates the input patterns to all output classes through a matrix with member-
ship degrees. If a considerable number of polysemous terms (with several rela-
ted meanings) is present in the input data, fuzzy techniques should then be more

8) The corpora used in this study contain a class
for multiple symptoms (like my picture is
out, and I have no sound) which is purposely
omitted when the classifier is trained to
catch such an utterance with one of the
single-symptom classes (such as NoPicture

and NoSound in the above example). It is
extremely unlikely that such a class would
be automatically isolated as it potentially
contains contributions from all the other
classes.
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Figure 8.3 Utterance categorization com-

ponents. For feature extraction, hard and

fuzzy approaches to term clustering are

compared. Hard clustering provides a hard

mapping of each vocabulary term pattern into

a single-output semantic class (bold traces). In

contrast, a fuzzy clustering provides a fuzzy or

soft association of each pattern to the output

classes through a membership matrix (thin

lines). Hard clustering can also be observed

as a particular case of fuzzy clustering, where

pattern memberships are either 1 or 0.

appropriate. An overview on utterance categorization based on term-clustering is
shown in Figure 8.3.

After the feature extraction phase, each input bag of words (BW) is accordingly
transformed into a feature vector F. Details of feature extraction based on hard and
fuzzy clustering are discussed in the following sub-sections.

8.6.1

Term Vector of Lexical Co-occurrences

A frequently reported problem to word clustering is the adequate representation
of word lemmas in vector structures so that mathematical (dis)similarity metrics
applied to term vectors can reflect the terms’ semantic relationships.

In this respect, among others, there are two criteria in the literature which at-
tempt to explain the main characteristics of semantically related terms.

1. First order co-occurrence. Two words are similar to the degree that they co-occur
or co-absent in texts [12, 36].

2. Second order co-occurrence. Two words are similar to the degree that they co-
occur with similar words [37].

The first order co-occurrence criterion is adequate for text documents where a se-
mantic variability can be observed inside a document. In contrast, semantically re-
lated terms rarely co-occur inside a sentence. Thus, a second-order co-occurrence
criterion seems to be more appropriate for detecting terms’ semantic proximities
from an utterance corpus.

Consequently, each vocabulary term wi is represented in a D-dimensional vector
of lexical co-occurrences:

Wi = (ci1, . . . , ciD) (8.2)
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wherein the constituents cij denote the co-occurrence of the terms wi and wj, nor-
malized with respect to the total sum of lexical co-occurrences for the term wi:

cij =
ncij∑

k=/i
ncik

. (8.3)

Here, ncij denotes the total number of times that wi and wj co-occur. Finally, in
order to extract the terms’ semantic dissimilarities, we apply the Euclidean distance
between term vectors.

8.6.2

Hard Term Clustering

A hard clustering algorithm places each input pattern into a single output cluster.
Based on the complete-link criterion [17], the proposed term clustering produces
a partition of the vocabulary terms given an input user parameter, the maximum
intra-cluster distance dth.

1. Construct a dissimilarity matrix U between all pairs of patterns. Initially, each
pattern composes its individual cluster ck = {wk}.

2. Find the patterns wi and wj with minimum distance Umin in the dissimilarity
matrix.
– If the patterns which are found belong to different clusters, ca =/ cb, and

(Umax(ca, cb)) u dth, where Umax(ca, cb)) is the distance of the furthest ele-
ments in ca and cj, merge clusters ca and cb.

Table 8.2 Example utterances of semantic classes obtained

by hard term clustering on a text corpus comprising 30 000
running words from the cable televison troubleshooting domain;

average number of terms per cluster is 4.71; number of extracted

features is 1458

speak, talk

operator, human, tech, technical, customer, representative, agent,
somebody, someone, person, support, service

firewall, antivirus, protection, virus, security, suite,
program, software, cd, driver

reschedule, confirm, cancel, schedule
remember, forget

webpage, site, website, page, web, message, error, server

megabyte, meg

technician, appointment

update, load, download

boot, shut, turn

user, name, login, usb

area, room, day



230 8 Machine Learning for Categorization of Speech Utterances

– Update U so that Uij = ∞.
3. Repeat step 2) while Umin u dth or until all patterns remain assigned to a sin-

gle cluster.

As a result of the hard term clustering algorithm, different partitions of the vo-
cabulary terms are obtained, depending on the input parameter dth. Because the
elements in each cluster should indicate terms with a certain semantic affinity, we
also denote the obtained clusters as semantic classes. Table 8.2 shows examples of
clusters produced by this algorithm.

After hard term clustering, the bag of words remains represented in a binary
feature vector Fhard:

Fhard = (bf1 , bf2 , . . . , bfD′ ) (8.4)

where the bfi component denotes the existence of at least one member of the i-th
extracted class in the original bag of words.

8.6.2.1

Disambiguation

If applied to bags of words or feature vectors extracted from hard term clusters, the
NN classifier rejects a considerable number of ambiguous utterances for which
several candidate prototypes are found.9) A disambiguation module was therefore
devised to resolve the mentioned ambiguities and map an ambiguous utterances
to one of the output categories.

First, utterance vectors with more than one candidate prototype are extracted.
For each pattern, we have a list of pointers to all prototypes. Then the terms in each
pattern that cause the ambiguity are identified and stored in a competing term list.

As an example, let us consider the utterance I want to get the virus off my computer
which, after pre-processing and hard term clustering, results in the feature set com-
puter get off virus. Its feature vector has maximum similarity to the prototypes com-
puter freeze (category CrashFrozenComputer) and install protection virus (category Se-
curity). The competing terms that produce the ambiguity are in this case the words
computer and virus. Therefore, the disambiguation among prototypes (or clusters)
is here equivalent to a disambiguation among competing terms. For that reason,
as a further means of disambiguation, we estimate the informativeness of a term wi

as shown in (8.5):

I(wi) = –

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝log(Pr(wi)) + α · log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

j
Lj=N

cijPr(wj)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8.5)

9) Candidate prototypes are those prototypes
which share maximum proximity to the input
utterance. This happens especially when the
similarity metric between the vectors results

in integer values, e.g. in the case of using the
inner product of binary vectors as are the
aforeintroduced bags of words and feature
vectors.
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where Pr(wi) denotes the maximum-likelihood estimation for the probability of the
term wi in the training corpus, and Lj refers to the part-of-speech (POS) tag of wj.

As can be inferred from (8.5), two main factors are taken into account in order
to estimate the relevance of a word for the disambiguation:

a) the word probability and
b) the terms’ co-occurrence with frequent nouns in the corpus.

The underlying assumption that justifies this second factor is that words repre-
sentative of problem categories are mostly nouns and appear in the corpus with
moderate frequency. The parameter α is to control the trade-off between the two
factors. Reasonable values are in the range of (α ∈ [1, 2]) placing emphasis on
the co-occurance term; for our corpus, we use α = 1.6 which we found as best-
performing in the current scenario.

Finally, the term with the highest informativeness is selected among the com-
petitors, and the ambiguous utterance vector is matched to the corresponding pro-
totype or class.

8.6.3

Fuzzy Term Clustering

The objective of the fuzzy word clustering used for feature extraction is a fuzzy
mapping of words into semantic classes and leads to the membership matrix M
representing this association.

8.6.4

Pole-Based Overlapping Clustering

In the PoBOC algorithm [38], two kinds of patterns are differentiated: poles and
residuals.

Poles are homogeneous clusters located as distant as possible from each other.
In contrast, residuals are outlier patterns that fall into regions between two or more
poles. The elements in the poles represent monosemous terms, whereas the resid-
ual patterns can be seen as terms with multiple related meanings (polysemous).

The PoBOC algorithm is performed in two phases: (i) pole construction, and (ii)
multi-affectation of outliers.

In the pole construction stage, the set of poles {P} = {P1, · · · , PD′ } and outliers {R}
are identified and separated. Poles arise from certain terms with maximal separa-
tion inside a dissimilarity graph which are therefore known as the pole generators.

In the multi-affectation stage, the outliers’ memberships to each pole in {P} are
computed. Finally, the term wi is assigned a membership vector to each Pj pole as
follows:

Mij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if wi ∈ Pj

1 – dav(Wi, Pj)/d max if wi ∈ {R}
0, otherwise

(8.6)
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where dav(Wi, Pj) denotes the average distance of the wi word to all objects in Pj,
and d max refers to the maximum of the term dissimilarity matrix.

To compute the semantic dissimilarity of terms, experiments with both Eu-
clidean and cosine distances10) were carried out.

8.6.4.1

PoBOC with Fuzzy C-medoids

The fuzzy C-medoids algorithm (FCMdd) [39] computes the fuzzy membership
matrix M starting from an initial choice of cluster representatives or medoids.
We initialize the algorithm with the D′ pole generators (C = D′) obtained at the
pole construction phase of the PoBOC scheme. The final solution for the mem-
bership matrix M is then reached through the iterative repetition of two steps:
(i) (re)calculation of pattern memberships to the D′ classes, and (ii) recomputation
of the cluster medoids. The membership update of the term Wi to the j-th class is
defined as:

Mij =

(
1/d(Wi , Cj)

)1/m–1

C∑
k=1

(
1/d(Wi, Ck)

)1/m–1
(8.7)

denoting Ck, the k-th class medoid, d(Wi, Ck), the dissimilarity between the term
vector Wi and the medoid Ck, and m, a fuzzyfier factor, m ∈ [1,∞), denoting the
smoothness of the clustering solution (m = 2 in this work). The procedure is it-
erated until either the updated cluster medoids remain the same, or a maximum
number of iterations is reached.

8.6.4.2

Utterance Feature Vector

Finally, the feature vector obtained with soft term clustering, Fsoft, is calculated
as the normalized matrix product between the original bag of words BW and the
membership matrix M:

Fsoft =
BW(1xD) ·M(DxD′)

|BW ·M| (8.8)

8.6.5

Utterance Categorization

The objective of utterance categorization is to map an input utterance – represent-
ed as bag of words (BW) or feature vector after hard or soft word clustering – into
one of the N categories, represented by the N prototypes supplied to the nearest-
neighbor algorithm. The closeness of an input utterance vector to each one of the

10) The cosine distance metric, Dcos is defined
as the negative of the cosine score,
Dcos = 1 – Scos.
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prototypes is quantified by means of the inner product between their feature vec-
tors, Fi and Fj:

s(Fi, Fj) = Fi · FT
j . (8.9)

8.7

Supervised Methods for Utterance Categorization

In this section, we describe two supervised approaches for utterance categorization:
a probabilistic framework (Naïve Bayes classifier) and a vector model with term
weighting. F is the number of labeled exampes per category, randomly selected.

8.7.1

Naïve Bayes Classifier

Naïve Bayes is a powerful and yet simple text categorization algorithm usually re-
porting adequate performance. It selects the most probable class ĉ out of a set C
given a test utterance u:

ĉ = arg max
c∈C

(
P(c|u)

)
(8.10)

This expression cannot be computed directly, but it can be reformulated using the
Bayes rule as:

ĉ = arg max
c∈C

(
P(c)(u|c)

)
. (8.11)

By assuming conditional independence of the utterance terms, the Naïve Bayes
solution can be expressed as:

ĉ = arg max
c∈C

⎛⎜⎜⎜⎜⎜⎜⎝P(c)
∏
wi∈u

(wi|c)

⎞⎟⎟⎟⎟⎟⎟⎠ (8.12)

where P(c) denotes the class prior probability estimated from the selected set of
labeled samples.11) To avoid zero probabilities, we applied Laplacian smoothing.

8.7.2

Vector Model with Term Weighting for Utterance Classification

In information retrieval, document classification and text summarization, docu-
ments are usually represented by means of term vectors, D

D = a1, a2, · · · , aN (8.13)

11) The generic variable F is used to reflect the
number of examples per category randomly
selected from a corpus of labeled utterances.
However, the practical number of sample
utterances in a given class may be lower than

F if there are less than F labeled utterances
available for that category. We use this
information for the estimation of the category
priors P(c).
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where the components a reflect the relative significance of terms in relation to the
document at hand.

In vector model utterance categorisation, we use a Nearest Neighbour classifier.
Test utterances are represented as bag of words vectors. The nearest neighbour pro-
totypes are “virtual documents” builded up by merging F utterances per category
randomly selected. Virtual category documents are further weighted by using term
scoring methods as explained in the following paragraphs.

Term scores are generally computed as a contribution of two factors: (i) the abso-
lute or relative frequencies of terms in the document; and (ii) the term dispersion
over all documents. The second factor is also used for feature selection character-
izing the “noisy” behavior of terms.

8.7.2.1

Term Frequency

In the literature, one finds different definitions for the term frequency. In this work,
we use two formulations taken from [40] and [41]:

TF1(w, d) =
C(wi, d)∑
j C(wj, d)

(8.14)

TF2(w, d) =
{

1 + log(C(wi, d)) if C(wi, d) > 0
0 otherwise

(8.15)

where C(w, d) denotes the occurrence counts of the term w in the document d.

8.7.2.2

IDF, RIDF and ISCF Scores

We analyzed three relevance scores to capture the term distribution across docu-
ments: the inverse document frequency (IDF), the residual inverse document fre-
quency (RIDF) and a new formulation, the inverse spectral crest factor (ISCF).

– Inverse document frequency (IDF). This popular definition was proposed
by [42]:

IDF(w) = – log
(NDw

ND

)
(8.16)

where NDw denotes the number of documents in which the term w occurs
and ND is the total amount of documents in the collection. In this work, the
number of documents corresponds to the number of categories ND = L.

– Residual inverse document frequency (RIDF). This is a variant of the inverse
document frequency, proven to be effective for automatic text summariza-
tion [42]. It represents the difference between the IDF of a term and its ex-
pected value ÎDF according to a Poisson model.

RIDF(w) = IDF – ÎDF (8.17)

with

ÎDF(w) = – log(1 – e–λw ) (8.18)
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where λw denotes the parameter of the Poisson distribution, calculated here
as the average occurrence of the w term across all ND documents:

λw =
∑

j

Nwj /ND . (8.19)

The main advantage of RIDF compared to IDF is that rare terms are not
assigned relevances.

– Inverse spectral crest factor (SCF). We propose a third metric called the inverse
spectral crest factor (ISCF). Motivation for the introduction of this formula-
tion is to achieve a more accurate indicator of the term distribution over the
categories. An IDF-based metric would place lower relevance on terms ob-
served in more than one category. However, this metric does not reflect the
possibility that terms may occasionally appear in several categories.
The Spectral Crest Factor (SCF) is one of the measures used in audio pro-
cessing [43] for determining the noisy character of the signal components
through an analysis of their short time spectra. It provides an estimate of
the spectral flatness, as the ratio of the arithmetic mean energy across spectral
bands with respect to the maximum energy. We adopted this metric to esti-
mate a term’s dispersion across categories. The term relevance is given by
the inverse spectral crest factor, defined as:

ISCF(w) =
ND ·maxi(TF1(w, di))∑

j TF1(w, dj)
. (8.20)

8.8

Evaluation Methods and Results

In this section, we describe our methods to evaluate the performance of the utter-
ance classification models described in previous sections.

This is done by comparing the output categories which the proposed algorithm
assigns to a number of test utterances with manually assigned categories thereof
(the reference). If both categories coincide, the automatic categorization is consid-
ered correct, otherwise it is counted as error. As overall accuracy, we define

accuracy =
# correctly classified test utterances

# total utterances in test set
(8.21)

8.8.1

Classification with One Labeled Utterance and Feature Extraction

Table 8.3 shows the accuracy values reached on the Internet corpus by the nearest-
neighbor classifier applied to bags of words and feature vectors in the case of fea-
ture extraction, with one sample utterance per category. In this case, the samples
have been manually selected in such a way that the number of overlapping terms
in different category samples is minimized.
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Table 8.3 Utterance categorization with one labeled utterance

per class using several feature extraction techniques and

disambiguation

Term Disambiguation Accuracy
clustering

– no 45%
– yes 57%
Soft (PoBOC) no 50%
Soft (PoBOC + FCMdd) no 47%
Hard no 50.8%
Hard yes 62.2%

Comparing classification performance without disambiguation to the baseline
(no term clustering; at 45%), we see that both soft and hard term clustering per-
form in a very similar way: PoBOC and hard term clustering achieve around 50%
outperforming the baseline by about 10%, relative.

As noted in Section 8.6.2.1, disambiguation partially overcame the sparseness of
having only one example utterance per class shown by significant improvements
from 45% to 57% on the baseline without term clustering (27% relative) and 50.8%
to 62.2% on hard term clustering (22% relative). Hard term clustering with disam-
biguation outperformed the baseline by 38.2%, relative.

8.8.2

Classification Based on F Samples per Category

The following paragraphs show a comparative analysis of the Naïve Bayes classifier
and the approach based on weighted document vectors. In particular, we investigate
the dependence between classifier performance and number of (randomly chosen)
samples per category (F = 1, . . . , 100). Tests are performed on the Cable TV trou-
bleshooting corpus (10 000 test utterances and 79 problem categories). Figure 8.4
depicts the performance of the Naïve Bayes classifier and the nearest-neigbor, us-
ing term weighting against the number of samples/category F. Based on these
experimental results, several observations can be made:

– Naïve Bayes outperforms NN with term weighting and term relevance scor-
ing (TF2(w, d)) for numbers of samples greater than 7. The poorer perfor-
mance of Naïve Bayes in these cases may be attributed to the use of Laplacian
smoothing. For small numbers of examples, the ratio of terms with a fre-
quency of zero in the set of examples is rather large (Figure 8.5).
Therefore, using Laplacian smoothing in conjunction with the Naïve Bayes
classifier may produce inaccurate term probability estimates. Note that, with-
out the use of Laplacian smoothing, the TF2(w|c) and P(w|c) would be identi-
cal.

– We also observed a dependency of the classifier’s performance on the specific
term frequency metric (TF1 or TF2, respectively). The normalization with re-
spect to the document lengths introduced in TF2 seems to be a better strategy
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for few examples, but the classifier performance is stabilized after a number
(F = 7) of samples. Also at this point, TF1 starts to outperform TF2. One
possible reason for this phenomenon is the high sensitivity of classifiers to
different utterance lengths when a small number of examples is provided.

– The contribution of IDF, RIDF and ISCF. Although TFRIDF was proposed
as a more efficient solution in automatic text summarization, TFIDF has out-
performed TFRIDF on this kind of data. This fact may be associated to certain
characteristics of the utterance corpus and the way category documents are
generated. On the one hand, there is a large number of terms which may be
indicative of more than one category. This happens because the categories
mentioned indicate different problems which can be experienced with a sin-
gle device. For example, for problems related to the quality of the received
image, utterances like picture has poor quality are commonly observed, and
less frequently, utterances like bad picture. However, there also exist other
categories to cover additional problems related to the picture. Here, we re-
fer to terms such as quality, poor or bad, as specific category terms, in con-
trast to generic terms like picture. A generic term is descriptive for several
categories simultaneoulsy, in which it occurs with quite high frequencies.
Generic terms may be found to the extent that some underlying hierarchi-
cal category structure can be assumed. We also distinguish a third kind of
term, referred to as noisy terms, which can be observed in many different cat-
egories, generally with low frequencies. It is desirable to emphasize specific
terms with respect to generic terms, in order to “protect” utterances with
a high probability of error like bad picture.
In this respect, IDF scores capture a term’s spreading over documents re-
gardless of the term frequency in the documents. However, the average fre-
quency of these terms (parameter λw of the Poisson model) considerably
exceeds that of specific terms. According to a Poisson model, these terms
(picture) should spread even more over documents in contrast to terms with
low λw (specific terms), and, therefore, a part of the bias introduced by IDF
appears compensated in the residual after subtracting the Poisson estimation
ÎDF. Moreover, no significant differences can be observed between TFISCF
and TFIDF. The use of ISCF scores was motivated to provide a more pre-
cise estimate of the term/category distribution which reflects the different
frequences of the term in the category documents. However, one fact to be
considered is that IDF and ISCF scores are here multiplied to TF scores.
This may also explain why, despite its simplicity, TFIDF scores are among
the most broadly used metrics in text processing. Whether ISCF can be ef-
fective for global feature selection remains an open question.
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8.9

Summary and Conclusion

In this article, we have described different models for the categorization of caller
utterances in the scope of automated troubleshooting agents. One of the goals of
this research is to help overcome costs associated with the manual compilation of
large training data sets. In the first part of the article, we proposed categorization
schemes which make use of only one labeled sample per category. The proposed
solution is based on feature-extraction techniques which automatically identify se-
mantic word classes on a corpus of unlabeled utterances. Hard and fuzzy word-
clustering methods were compared. The performance of feature extraction for ut-
terance classification was experimentally evaluated on a test corpus of more than
3000 utterances and 28 classes. The most optimistic outcomes were achieved with
hard word clustering in combination with a module for reallocating ambiguous
utterances providing a maximum of 62.2% accuracy.

The second part of the paper provided an overview of supervised classifiers com-
monly used for the categorization of texts. A probabilistic framework (Naïve Bayes)
and a vector model with term relevance scores were described. We experimentally
compared these classifiers on a test corpus of 10 000 utterances and 79 classes. An
analysis of the classifier’s dependency on the number of labeled examples was car-
ried out. Our experiments reported an inflection point in the classifier’s behavior
around seven training samples per category. For lower numbers of training sam-
ples, nearest-neighbor classification with term-weighting schemes achieved higher
accuracies, whereas for larger numbers, Naïve Bayes outperfoms the other classi-
fiers.
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9

Semi-Supervised Clustering in Functional Genomics
Johann M. Kraus, Günther Palm, Friedhelm Schwenker, Hans A. Kestler1)

9.1

Introduction

Cluster analysis is a classical example of unsupervised learning. It is an important
technique of explorative data analysis. It is used in different contexts such as text
analysis, marketing, psychology and biology [1–8]. Cluster analysis is a collection of
methods for generating hypotheses about the structure of the data by solely explor-
ing pairwise distances or similarities in feature space. It is often applied as a first
step in data analysis for the creation of initial hypotheses.

This chapter provides a brief introduction to the principles of cluster analysis,
presents some basic algorithms, and mentions open challenges of clustering in
functional genomics. In the next section we introduce functional genomics as
our field of application and motivate the use of cluster analysis in this setting.
Research and development of high-throughput technologies offer a powerful ap-
proach to the study of biological processes. For instance, microarray experiments
give gene expression levels from thousands of genes simultaneously. In this con-
text data-mining methods are paramount to the analysis of high-dimensional da-
ta. Unsupervised clustering can give an estimation of the functional grouping of
genes or the pre-classification of profiles. As, for example, hierarchical clustering
algorithms can predict a basic branching structure, they are often used in this con-
text. Some cluster analysis basics are presented in Section 9.3. In consequence to
the unknown a priori information about the data, validation of clustering results
turns out to be critical. For instance, the use of different cluster methods on the
same data set can lead to contradictory hypotheses. Up to now no general frame-
work for the choice of the best suitable cluster method and validation procedure is
known.

Clustering has been shown to be highly susceptible to minor changes on the da-
ta, for example, noise injection, feature selection or subsampling. Research on the
robustness aspects of cluster algorithms is often neglected. But as we point out in
Section 9.4, investigating robustness must be a common topic when handling data.

1) Corresponding author.
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A limitation in clustering microarray data concerns the reproducibility of cluster-
ing results after small modifications on the data, such as adding new points to the
data set. Although cluster analysis is unsupervised and does not require an external
teacher signal, recent work has shown the usefulness of incorporating additional
information [9–16]. This knowledge can be provided as a set of labeled data items
or a set of constraints between pairs of data items. Recent experiments have indi-
cated that already sparse additional information may support the cluster analysis
in building more stable partitions.

9.2

Biological Background

9.2.1

Functional Genomics

Functional genomics as part of molecular biology aims to provide a link between
genomic information and biological functions, such as establishing a relationship
between gene expression patterns and tumour status, see also Chapter 5, Fig-
ure 1.1. The term gene expression describes the process of translating the infor-
mation encoded in the genome (DNA) into a biologically functional gene product,
for example, proteins. Research on functional genomics grants access to a better
understanding of molecular functions. Cell functions are supposed to be mostly
coordinated by the expression and interaction of proteins. Although, recently, post-
translational modification has been a major issue [17, 18]. Almost all cells in an or-
ganism contain the same set of genes, but they differ in their expression patterns
depending on their specialization. The expression level and specification of pro-
teins has been shown to be associated to the occurrence of many diseases [19, 20].
For instance, an increased expression level of the oncogene HER2 is related to the
emergence of mammalian carcinoma [21, 22]. To support biologists in generating
new hypotheses about gene expression patterns mostly high-throughput technolo-
gies are used. As an example, DNA microarray technology enables a simultaneous
analysis of thousands of genes.

9.2.2

DNA Microarray Technology

The central dogma of molecular biology forms the backbone of DNA microarray
technology. All information encoded in DNA is transcribed into RNA and further
may be translated into proteins [23]. As described in the previous section, one part
of functional genomics is based on measuring gene expression levels. Quantify-
ing proteins is difficult due to their chemical and structural differences. DNA mi-
croarray technology circumvents the problems of measuring proteins by quantify-
ing RNA expression levels. According to the central dogma of molecular biology,
knowledge about RNA expression leads to knowledge about protein expression. But
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assigning protein levels to RNA expression can be insufficient as the gene expres-
sion process is known to be much more complicated. For instance, gene regulation
is affected by RNA interference. The small RNAs from both inside and outside the
cell are processed by the RNA interference machinery to inhibit genes and proteins
by cleaving messenger RNAs, blocking protein synthesis, or inhibiting transcrip-
tion. Theses small RNAs are called small interfering RNA (siRNA) and micro RNA
(miRNA) depending on their endogenous or exogenous origin [17, 18].

The raw data from microarray experiments usually needs preprocessing steps
to reduce the influences of technical noise or experimental biases. These steps of-
ten include normalization and filtering methods. Further information about mi-
croarray technology and the research on preprocessing steps can be found in Al-
lison et al. [24] and others, see [19, 25–27]. In this article we focus on unsuper-
vised data-mining methods that follow the preprocessing step. Early studies on
microarrays [28–30] applied standard data-mining tools. Recently more and more
methods were adopted to the special issues arising from the analysis of microarray
data [31–33].

A microarray chip typically covers a huge number of genes. Additionally the
number of analyzed microarray chips per experiment may be insufficient for stan-
dard procedures because of the small number of examined individuals. As the
high-dimensional microarray data sets usually provide only a few samples, most
algorithms suffer from the curse of dimensionality [34]. Noisy data and unreliable
a priori knowledge about the data may also bias the analysis. In the next section we
describe basics of cluster analysis and focus on algorithms first used in microarray
data analysis. In Section 9.4 we introduce our research on the robustness of cluster
analysis.

9.3

Cluster Analysis

Let X = {x1, . . . , xN} be a set of gene expression profiles, where the feature vec-
tor xi ∈ Rd is extracted from the gene expression of probe i. Cluster analysis is
used to build a partition of a data set containing k clusters such that data points
within a cluster are more similar to each other than points from different clusters.
Figure 9.1 illustrates the idea of clustering data. As humans are rather good at iden-
tifying clusters of different shapes in up to three dimensions, one can easily recog-
nize groups in the picture. Generally the precise number of clusters or a grouping
of clusters depends mostly on the subjective evaluation of different observers.

A partition P(k) is a set of clusters {C1, C2, . . . , Ck} with 0 < k < N and meets the
following conditions:

k⋃
i=1

Ci = X , Ci =/ ∅ (9.1a)

Ci ∩ Cj = ∅ , i =/ j (9.1b)
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Figure 9.1 Illustration of different concepts of clusters. For

instance, this picture includes clusters of regular shape, an

elongated cluster, a cluster surrounding another cluster, a group

of similar clusters and outlying clusters.

Another view on clustering is given by hierarchical cluster analysis. It builds a se-
quence of partitions which are usually displayed as dendrograms. Figure 9.2 shows
both types of cluster analysis.

The basic clustering task can be formulated as an optimization problem.

Definition 9.1 Partitional cluster analysis: For a fixed number of groups k find that
partition P(k) of a data set X = {x1, . . . , xN} out of the set of all possible partitions Φ(X, k)
for which a chosen objective function f : Φ(X, k) → R+ is optimized.

Solution: For all possible partitions with k clusters, compute the value of the objec-
tive function f. The partition with the best value is the set of clusters sought. This
method is computationally infeasible as the cardinality of the set of all possible par-
titions is huge even for small k and N. The cardinality of Φ(X, k) can be computed
by the Stirling numbers of the second kind [1]:

|Φ(X, k)| = Sk
N =

1
k!

k∑
i=0

(–1)k–i
(
k
i

)
iN (9.2)

As a consequence, existing algorithms provide a heuristic for this search problem.

9.3.1

Clustering Microarray Data

In the context of microarray analysis one can either aim to identify groups of genes
or groups of individuals. A group of genes with similar expression measured under
various conditions may imply a co-regulation of the genes (gene-based clustering).
A clustering of individuals into groups with similar expression patterns may help
to discover unknown subtypes of diseases (sample-based clustering). Further ap-
proaches known as biclustering and subspace clustering combine both clustering
perspectives and allow to search for groups of genes with similar expression pat-
terns only in a subset of the samples.
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1

2

3

4

(a) (b)

Figure 9.2 Results from a hierarchical and a partitional cluster

analysis. The dendrogram (a) gives an overview of different

possible subclusters. Splitting the dendrogram along the dotted

line results in the same clustering as computed by a partitional

cluster algorithm (k = 3), (b).

One of the first cluster algorithms applied to microarray data was used by Eisen
et al. [28]. They performed a hierarchical clustering (UPGMA) and introduced
a graphical display of the cluster results by building heat maps. Figure 9.3 illus-
trates this kind of data view.

Heat maps give an overview of the data. The expression levels of many genes
are plotted against a number of samples. The columns depict the N-dimensional
gene vectors (gene expression profile) of the samples. Each color on the grid rep-
resents a gene expression value in which similar values must attain similar col-
ors. The samples and genes are ordered by their results from hierarchical clus-
ter analysis. Recently, alternatives to this representation have been proposed in-
corporating confidence values and perceptually optimizing the red–green color
scales [37].

In the following some other well known cluster algorithms were applied to mi-
croarray data, such as k-means [29] and self-organizing feature maps (SOM) [30].
Recently more and more complex cluster algorithms are proposed including vari-
ants from model-based clustering, spectral clustering and biclustering [38–40],
although the above mentioned simple methods remain predominant. They ben-
efit from their conceptual simplicity or easy availability through standard soft-
ware.

There are no general guidelines for choosing the most appropriate cluster
method. Cluster analysis aims to reveal an unknown hidden structure. But most
cluster algorithms will even predict a structure in data sets sampled from a uniform
distribution.
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Figure 9.3 Heat map with two dendrograms.

Graphical display of hierarchical clustering

results in microarray data mining (created with

the software R [35] and a freely available ALL

(acute lymphatic leukemia) microarray data

set from Chiaretti et al. [36]). Each sample is

represented by a single column of colored box-

es. Each box corresponds to the color-coded

expression level of one gene in one sample.

Two clusters of columns are indicated by the

bars on the top. These clusters correspond to

known groups of patients with a chromosomal

translocation between chromosomes 4 and

11 (ALL/AF4) and chromosomes 9 and 22

(BCR/ABL), respectively, see [36].

9.3.2

Cluster Methods

9.3.2.1

Hierarchical Clustering

Hierarchical clustering builds a sequence of partitions P1, P2, . . . , PN where each
partition is a refinement of its predecessor. As mentioned before, hierarchical clus-
ter methods build a dendrogram, that is a hierarchy of partitions. There are two
ways to construct the dendrograms, top-down (divisive) and bottom-up (agglomer-
ative). Divisive hierarchical clustering starts with the whole data set in one cluster.
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At the refinement step one target cluster Ci out of P = {C1, . . . , Ck} is selected and
split into two clusters. This step is recursively repeated until all clusters contain
only one element. Different methods are used to perform target cluster selection
and splitting. One example is always splitting the cluster with the largest diameter.
Splitting can be done by separating the element xz with maximal dissimilarity to
generate the new cluster. All other elements of the target cluster are then assigned
to their nearest cluster, that is, they are either moved to the new cluster or remain
in the target cluster.

Algorithm 2 Agglomerative hierarchical clustering
Data set: X = {x1, . . . , xN}

1. Start with partition PN = {C1, . . . , CN}, where each cluster Ci has exactly one
element xi.

2. Identify those clusters Ci and Cj having the minimal distance dist(Ci, Cj).

3. Merge clusters Ci and Cj to cluster CF.

4. Build the new partition by removing Ci and Cj and adding cluster CF.

5. Repeat step (2) to (4) until partition P1 = {C1} is reached.

The more popular agglomerative hierarchical clustering variants proceed by
starting with a partition into N clusters and subsequently merging the nearest
clusters, see Algorithm 2. In step (2) of this algorithm the distance calculation has
to be extended from distances between data points to distances between clusters.
Given a distance measure dist defined on the input domain X, the distance be-
tween two clusters can be computed in different ways. Everitt et al. [5] mention the
following inter-cluster distance formula. Let Ci and Cj be the two clusters which are
to be combined to cluster CF in the agglomeration step. Let Cr be another cluster,
the distance of cluster CF to cluster Cr is then calculated by:

dist (CF, Cr) = αi dist (Ci, Cr) + αj dist
(
Cj, Cr

)
+

� dist
(
Ci, Cj

)
+ γ|dist (Ci, Cr) – dist

(
Cj, Cr

)
| . (9.3)

Varying parameters αi, αj �, and γ in (9.3) leads to different inter-cluster distances.
For instance, choosing αi = αj = 1/2, � = 0, γ = –1/2 gives the single-linkage cluster
distance:

dist (CF, Cr) =
1
2

(
dist (Ci, Cr) + dist

(
Cj, Cr

))
–

1
2
|dist (Ci, Cr) – dist

(
Cj, Cr

)
|

= min
(
dist (Ci, Cr) , dist

(
Cj, Cr

))
. (9.4)

Here, at each agglomeration step the two clusters are combined which contain the
two elements with the minimum inter-cluster distance. Following Everitt et al. [5],
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Table 9.1 Inter-cluster distance methods in agglomerative

hierarchical clustering. Substituting parameters αi, αj, �, γ
in (9.3) with the given values describes different cluster

distances. ex denotes the number of elements in cluster Cx.

Distance measure αi αj � γ

single-linkage 1/2 1/2 0 –1/2

complete-linkage 1/2 1/2 0 1/2

unweighted average 1/2 1/2 0 0

median 1/2 1/2 –1/4 0

group average ei/(ei + ej) ej/(ei + ej) 0 0

centroid ei/(ei + ej) ej/(ei + ej) –(eiej)/(ei + ej)2 0

Ward’s method (ei + er)/(ei + ej + er) (ej + er)/(ei + ej + er) –er/(ei + ej + er) 0

Table 9.1 lists some more popular distance measures and the associated parameter
setting.

9.3.2.2

Partitional Clustering

K-means [41] is probably the most popular partitional cluster algorithm. Given
a number k, the algorithm splits the data set into k disjoint clusters. Here clus-
ter centroids μ1, . . . , μk are placed in the center of gravity of clusters C1, . . . , Ck. The
objective function of k-means is:

F(μj, Cj) =
k∑

j=1

∑
xi∈Cj

||xi – μj||2. (9.5)

Minimizing this function amounts to minimizing the sum of squared distances
of data points from their cluster centroids. K-means is implemented by iterating
between two major steps that (1) reassign data points to nearest cluster centroids
and (2) update centroids for the newly assembled cluster. The cluster centroid μj is
updated by computing the centroid of all points in cluster Cj:

μj =
1
|Cj |
∑
xi∈Cj

xi . (9.6)

To show the convergence of k-means we restrict the argument to using the Eu-
clidean distance. Given x, y ∈ Rd, let dist(x, y)2 denote the squared Euclidean dis-
tance between these points,

dist(x, y)2 = ‖x – y‖2
2 =

d∑
m=1

(xm – ym)2 = (x – y) · (x – y) , (9.7)
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where x · y is the dot product of vectors x and y. K-means is started with k randomly
chosen centroids μj. We show that the two steps, (1) reassigning data points and
(2) updating centroids, will monotonically decrease the objective function F.

(1) Reassignment step:

A point xi is assigned to cluster Cj iff ‖xi – μj‖2
2 u ‖xi – μl‖2

2, ∀l =/ j. Therefore F is
monotonically decreasing.

(2) Update step:

Let μ
′

j be the new centroid of the modified cluster Cj. Then

ΔF =
∑
xi∈Cj

‖xi – μ
′

j‖2
2 –
∑
xi∈Cj

‖xi – μj‖2
2

=
∑
xi∈Cj

[
‖xi – μ

′

j‖2
2 – ‖xi – μj‖2

2

]
=
∑
xi∈Cj

–‖μ′

j – μj‖2
2 –
∑
xi∈Cj

2(xi – μ
′

j ) · (μ
′

j – μj)

= –|Cj | ‖μ
′

j – μj‖2
2 – 2(μ

′

j – μj) ·
∑
xi∈Cj

(xi – μ
′

j )

= –|Cj | ‖μ
′

j – μj‖2
2 u 0 . (9.8)

The last step follows from defining μ
′

j as being the centroid of point mass Cj, that
is
∑

xi∈Cj
(xi – μ

′

j ) = 0. Therefore F is monotonically decreasing.
As the objective function F is bounded by zero, and k-means is ensured to al-

ways monotonically decrease F, the previous deduction shows the convergence of
the k-means algorithm. See Selim and Ismail [42] for a detailed proof of the con-
vergence of k-means-type algorithms to a locally optimal partitioning of the data
set X.

Bezdek [43] describes a modified version of the k-means algorithm. The algo-
rithm fuzzy-c-means uses a fuzzifier to enable a so-called soft clustering. In this task
no definite assignment of data points to one distinct cluster is given but a member-
ship matrix U is computed. The entries of the membership matrix uij denote the
degree of membership of each data point xi to each cluster Cj. What is special about
fuzzy-c-means is its ability to provide more information on the computed cluster-
ing decision. For instance, the membership matrix describes that a data point xi

belongs to cluster C1 with the computed likelihood of 0.50 and to cluster C2 with
0.50. The objective function of fuzzy-c-means is:

F(μj, U) =
k∑

j=1

N∑
i=1

um
ij ||xi – μj||2 , (9.9)
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with m > 1. The entries uij of the membership matrix U have to satisfy the following
restrictions:

uij v 0 , i = 1 . . .N , j = 1 . . . k (9.10a)
k∑

j=1

uij = 1 , i = 1 . . .N (9.10b)

0 <
N∑

i=1

uij < N , j = 1 . . . k . (9.10c)

The parameter m (fuzzifier) controls the influence of the membership matrix to
the clustering. For m close to 1 the algorithm behaves similar to k-means. An im-
plementation of fuzzy-c-means follows the k-means procedure as described above,
including (1) update of the centroids:

μj =
1∑N

i=1 um
ij

N∑
i=1

um
ij xi , j = 1 . . . k (9.11)

and (2) assignment of the cluster memberships:

uij =
1∑k

l=1

(
‖xi – μj‖2/‖xi – μl‖2

)1/m–1 , i = 1 . . .N , j = 1 . . . k . (9.12)

9.3.2.3

Incremental Updates

Besides these batch-mode algorithms described so far, k-means and fuzzy-c-means
can be implemented using an incremental update. In this variant, each time a da-
ta point xi is presented, a centroid update is performed immediately. The update
shifts the chosen centroid μj by a fraction (learning rate) of the distance to the pre-
sented data point. The amount of shift can be controlled by using a time varying
and cluster specific learning rate αj = 1/nj instead of a global one. Here nj denotes
the number of updates which have already been computed for cluster Cj:

μ∗j = μ∗j + αj(xi – μ∗j ) ; μ∗j – nearest (winning) prototype . (9.13)

It is possible not only to update the chosen cluster centroid (winner takes all), but
also a number of neighboring cluster centroids. The algorithm self-organizing fea-
ture maps [44] (SOM) follows this approach. SOM uses an internal representation of
cluster prototypes derived from a projection of the centroids to a low-dimensional
grid, see Figure 9.4.

The neighborhood information is evaluated on this grid. An example for a neigh-
borhood function on the grid is:

N(i, j) = exp
(
–
||p(i) – p(j)||2

2σ2

)
(9.14)
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prototypes
projection

2D grid with

neighborhood function

Figure 9.4 Prototypes and grids in SOM (self-organizing

feature maps). Prototypes are projected onto a 2D-grid. On this

grid a neighborhood function is defined. This neighborhood

influences the update step of the algorithm, see (9.15).

with p(i) and p(j) denoting the projected position of centroids μi and μj on the grid.
The learning rate αt and the neighborhood function N are used to compute the
amount of update for each cluster centroid μi after assigning point xi to its nearest
cluster centroid μj:

μi = μi + αtN(i, j)(xi – μi) . (9.15)

In each update step a whole neighborhood is changed, and subsequently similar
data points are aggregating while the grid finally forms a low-dimensional map
representing the high-dimensional data space.

9.3.2.4

Model-Based Clustering

Model-based methods [45–51] offer a statistical framework to model cluster struc-
tures. They are based on the assumption that the data set originates from a mixture
of several underlying probability distributions. Each distribution with its associat-
ed parameters (mean, variance, and so forth) corresponds to one of the expect-
ed clusters. The aim of clustering under this perspective is to estimate the model
parameters and the hidden cluster membership information. Suppose the data X
consists of N independent multivariate observations {x1, x2, . . . , xN} sampled from
k distributions. The likelihood of the mixture model is defined by:

L(θ1, . . . , θk, τ1, . . . , τk|X) =
N∏

i=1

k∑
j=1

τjfj(xi|θj) , (9.16)

where density fj and parameters θj belong to the j-th component of the mixture.
The probability that a data point xi belongs to the j-th component is given by
τj (τj v 0;

∑k
j=1 τj = 1). In the most commonly used Gaussian mixture model, each

component j is defined by a multivariate normal density with parameters μj (mean
vector) and Σj (covariance matrix):

fj(xi |μj, Σj) =
exp{–1/2(xi – μj)TΣ–1

j (xi – μj)}√
det(2πΣj)

. (9.17)
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The covariances determine geometric features of the components (clusters), as for
instance shape, volume or orientation. The parameters θj and τj are usually esti-
mated by the EM algorithm [52]. The EM algorithm iterates between the two major
steps (1) expectation and (2) maximization. In the expectation step the hidden pa-
rameters τj are estimated from the data with the mixture model being based on
the current parameters θj. In the maximization step the model parameters θj are
updated to maximize the likelihood of the data given the estimated hidden pa-
rameters. When the EM algorithm converges, all data points are assigned to the
cluster with the highest conditional probability. The k-means algorithm mentioned
before is known to be equivalent to model-based clustering using the equal volume
spherical model [45]. Also hierarchical clustering based on centroid methods or
Ward’s method can be designed by model-based clustering with underlying spher-
ical Gaussians [45].

9.3.2.5

Spectral Clustering and Other Graph-Based Methods

Spectral clustering [53–56] is closely linked to a graph-based perspective of data,
where a data set X is represented by its similarity graph G(V, E). In this notation
each vertex vi ∈ V stands for a data point xi ∈ X and each edge eij provides infor-
mation whether two data points xi, xj are connected. In similarity graphs an edge
is weighted by the similarity between the corresponding data points. A graph is
then given by its weighted adjacency matrix W = (wij), i, j = 1 . . . n, where wij v 0
represents the similarity between two vertices vi and vj. It is assumed that wij is
symmetric. The degree of a vertex vi is defined as di =

∑N
j=1 wij. The degree matrix

D is the diagonal matrix with entries d1, . . . , dN.
Clustering is reformulated in terms of graph partitioning as finding groups of

vertices such that the edges within a group of vertices have high weights and the
edges between groups have low weights. Furthermore, a connected component is
a subset of connected vertices that has no edge to the rest of the graph. Spectral
clustering algorithms use graph Laplacians to solve the graph-clustering problem.
The graph Laplacian is defined as L = D – W. A property of the graph Laplacian is
that the multiplicity k of the eigenvalue λ1 = 0 is equal to the number of connected
components [57]. The least eigenvalue λ2 > 0 can be used for a spectral bisection
algorithm [58]. Therefore, the eigenvector u corresponding to the eigenvalue λ2 is
computed. A vertex vi ∈ V is put into cluster C1 if ui < 0 and into cluster C2 if ui > 0.
This method can be extended to the use of k smallest eigenvectors or to normalized
spectral clustering based on normalized Laplacians [59–61].

The eigenvalue λ2 is also called the algebraic connectivity of G(V, E) which
gives rise to a graph cut point of view. For two subsets A, B ∈ V a cut is defined
as cut(A, B) =

∑
ui∈A,vj∈B wij. Then clustering is a means of solving the mincut

problem, that is choosing a partition C1, . . . , Ck that minimizes cut(C1, . . . , Ck) =∑k
i=1 cut(Ci, Ci) [62]. Additionally, the clusters Ci are often required to satisfy an

additional size constraint. Two modified objective functions are RatioCut [63] and
Ncut [59], which weight the cut by the number of vertices and the sum of the vertex
degrees, respectively.
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Furthermore, spectral clustering can be explained from a random-walk perspec-
tive. A random walk on a graph is a stochastic process that randomly decides which
edge to follow whilst walking from vertex to vertex. Clustering can then be seen as
finding a partition of the graph such that a random walk will stay in the same clus-
ter as long as possible. The connection between mincut and random walk can be
explained by the fact that a partition with a low cut has a reduced probability for
random walks between the neighboring clusters. See Meila and Shi [64] for the
formal equivalence of Ncut and the transition probabilities of a random walk.

Spectral clustering has also been shown to be equivalent to non-negative matrix
factorization [65]. In non-negative matrix factorization a data matrix X ∈ Rd~N

+ is
factorized into two non-negative matrices F ∈ Rd~k

+ and G ∈ RN~k
+ for a given k such

that ‖X–FGt‖ is minimal [66]. Non-negative matrix factorization methods have been
shown to perform well in high-dimensional machine learning tasks [33, 67, 68].

Frey and Dueck [69] recently introduced a cluster algorithm which they call affini-
ty propagation. Data points are modeled as nodes in a network recursively transmit-
ting messages along edges of the network. The process follows a message-passing
paradigm [70], that is data items negotiate their cluster and centroid preferences
derived from proximity measurements to minimize an appropriately chosen cost
function. The messages reflect the affinity of a data point for choosing data points
as its cluster centroid. This controls the accumulation of data points around a cen-
troid by taking into account feedback messages encoding the preferences of the
points for their centroid.

9.3.2.6

Biclustering

The methods from the previous sections always use the whole feature space for the
cluster analysis. Furthermore, the resulting clusters are exclusive and exhaustive,
that is, there are no overlaps between two or more clusters and all samples have to
be assigned to a specific cluster. When analyzing high-dimensional data one may
wish to relax these restrictions. For instance, in an experiment only a small subset
of features (genes) is known to be shared by a group of samples or only a small
subset of samples may be of interest.

This leads to the concept of biclustering (also bi-dimensional clustering, simulta-
neous clustering, co-clustering, block clustering, conjugate clustering, distribution-
al clustering, information bottleneck method, subspace clustering) [31, 39, 40, 71].
A bicluster is defined as a block built by a subset of genes and a subset of samples.
A collection of biclusters extracted from a gene expression matrix characterizes dif-
ferent aspects of the data set at once where each bicluster may imply a subtype of
phenotype–genotype relation. The problem in biclustering is to extract a meaning-
ful set of biclusters out of the huge number of possible biclusters. Biclustering can
be achieved by performing a two-way clustering, that is two independent cluster
analyses by rows and by columns. It can also be done by simultaneous clustering
in both dimensions.

Figure 9.5 illustrates an example of collections of biclusters. The data set A is
given as N ~ d matrix where the elements aij denote the relation between sample
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a
(a) (b)

(e)(d) (f )

(c)

Figure 9.5 Examples of possible bicluster

structures hidden in a data matrix. Each

subfigure represents a data set given as a data

matrix spanning rows of genes and columns

of samples. Biclusters are drawn as small

rectangles. The bicluster structures are (a) sin-

gle bicluster, (b) exclusive row biclusters, (c)

non-overlapping non-exclusive biclusters, (d)

non-overlapping biclusters with checkerboard

structure, (e) overlapping biclusters with

hierarchical structure, (f) arbitrarily positioned

overlapping biclusters.

i and feature j. A bicluster BRS is a subset of rows R ⊆ I and a subset of columns
S ⊆ J which satisfies a given characteristic of homogeneity. The simplest idea is
to identify blocks with constant values [72–74]. Another approach looks for con-
stant values along rows or columns of the data matrix [75–78]. More sophisticated
methods search for biclusters with coherent values, where each row and column
can be obtained by adding or multiplying a constant value to the others [32,79–82].
Figure 9.5 summarizes some possible bicluster structures in a data matrix.

The simplest structure to search for is one bicluster spanning some of the rows
and some of the columns (a). Exclusive row biclusters (b) or the equivalent exclu-
sive column biclusters present structures where every row or every column in the
data matrix belongs exclusively to one of the k biclusters. Nonoverlapping nonex-
clusive biclusters (c) combine row and column biclusters and enable a relaxation to
the constraint that rows or columns must belong exclusively to one bicluster. The
checkerboard structure (d) restricts the arrangement of rows and columns as they
all have to belong to exactly k biclusters. Overlapping biclusters can be explained
by a hierarchical structure (e). This forms biclusters which are either disjoint or in-
clude one another. The most general biclusters are the arbitrarily positioned over-
lapping biclusters (f). These overlapping, nonexclusive and nonexhaustive biclus-
ters are not restricted to form a hierarchy.

Lazzeroni et al. [82] proposed a method called the plaid model to handle most
of these structures. In the plaid model the value of an element of the data matrix
is defined as a sum of terms called layers, that is the data matrix is described by
a linear function of layers corresponding to its biclusters:

aij =
k∑

l=0

θijlρilκjl (9.18)
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with the weighting parameter θ. The binary indicator ρ and κ denote the mem-
bership of row i and column j to the bicluster k. Then the plaid model is used to
minimize the following objective function:

F(ρ, κ) =
1
2

N∑
i=1

d∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝aij – θij0 –
k∑

l=0

θijlρilκjl

⎞⎟⎟⎟⎟⎟⎟⎠
2

(9.19)

with an additional term θij0 that considers the existence of a single bicluster cover-
ing the whole data matrix.

9.3.3

Cluster Validation

Cluster validation provides methods to evaluate the results of cluster analysis in
an objective way. The validation methods always measure a selected point of view,
that is one has to predefine an expected characteristic of the data. Special attention
must be turned on choosing a meaningful validation method. Clustering can be
analyzed by evaluating the unusualness of the results in contrast to a baseline (ran-
dom clustering). Several validation methods have been proposed. Following Jain
et al. [1] they are grouped into three types of criteria:

Internal criteria. Measure the overlap between cluster structure and information
inherent in data, for example silhouette, inter-cluster similarity.

External criteria. Compare different partitions, for example Rand-Index, Jaccard-
Index, Fowlkes and Mallows.

Relative criteria. Decide which of two structures is better in some sense, for ex-
ample, quantifying the difference between single-linkage or complete-linkage.

To demonstrate the superiority of cluster algorithms they are often applied on
a priori labeled data sets and compared by an external criterion. In the following
we introduce the basic concept of evaluating cluster results using external cluster
indices. An external index describes to which degree two partitions of N objects
agree. Given a set of N objects X = {x1, x2, . . . , xN} and two different partitions
P = {C1, C2, . . . , Cr} and Q = {D1, D2, . . . , Ds} into r and s clusters, respectively. The
contingency table comparing these two partitions is given in Table 9.2. Here nij de-
notes the number of objects that are both in clusters Ci and Dj, ni. and nj denote
the total number of objects in cluster Ci and Dj respectively. Then a pair of objects
is called concordant if they belong to the same cluster in both partitions or if they
do not belong to the same cluster in both partitions.

Hubert and Arabie [83] define some indices based on the contingency table of
two partitions, see Table 9.3.

Additionally, we have defined a measure of pairwise similarity between set parti-
tions not based on the contingency table and counting each data point only once,
in contrast to the Jaccard index, that can be interpreted as the mean proportion of
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Table 9.2 Contingency table for comparing two partitions

P = {C1, C2, . . . , Cr} and Q = {D1, D2, . . . , Ds}. Here nij is the

number of objects that are in both clusters Ci and Dj.

Q D1 D2 . . . Dr–1 Dr sums
P

C1 n11 n12 . . . n1r–1 n1r n1.
C2 n21 n22 . . . n2r–1 n2r n2.
...

...
...

. . .
...

...
...

Cs ns1 ns2 . . . nsr–1 nsr ns.

sums n.1 n.2 . . . n.r–1 n.r N

Table 9.3 External cluster indices describe the agreement of two

cluster results. All of the following indices can be derived from

the contingency table of two partitions, see Table 9.2.

Name Formula

Rand [84] 1 + (
∑r

i=1
∑s

j=1 n2
ij – (
∑r

i=1 n2
i. +
∑s

j=1 n2
.j)/2)/

(
n
2

)
Jaccard [85] (

∑r
i=1
∑s

j=1 n2
ij – n)/(

∑r
i=1 n2

i. +
∑s

j=1 n2
.j –
∑r

i=1
∑s

j=1 n2
ij – n)

Fowlkes and Mallows [86] (
∑r

i=1
∑s

j=1 n2
ij – n)/(2(

∑r
i=1

(
ni.
2

)∑s
j=1

(n.j
2

)
)1/2)

samples consistent over different clusterings under the restriction k = r = s. The
MCA index η is defined as the fraction of the number of data points in the intersec-
tion sets of the corresponding clusters to the overall number of data points.

η(P, Q) =
1
N

max
π

k∑
i=1

|Ci ∩Dπ(i)| (9.20)

This score is based on solving the linear assignment problem (LAP) for the intersec-
tions between different partitions.

Let Πk be the set of all permutations of the numbers 1 . . . k. Given a symmetric
matrix B ∈ RN~N

+ with elements bij v 0 (representing the similarity between object i
and j) try to find the permutation π ∈ Πk that maximizes (or minimizes) the term∑k

i=1 biπi . This problem can be solved in O(k3) using the algorithm by Jonker and
Volgenant [87].

In this investigation we applied the proposed robustness evaluation measure to
three different prototype-based algorithms (self-organizing feature maps (SOM),
k-means- and fuzzy-c-means clustering) and to CGH data, indicating loss and gain
of genomic material, from Mattfeldt et al. [88] and gene expression profiles of
leukemia patients from Golub et al. [89], see Figure 9.6.

The two-class scenario of the leukemia data is confirmed in the two-cluster result,
see Figure 9.7. To correctly judge the results found the performance of a random
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Figure 9.6 The graphs show the averaged ro-

bustness index (MCA) over a varying number

of cluster centroids for the different cluster

algorithms and the data sets. (a) the leukemia

data from Golub et al. [89], (b) the prostate

cancer data from Mattfeldt et al. [88]. In the

presented results a jackknife method was

used: for each run d =
√

n elements were left

out from the sample set, cluster and assign the

remaining samples according to the nearest

neighbor rule after the clustering is performed.

cluster algorithm is included as a base-line. This suggests, for the leukemia data
two clusters and for the prostate carcinoma data, three clusters, as the difference
of the MCA values of the fuzzy-c-means (leukemia) and the self-organizing fea-
ture map (prostate) to the respective random clusterings is maximal in these cases.
Further analysis of the CGH data assigned to the three clusters of the prostate car-
cinoma cases showed a differentiation into different grades of malignancy based
on their CGH profile.

9.4

Semi-Supervised Clustering

Unsupervised clustering methods do not make use of background knowledge
about a partition of the data. Several modifications were proposed during recent
years, to incorporate additional knowledge in cluster-analysis algorithms. Back-
ground knowledge is usually provided as a set of labeled data items [10] or a set
of constraints between pairs of data items [90]. As we will see below in Results,
the spare additional information seems to assist the algorithm in building more
appropriate partitions.

In recent years various partitional cluster algorithms were adapted to make use
of this kind of background information either by constraining the search process or
by modifying the underlying metric. It has been shown that including background
knowledge might improve the accuracy of cluster results, that is the computed clus-
ters better match a given classification of the data [9–15]. Basu et al. [91] proposed
a probabilistic framework for semi-supervised clustering based on Hidden Markov
Random Fields. Kulis et al. [92] demonstrated how to generalize this model to opti-
mize a number of different graph-clustering objectives like ratio cut or normalized
cut described by Chan et al. [93] and Shi and Malik [59], respectively. Recently Yan



260 9 Semi-Supervised Clustering in Functional Genomics

cluster 1

0

2

4

6

8

10

12

1p 2p 2q 3p 3q 4p 4q 5p 5q 6q 7p 7q 8p 8q 9p 9q 10q 11q 13q 14q 16p 16q 17p 17q 18q 19 p 19q 20p 20q 21q

losses gains

cluster 2

0

2

4

6

8

10

12

14

16

1p 2p 2q 3p 3q 4p 4q 5p 5q 6q 7p 7q 8p 8q 9p 9q 10q 11q 13q 14q 16p 16q 17p 17q 18q 19p 19q 20p 20q 21q

losses gains

Figure 9.7 Losses and gains of the three-

cluster SOM solution from Figure 9.6 are

given. Cluster 1 contained 15 samples with

a mean Gleason score of 5.8 and a mean

WHO grading of 1.9 (Gleason score and WHO

grading describe tumor malignancy). In cluster

1 there was 1 subject with tumor progression

and 3 without progression. Cluster 2 contained

16 samples with a mean Gleason score of 7.3

and a mean WHO grading of 2.4. In cluster 2

there were 8 subjects with tumor progression

and 1 without progression. Cluster 3 contained

29 data points with no gains and no losses

(not shown). It contained one progression

and 6 cases without progression. The mean

Gleason score was 5.6 and the WHO score

1.9.

and Domeniconi [94] proposed an extension of this partitional-clustering method
based on an adaptive kernel method. Davidson et al. [95] proposed a method to
include background knowledge in agglomerative hierarchical clustering. Kestler
et al. [16] analyzed the effects of constraints on hierarchical clustering and iden-
tified important limitations in the use of background knowledge on hierarchical
clustering.

As hierarchical clustering algorithms can predict a basic branching structure
they are often used in the context of microarray data mining [28]. Limitations in
the reproducibility of clustering results after small modifications of the data set
motivate the inclusion of background knowledge into the hierarchical clustering
process. Figure 9.8 shows an example of this behavior. Analyzing a data set of pan-
creatic ductal adenocarcinoma (DAC) and normal pancreas (DUKTI) using an un-
supervised hierarchical clustering results in a well-defined disjunction of cancer
and normal samples. By removing only one data item (DAC.8), a clearly changed



9.4 Semi-Supervised Clustering 261

7.
C

A
D 5.

C
A

D

6.
C

A
D

8.
C

A
D

4.
C

A
D

4
1.I

T
K

U
D

2.
C

A
D

1.
C

A
D

3.
C

A
D

9.I
T

K
U

D

2
1.I

T
K

U
D

3
1.I

T
K

U
D

01.I
T

K
U

D

11.I
T

K
U

D

0
0

0
1

0
0

2
0

0
3

0
0

4

Cluster Dendrogram
H

ei
g

h
t

7.
C

A
D 5.

C
A

D

6.
C

A
D

4.
C

A
D

4
1.I

T
K

U
D

2.
C

A
D

1.
C

A
D

3.
C

A
D

01.I
T

K
U

D

11.I
T

K
U

D

9.I
T

K
U

D

2
1.I

T
K

U
D

3
1.I

T
K

U
D

0
0

0
1

0
0

2
0

0
3

0
0

4

Cluster Dendrogram - removed DAC.8

H
ei

g
h

t

(a) (b)

Figure 9.8 Example for the instability problem

in hierarchical cluster analysis. The data is

taken from expression profiles of pancreatic

ductal adenocarcinoma (DAC) and normal

pancreas (DUKTI), see [96]. (a) A dendrogram

resulting from a hierarchical cluster analysis

of the data set is shown. By removing one

sample (DAC.8) the structure of the resulting

dendrogram is clearly changed. (b) The

resulting dendrogram is shown. DUKTI.10 and

DUKTI.11 changed their position such that an

even division into two clusters contradicts the

left clustering.

dendrogram is built where two samples (DUKTI.10 and DUKTI.11) are supposed
to be in the tumor class.

9.4.1

Modeling Background Knowledge

In microarray data analysis, background knowledge about the grouping of the data
based on additional information may be available. For instance, an expert assumes
a grouping of some samples after an analysis of cell images. This kind of back-
ground knowledge can be modeled in different ways; for example, as relations be-
tween two data items or as labels for the appointed items. The use of labels may
be inferior, as they mostly indicate class memberships. Because a class can consist
of different and distant clusters, a distance-based clustering method may be mis-
led by the labeled information. Wagstaff et al. [90] suggested using cannot-link and
must-link constraints instead. Known relationships between a pair of data points
(x, y) are encoded as must-links ml(x, y) to indicate two data items being arranged
in one cluster and as cannot-links cl(x, y) to indicate not to assign two data items to
the same group, that is ml(x, y) ⇔ x, y ∈ Ci and cl(x, y) ⇔ x ∈ Ci, y ∈ Cj, l =/ k. Addi-
tionally the set of must-link and cannot-link constraints can be extended using an
approach to build the combined transitive closure introduced by Wagstaff et al. [9].
Figure 9.9 illustrates must-link and cannot-link relations between data points.

The use of background knowledge needs a modification of the validation meth-
ods. One has to ensure that the, correctly processed, a priori knowledge is not rated
as an achievement of the cluster algorithm. The Constrained Rand Index serves as
an example of a modified validation measure. The correction for constrained data is
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Figure 9.9 Example for must-link (solid lines)

and cannot-link (dashed lines) constraints.

On the left, constraints are included which

refer to a clustering into two clusters. The

must-links in the top cluster indicate that the

pairs of points must stay in the same cluster.

The cannot-link between the cluster points out

that the corresponding points must not be

clustered together. As it can be seen from the

right subfigure a desired partition into three

clusters must have another set of constraints;

for example, the must-links are removed or

replaced by cannot-links.

done by subtracting the number of constrained object pairs conij in both partitions
from the entries in the contingency table, that is ñij = nij – conij, ∀ i = {1, . . . , r}, j =
{1, . . . , s}:

CRI = 1 +

∑r
i=1
∑s

j=1 ñ2
ij – (
∑r

i=1 ñ2
i. +
∑s

j=1 ñ2
.j)/2(

ñ
2

) (9.21)

9.4.2

Results

In Kestler et al. [16] we proposed a semi-supervised divisive hierarchical clustering
algorithm and presented results indicating an enhancement of the cluster stability.
In the following we give the results of analyzing data from a study on the small
round blue cell tumors of childhood [97]. It contains neuroblastoma samples (NB),
rhabdomyosarcoma samples (RMS), non-Hodgkin lymphoma samples (NHL) and
samples from the Ewing family of tumors (EWS). Gene expression data from glass
cDNA microarrays containing 6567 genes were used.

To evaluate the stability of the clustering method several subsets of data are pro-
cessed and the computed dendrograms are compared to one another. Because we
are mostly interested in the top of the dendrograms we decided not to measure
the overall agreement of two computed dendrograms, but only the agreement on
the highest levels. We modified the data sets as described in the following. At first
we built 10 different test sets by randomly leaving out ten times 5% the data items.
Then we added for each test set 20 different sets of constraints, that is ten times 1%
and 10% of the data items were constrained by a randomly chosen must-link or
cannot-link according to the predefined labeling of the data. To evaluate the stabili-
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Table 9.4 Improvements in stability of clustering microarray

data after randomly removing and constraining data items. The

table displays a summary of the Constrained Rand Index values

from different runs. The percentage of held out and constrained

data items is denoted with cut and constr.

Data set min 1st qu. median mean 3rd qu. max

Childhood cancer
5% cut, unconstrained 0.49 0.50 0.65 0.63 0.76 0.84
5% cut, 1% constr. 0.49 0.51 0.88 0.76 1.00 1.00
5% cut, 10% constr. 0.48 0.50 0.87 0.76 1.00 1.00

ty we then compared each of the test sets with the same number of hold-out items
and constraints. The more often a high agreement value is computed, the more
stable are the partitions. The results from the cluster analyses (Constrained Rand
Index) can be seen in Table 9.4.

Our results indicate that the maximum stability score may not be continuous-
ly improved by adding more background knowledge. In fact there seems to be
a sudden phase transition between unstable and stable results leading to a satu-
ration close to a value of 1. But the number of constraints needed to reach the
phase transition may not be easy to predict as it seems to depend on the com-
plexity of the data set and the chosen hold-out values. Constraints can also affect
the cluster analysis adversely [98]. By randomly building constraint sets, some of
the chosen relations guide the algorithm to a bigger variety of dendrograms, that
is, a lower stability value is more often computed when increasing the number of
constraints.

9.4.3

Challenges

Semi-supervised clustering has become an active field of research. It assists the
unsupervised data-mining tools in generating most valuable hypotheses about the
underlying data. Up to now many different cluster algorithms have been modi-
fied to enable semi-supervised clustering. Several authors demonstrated that the
integration of background knowledge is able to produce more accurate [9–15] and
robust cluster results [16]. However, there are still many important questions on the
application of semi-supervised clustering. For instance, in some cases, constrain-
ing has an adverse impact on the performance independent of the correctness of
the background knowledge [99]. A ranking of constraints based on a measure of
applicability may help to reject misleading constraints.
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9.5

Summary

As seen from the previous sections, the different cluster algorithms are motivated
from different perspectives. Traditionally cluster algorithms are divided into par-
titional and hierarchical methods. Some authors prefer a distinction into model-
based and heuristic methods. It is also possible to distinguish the goals of cluster
algorithms into those that build compact clusters and those that generate connect-
ed clusters. Many other classifications of cluster algorithms seem possible accord-
ing to the different aims in clustering data. Depending on the application, require-
ments, and the data distribution, each of the methods mentioned in this chapter
may turn out to be superior to the others. However, sometimes claims concerning
the overall superiority of a method are made. In that regard, Frey and Dueck [69]
claim that their algorithm, is able to find clusters with much lower error than oth-
er methods and in less time. But in fact their algorithm, like all the others has
advantages and disadvantages. Like k-means, affinity propagation uses an EM-like
method to compute cluster association and centroid updates. In contrast, no fixed
number of centroids is updated, but all data items are considered as being possi-
ble centroids. Like k-means, affinity propagation favors regularly shaped clusters
surrounding their cluster centroids, strongly dependent on the chosen similarity
measure. Also, all information on a possible hierarchical structure is lost. The al-
gorithm is said to identify the number of hidden clusters itself, but on the other
hand the search for a finer or coarser clustering often results in trial and error.
Even the mentioned advantage in time can be adversely affected, as the construc-
tion of the input similarity matrix will be more time consuming when larger da-
ta sets are analyzed. The authors can report a massive time reduction compared
to k-means as they re-ran k-means with different initial centroids several thou-
sands of times. In fact a single run of k-means consumes a fraction of the run-
time of affinity propagation and there are also different methods to loosen the
requirement for repeated initializations of k-means [100] and variations that can
change the number of centers, such as Isodata [101]. Nevertheless the authors pro-
posed another useful tool which has been shown to provide satisfying clustering
results.

Closely predefining the circumstances of the data analysis may guide the user to
choose an appropriate cluster algorithm. Useful a priori knowledge may constrain
the number of clusters, the need for hierarchical output or the eventuality of coping
with outliers. The more complex the methods that are used, the more preparatory
work must be invested. For example, in model-based clustering one has to check
the assumption of whether the data is consistent with the model, such as whether
it has been sampled from a mixture of Gaussians and which covariance matrix may
best fit the data’s geometric features.

Another point is the interpretability of the cluster results. Dendrograms, as com-
puted by a hierarchical cluster analysis, offer many alternatives of defining different
data partitions, for example cutting edges along/between branches. Biclustering of-
ten results in the presentation of a huge number of (possibly interleaving) clusters
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which may then have to be individually checked by the user for relevance. In ad-
dition one may favor an inappropriate validation measure wrongly emphasising
the significance of the results. For instance, evaluating k-means using a measure-
ment of inter-cluster similarity overrates the results as the clusters have just been
optimized to fit this characteristic.

An important issue is the robustness of the cluster method. Cluster robustness
can be measured by repeating a cluster procedure with fixed parameters, but under
varying initial conditions. A cluster solution is then called robust when the fluctu-
ations in the cluster assignments of the data points among the different runs are
small. In Section 9.3.3 we introduced a cluster robustness validation method based
on the pairwise similarity between partitions. This measure can be interpreted as
the mean proportion of samples being consistent over different clusterings. A base-
line is generated by measuring the performance of repeated random clusterings.
The pairwise similarity measures are then averaged over all pairings and compared
to the base-line. The most interesting cluster results are those with a high robust-
ness value and a big distance to the base-line. In this way an estimation of the
number of clusters k present in the data set can be assessed. A good value for k
leads to more robust cluster results. Repeated clustering for various numbers of
clusters, and evaluating the robustness with respect to the base-line, can give evi-
dence for the true number of clusters.

In general, repeated clustering is associated with the possibility of ending up
with contradictory results, see Section 9.4. Many algorithms are highly susceptible
to minor changes in the clustering procedure. There are different sources which
may affect the robustness of cluster results, e.g. different initializations, varying pa-
rameters, noisy data sets or different sub-samples of data. Some of these effects can
be avoided in practice. For instance k-means is often re-run with different initial
centroids to overcome, with its sensitivity for initialization. Moreover, many algo-
rithms are extendable to handle noisy data. But the sensitivity of cluster methods to
minor variations in the size of the data set, especially in settings with low cardinal-
ity and high dimensionality, is often neglected. Especially in clustering microarray
data this aspect must be attentively investigated. As we have demonstrated in Sec-
tion 9.4, the robustness of clustering solutions can be improved by incorporating
additional background knowledge. Therefore, semi-supervised clustering may also
assist the above mentioned resampling procedure for estimating the number of
clusters.

Generally, clustering is a method for deriving hypotheses from data via grouping.
Additional information can guide this process, stabilize the groups formed and
substantiate the proposition.
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10

Image Processing and Feature Extraction from a Perspective

of Computer Vision and Physical Cosmology
Holger Stefan Janzer1), Florian Raudies1), Heiko Neumann, Frank Steiner

10.1

Introduction

The main conjunction between Physical Cosmology and Computer Vision are im-
ages. Commonly structures and objects in those images should be detected and rec-
ognized. In this contribution we give a short survey of methods and assumptions
used in both disciplines. Applications and illustrative examples of those methods
are presented for the fields of Physical Cosmology and Medical Science.

In numerous scientific disciplines and applications areas high-dimensional sen-
sory data needs to be analyzed for the detection of complex structures or for trigger-
ing special events. From the beginning the acquisition and analysis of image data
formed the subject of image analysis. Nowadays many research disciplines work
on the analysis of multi-dimensional images, namely engineering and computer
science, physics, mathematics and even psychology. Together they formed the re-
search discipline of Computer Vision (or Computational Vision) which accounts for
the interpretation of images and image sequences rather than merely the raw pro-
cessing of images [1, 2]. Computer Vision aims to be an umbrella for tasks that
could be classified into:

(a) low-level vision, for example, image enhancement and filtering techniques
for image processing;

(b) mid-level vision, for example, segmentation, feature extraction, and the de-
tection of so-called intrinsic scene characteristics, in particular, the relative
surface orientation or depth discontinuities with respect to the viewer direc-
tion; and

(c) high-level vision to generate and obtain, for example, descriptions of three-
dimensional surfaces and volumes or the linking to steer a robot through
complex terrain [3, 4].

The observation of similar approaches and computational methods that have been
developed in different disciplines, namely in Computer Vision and Physical Cos-

1) Corresponding authors.
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mology, have motivated the writing of this contribution. This article highlights
common assumptions and methods which are used in both fields of Physical
Cosmology and Image Processing/Computer Vision, but which are often not
well known in other research communities. At various stages we give insights
into current research, beyond the scope of the good, and usual, textbooks as
image processing or Physical Cosmology. Here we give a short survey of meth-
ods and assumptions utilized for stages of basic image processing and the ex-
traction of meaningful features. Applications and illustrative examples of those
methods are presented as images from Physical Cosmology and medical imag-
ing to highlight the broad scope of applicability. The focus of this overview is
restricted to the analysis of single images. It would be beyond the scope to dis-
cuss approaches of multi-image processing such as in stereo vision or motion
analysis. For the interested reader, we refer to standard text books such as, for
example, [5].

10.1.1

Overall View

The chapter is organized as follows. We start in Section 10.2 with a brief out-
line of some definitions and architectural issues in image processing and (low-
level) Computer Vision. In addition, a short summary of the background of
Physical Cosmology and its relation to image processing is presented in Sec-
tion 10.3. In Section 10.4 properties of images are discussed, beginning with
a sketch of the generation and representation of two-dimensional (2D) images.
Image representations are often generated by a projective image acquisition
process and involve a proper mapping of the scenic image onto an arbitrarily
shaped surface. We briefly sketch some useful transformations often used in
applications. Next, several main image properties are introduced. Then a brief
overview of basic image characteristics is presented, including basic quantities
such as, for example, distribution and correlation measures of image intensi-
ties as well as useful spectral measures such as the angular power spectrum
and the two-point correlation function. Finally, a generalized framework for im-
age registration is presented. Section 10.5 gives first an overview of the filtering
process from systems theory, including a study of filters in Fourier space. Sec-
ond, some simple methods for the analysis of structures inherent in images
are discussed. In Section 10.6 invariance properties are introduced and repre-
sentations accomplishing these properties are defined. From the perspective of
image processing these are statistical moments dealing with continuously valued
images. From the perspective of Physical Cosmology we present methods from
stochastic geometry dealing with binary structures. We show feature extraction
by means of Minkowski Functionals, their generalization Minkowski Valuations
and we present several applications. In Section 10.7 some concluding remarks are
given.
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10.2

Background from Computer Vision

The goal of image analysis is the construction of meaningful descriptions of scenes
(with their physical objects) from images and the subsequent interpretation of this
description. The result aims at serving functional and behavioral system perfor-
mances such as, for example, the navigation and collision avoidance of a mobile
robot, the sensory-motor control in steering a gripper for object manipulation, or
the generation of a scene description in natural language output. For intrinsically
2D scenes, that are scenes with negligible 3D layout, the processing could be de-
picted in terms of a cascade of sequential processing steps. One operational goal
is motivated by the processing and feature extraction for pattern recognition. In
a nutshell, such a processing sequence can be summarized by:

– image acquisition, projective mappings, and image enhancement;
– image pre-processing by linear or nonlinear filtering and signal restoration;
– image segmentation and grouping for item aggregation;
– feature extraction or generation of structural image descriptions; and finally
– the classification of shapes and objects.

We will present various examples which highlight the properties and character-
istics of images. Our focus is on the primary steps of pre-processing to feature
extraction. For example, we start with a display of simple properties based on the
statistics of the intensity distribution as well as the joint distribution of intensi-
ties in multi-image representations and pairs of image locations and their values.
Spectral properties of images are derived using basic integral transforms of image
signals, such as the Fourier transform and variants of it. Issues of discrete repre-
sentations and mappings for projection of planar images onto curved surfaces will
be introduced. Basic methods of image processing will be discussed, such as linear
and space-invariant filters, which are precursory to the extraction of features from
images.

10.3

Background from Physical Cosmology

Cosmology is the scientific study of the large-scale properties of the Universe as
a whole. Physical methods are used to understand the origin, evolution and ulti-
mate fate of the entire Universe. The Universe is the entire space–time continuum
in which we live, together with all its ingredients within it.

Modern cosmology began with Einstein’s seminal paper from 1917 [6] in which
he applied his general theory of relativity, published only two years earlier, to con-
struct for the first time a relativistic model for the Universe. The Einstein universe
is a static one and, furthermore, at the time was consistent with all available astro-
nomical data. Thus it was a great surprise when in 1929 Edwin Hubble observed
that distant galaxies fade away, which indicates an expanding Universe. Observa-
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tions show a hierarchy of structures. There are galaxies similar to our Milky Way
composed of billions of stars similar to our Sun. Several galaxies form galaxy clus-
ters where gravitational attraction is still dominant over expansion. Further galaxy
clusters form galaxy superclusters which form, via filaments, a net-like structure
that has large cavities called voids. This structure is called the large-scale structure
(LSS) of the Universe. On even bigger scales the Universe is, on average, homoge-
neous and isotropic. Thereby one can define a mean mass density ρ̄(t).

On large scales only gravitational interaction is relevant. Thus Einstein’s gener-
al relativity provides the appropriate theory to describe the Universe as a whole.
Homogeneity and isotropy lead to solutions of the Einstein field equations corre-
sponding to a class of universes called Friedmann–Lemaître universes. These solu-
tions describe the evolution of the local space–time metric and depend on several
cosmological parameters, in particular on the energy content of the Universe. Ob-
servations suggest, and theory states, that the Universe monotonously expanded
since it was generated by the Big Bang 13.7 ~ 109 years ago.

Had the Universe once been perfectly homogeneous, there would be no struc-
tures today. However, the LSS of galaxies, galaxy clusters and galaxy superclusters
shows fluctuations of the mass density ρ(t, x) about the mean ρ̄(t) measured by
the density contrast Δρ(t, x) = (ρ(t, x) – ρ̄(t))/ρ̄(t). These fluctuations are caused
by primordial density fluctuations derived from the initial conditions at the Big
Bang. After the Big Bang the ingredients of the Universe have undergone sever-
al phase transitions. 380 000 years after the Big Bang, called the decoupling age
trec, matter and radiation decoupled. Thereby the detectable radiation background
called the cosmic microwave background (CMB) resulted from free streaming pho-
tons. Note that the CMB is an almost perfect isotropic radiation on the celestial
sphere which satisfies the quantum mechanical law of temperature radiation, that
is Planck’s law, with a mean temperature of T̄ = 2.725 K with an extraordinary pre-
cision and possessing tiny temperature deviations from isotropy of relative order
of ΔT(θ, φ) = (T(θ, φ) – T̄)/T̄ ∝ 10–5 only. These fluctuations are highly correlated2)

with the mass density contrast Δρ(trec, x) of the entire early universe at the decou-
pling age trec. They are interpreted as the seed of todays observed structures and
can be understood as a kind of projected snapshot from the entire early universe
at decoupling age. Thereby the CMB represents one of the most powerful tools in
cosmology and is the oldest accessible information with todays possibilities. The
fluctuations of the CMB are shown in Figure 10.1.

Due to relativistic effects, that is, the finite speed of light, information of dis-
tant objects can only be received from past events. Furthermore, the expansion of
the Universe prohibits the access to the entire Universe. That part which is acces-
sible to observations is called the observable Universe. Since we cannot perform

2) In the full relativistic description there is
a dependence on the total energy content.
In the standard model there is radiation,
baryonic matter, dark matter and dark
energy. One distinguishes between primary

effects, that is, effects at decoupling age, and
secondary effects, that are effects during
propagation from decoupling age until the
observation time.
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Figure 10.1 Cosmic microwave background

(CMB) – Fluctuations (T(θ, φ) – T̄) mK of the

CMB measured by the NASA satellite Wilkin-

son Microwave Anisotropy Probe (WMAP) [7].

Dark indicates colder regions and bright

hotter regions than the mean temperature of

T̄ = 2.725 K. These structures detected on the

celestial sphere are interpreted as the seeds

of today’s observed structures and can be

understood as a kind of snapshot of the entire

early Universe at the decoupling age. The

image is displayed in Mollweide projection

(see Section 10.4.1) and has a resolution of

12 ~ 5122 pixels in HEALPix pixelization [8].

experiments with many universes, for example, we cannot repeat the Big Bang,
cosmology is based on observations concerning just one universe, that is the one
in which we happen to live. For that reason large-scale computations are performed
simulating a large ensemble of universes. We are forced to extrapolate the laws of
physics to extreme conditions where, in principle, they may no longer apply. For
comparison and distinction of complex outputs, methods of image processing and
feature extraction are of major interest in cosmology as will be illustrated below.

10.4

Image Formation and Characterization

Images are acquired in different applications for further analysis of their struc-
tural content for evaluation or steering and control purposes. At the sensory level
of (discrete) signal generation an image can be described as a structural distribu-
tion of intensity or grey values. From a different point of view, namely statistical
physics, the image values can be considered as an observations of stochastic vari-
ables. Both perspectives lead to essentially the same definitions of such basic image
properties. Here, we will first present some basic formal methods to describe the
generation and representation format for 2D images. Next, we sketch some basic
image properties, namely their representation, the characteristics, and the registra-
tion of images. To study the characteristics, we model an image as an observation
of a stochastic process (as sketched above), which is also the basic model in Phys-
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ical Cosmology where it is assumed that the initial conditions of the Universe are
described by a homogeneous and isotropic Gaussian random field. Throughout the
article u(x) denotes a field of scalar values which can be interpreted in two ways,
namely, as intensity or probability distributions. Such scalar values in a field are ad-
dressed for the spatial position of a vector in an arbitrary space. Multiple intensity
values, which are measured by different sensory channels or registration methods,
but in a spatially registered way, can be represented as a vector field u(x). In other
words, such an image, at a spatial position u(x), contains a vector of dimension 2,
3, or n, depending on the number of registered sensory channels. Examples are im-
ages from magnetic resonance imaging (MRI) combining spin relaxation, T1 and
T2, images taken by a color camera measuring in different bands of wavelength
sensitivity as red, green, blue (RGB), or a scalar image field of intensity values
combined with another field of derived features, such as local variances measured
in a local image neighborhood.

10.4.1

Generation and Representation of 2D Images

Our focus in this article will be on two-dimensional (2D) images which are ac-
quired from some environmental measurement space of arbitrary dimension. In
the case of the three-dimensional (3D) space of an outdoor scene the image acqui-
sition process can be formally described by a projective transform. Most often the
projection results in a 2D cartesian coordinate system commonly named image
plane. In Physical Cosmology, instead, an image can be defined on a unit sphere.
In such cases the mapping of the (image) plane onto the curved surface can be de-
scribed by a geometric transform. If the topology of the two such surfaces is iden-
tical then the mapping can be inverted. In the case when the image acquisition is
distorted, for example due to some geometric lens distortion, the proper registra-
tion is also described by a proper warping transform. Here, we briefly sketch some
projective as well as mapping transformations. A more complete overview is given
in [9].

10.4.1.1

Perspective Projection

For the perspective projection, a point in 3D space x ∈ R3 is projected in 2D space
y ∈ R2, for example, representing an image plane, by

(y1, y2) = (x1, x2) · f/x3 , (10.1)

where the third component is omitted because it equals the constant f. The geo-
metric interpretation is that arbitrary points (normally x3 > f ) are projected onto
an image plane positioned at a positive distance x3 = f from the coordinate center
(0, 0, 0). If, instead, the distance from the projection center is taken to be negative,
that is –f, the projection resembles a pinhole projection. A key characteristic is that
the resulting image is upside down (negative image) while the former case yields
a positive image. It should be noted that, in the extreme case of very distant scene
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points with x3 >> f, for small objects relative to the field of view, and with only mi-
nor relative depth variations, the perspective projection can be approximated by an
orthographic projection, namely (y1, y2) = (x1, x2).

10.4.1.2

Stereographic Projection

In various applications, specific surface properties, such as their 3D orientation,
need to be represented in a flat space in order to build proper data structures.
A useful approach is to map the spherical hemisphere of surface normals visible
from the observer’s viewpoint onto a tangential plane positioned in the sphere’s
north pole. If the center of projection is shifted into the south pole, then the upper
hemisphere of the unit sphere is mapped into a circle of radius two (stereographic
projection; [10]). Though this mapping is complete it also has some shortcomings,
namely that only one-half of the sphere is projected and that the projection is not
area-preserving.

10.4.1.3

Mollweide Projection

Generally, images can be defined on arbitrary surfaces (see also Section 10.4.4).
Examples are the surface of the earth, which is ideally defined on a unit sphere,
or satellites which measure over the celestial sphere. Therefore, images defined on
the sphere play a special role. An approach that overcomes the limitations of the
stereographic projection is the Mollweide projection,

y1 = (2
√

2/π)Φ cos(Ψ/2) (10.2)

y2 =
√

2 sin(Ψ/2) with Ψ + sin Ψ = π sin Θ and (10.3)

Φ = arg(x1 + ix2) , Θ = arctan
(
x3

/√
x2

1 + x2
2

)
, (10.4)

where Φ ∈ (–π, +π] denotes the longitude from the central meridian, Θ ∈ (–π/2,
+π/2) denotes the latitude, and Ψ denotes only an auxiliary angle. This projects
the surface of the total unit sphere onto a plane forming an ellipse, where the
major axis is twice as long as the minor axis. Additionally, this projection is area
preserving. This property can be easily checked if one integrates over an arbitrary

(a) (b) (c)

(         )

Figure 10.2 Projections: (a) Perspective projection of the point

(x1, x2, x3) onto the image plane positioned at f. (b) Continental

contour lines of the earth. (c) Area-preserving Mollweide

projection for the continental contour lines.
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surface patch on the sphere and on the plane, and shows that the calculated areas
are equal in size. Figure 10.2c shows the projection for the continental contours of
the earth.

10.4.2

Image Properties

In each image representation the following key properties can be identified: (i)
The space or surface where the image is defined (see methods for projections in
Section 10.4.1); (ii) the number of quantization levels; (iii) the resolution; and (iv)
the scale. Although, the scale of an image is intertwined with the resolution, we
discuss these two properties separately. Figure 10.3 depicts all these properties.

10.4.2.1

Quantization Property

The quantization levels are defined by the range of the data values. This proper-
ty is determined by two criteria. First, the range of the acquisition sensor, and

Figure 10.3 Image properties: (a) 2D magnetic

resonance image mapped onto an arbitrary

surface, thus the image coordinates depend

on the surface geometry. (b) Same image visu-

alized with 4, 8, 16 and 32 quantization levels.

(c) Image with a resolution of 32 ~ 32 px,

64 ~ 64 px, 128 ~ 128 px, and 256 ~ 256 px
(original). (d) Scales of nonlinear isotropic

diffusion of the image for 1000, 100, 50, and

10 iterations (λ = 0.02, σ = 1.5, parameters

referring to [11]).
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second the storage format. Ordinary formats have 8 Bits, and thus 256 quanti-
zation levels. For color images each channel of the three channels in an RGB
model could be quantized into 8 Bits, consequently having 24 Bits. Note, that
the quantization always produces an error of discretization, which depends on
the number of quantization levels and the sampling of the quantization inter-
val.

10.4.2.2

Spatial Resolution Property

The upper spatial resolution is limited by the quality of the sensor, and the lower
resolution is determined by the smallest object in the image which should be prop-
erly represented. Generally this depends on further processing tasks, for example,
the successful recognition of a small object. Additionally the arrangement of pixels
can be done in different ways for an image which is defined on a sphere the choice
is not particularly obvious. Therefore, we refer to the HEALPix [8] pixelization tech-
nique on a sphere which possesses many features of a cartesian pixelization on
a plane.

10.4.2.3

Scale Space Property

Scale spaces are used to represent the inner structure of an image with different
levels of detail. On the finest level, all objects and structures are visible. In contrast,
larger scales combine fine neighboring structures and subsume them to single
objects. A general technique for the construction of scale spaces is the diffusion
process [11],

∂

∂t
u(x, t) = Δ[ρ(u; x, t)∇u(x, t)] , (10.5)

with u denoting the current diffused image at each location x for an internal time t,
or scale. ρ denotes the diffusion parameter, which determines the local rate of dif-
fusion. In the simplest case, called homogenous diffusion, ρ is a constant and does,
not depend either on space or time, or on the actual solution u(x, t). For this type
of diffusion an analytical solution can be derived based on the Green’s function
approach which leads to a Gaussian kernel with σ =

√
2t. An image constructed

with this type of diffusion could also be defined by a corresponding resolution,
which means smoothing the image with the same Gaussian kernel as for the dif-
fusion process. Other types of diffusion for the construction of different scales,
have results which cannot be derived by Gaussian smoothing. In particular, the
results in Figure 10.3 (c) and (d) for resolution and scale are different. Here, a non-
linear isotropic diffusion is used for the construction of different scales, where
ρ depends on the actual solution u(x, t) and is a scalar. In image processing ρ is
regulated by the structure of the actual solution u(x, t), for example, the image gra-
dient.



282 10 Image Processing and Feature Extraction

10.4.3

Basic Image Characteristics

For the analysis of image characteristics an image can be defined as the observation
of a stochastic process in three ways. First, the image is modeled as the outcome of
one random variable (RV); second, as one observation of a random field (RF), and
third as a series of RVs. Each distinct modeling allows the study of distinct image
characteristics which contain information of the structure and distribution of im-
age intensities. An overview of characteristics and modeling is given in Table 10.1.

10.4.3.1

Histogram

Assume that all intensities contained in an image are continuous and the outcome
of a single RV X. Additionally, the probability distribution function of X is u(x) for
all x ∈ R of the random space. With this formalism the distribution of intensities
in an image can be expressed by the normalized histogram

HN(Bε) := P(X ∈ Bε) =
∫

x∈Bε

u(x)dx , (10.6)

with Bε := {x|b–ε/2 u x < b+ε/2}, which equals the probability distribution function
for ε → 0. For images with continuous intensities the histogram has bins counting
an interval of intensities which have only a finite number of levels. In this case
ε defines the width of these bins. Figure 10.4a shows histograms of three image
features. For the cumulative normalized histogram

HN,C(b) := Fu(b) =
∫ b

–∞
u(x)dx (10.7)

these bins are not necessary and one integrates from the lowest possible intensity
–∞ to the intensity level b. This histogram equals the probability mass function Fu

of the RV X.

10.4.3.2

Covariance and Correlation

For two images modeled by RVs X and Y a comparison on the basis of their statis-
tical behavior can be achieved by the covariance

CovX,Y =
〈
(X – 〈X〉)(Y – 〈Y〉)〉 = 〈XY〉 – 〈X〉 〈Y〉 , (10.8)

Table 10.1 Formalism for the modeling of an image and the achieved image characteristics.

Model Single RV RF Series of RVs

One input histogram co-occurrence, Fourier transformation, joint distribution,
two-point correlation Fourier transformation

Two inputs correlation joint histogram, correlation –
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Figure 10.4 Image characteristics: (a) His-

togram for image features, the intensity,

direction, and magnitude of intensity gradient

are from Figure 10.3c original (25 bins).

Therefore the direction and magnitude are

normalized to the unit interval. The magnitude

has an unimodal histogram (one peak), the

intensity a bimodal histogram (two peaks),

and the direction is almost equaly distributed.

(b) Joint histogram between intensity and

gradient magnitude (256 bins). The two peaks

in the histogram are the overlay between the

unimodal and multimodal histograms, where

the peaks are located at the same bin numbers

as in the histograms. For visualization the

square root of the joint histogram is shown.

where 〈·〉 denotes the average over all observations of the RV. This definition is
lacking for the dependence of the interval of Cov on the interval of outcomes from
X and Y. A normalized variant is the correlation

CorX,Y = CovX,Y/
√

Var(X)Var(Y) ∈ [–1, +1] , (10.9)

where Var denotes the variance of the individual random variables. The division
by the variances of X and Y normalizes the interval to [–1, +1] independently of
the input intervals. Correlation-based techniques are used in many fields of image
processing; for example, for template matching, flow/stereo estimation and image
registration [12, 13]. Generally, the goal is the determination of correspondences
between the same sub-image in two images with temporal or spatial coherence.

10.4.3.3

Joint Histogram

Both characteristics (the normalized histogram and the correlation) do not include
any information about the spatial distribution of intensities. All intensities are out-
comes of the same single RV not bound on any spatial position in the image. On
the contrary a dependence can be modeled by RFs X(x1, x2), containing one RV
for each spatial position (x1, x2) in the image (here 2D). For two RFs X(x1, x2) and
Y(x1, x2) with their corresponding probability distribution functions u and v, the
joint normalized histogram is

HJ(Aε, Bε) =
∫ ∫

P(X ∈ Aε ∧ Y ∈ Bε)dx1 dx2

=
∫ ∫ ∫

x∈Aε

∫
y∈Bε

u(x1, x2; x)v(x1, x2; y)dxdydx1 dx2 , (10.10)

where the outer two integrals operate over the total image domain, and the inner
two integrals over the bin intervals Aε and Bε. Note, that a separate probability
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distribution function u exists for each position (x1, x2) of the RF, and x denotes the
argument of the function u, as in the 1D case u(x). In the joint histogram, paired
intensities according to the bins Aε and Bε are voted, where the intensity pair is
located at arbitrary positions (x1, x2) in the two RFs X and Y. In Figure 10.4 (b)
a joint histogram between the feature channels intensity and magnitude of the
intensity gradient is shown.

10.4.3.4

Co-occurrence

For images with multiple channels, as for example images acquired by multi-
spectral sensors or color images, a joint histogram describes the correlation be-
tween the intensity distributions of different channels. The joint occurrence of val-
ues within one image or channel can be quantified by the co-occurrence matrix

Co(Aε, Bε) =
∫ ∫ ∫

x∈Aε

∫
y∈Bε

u(x1, x2; x)u(T(x1, x2); y)dxdydx1 dx2 . (10.11)

Here, the first RF X(x1, x2) is defined by the image and the second RF XT(x1, x2)
by a spatial transformation T(x1, x2) of the first RF. This characteristic highlights
periodic structures and shifts of regions within one image.

10.4.3.5

Fourier Transformation of One Observation of an RF

Many applications in image processing profit from the analysis of images in the
Fourier space, especially the study of the effectiveness of filters (see Section 10.5).
The Fourier transformation

û(k1, ..., kd; x) =
∫
C

...
∫
C

u(x1, ..., xd; x) exp

⎛⎜⎜⎜⎜⎜⎜⎝–i
d∑

l=1

klxl

⎞⎟⎟⎟⎟⎟⎟⎠ dx1...dxd , (10.12)

u(x1, ..., xd; x) =
1

(2π)d

∫
C

...
∫
C

û(k1, ..., kd; x) exp

⎛⎜⎜⎜⎜⎜⎜⎝i d∑
l=1

klxl

⎞⎟⎟⎟⎟⎟⎟⎠ dk1....dkd ,

(10.13)

from the spatial domain u into the Fourier domain û, is again based on the formal-
ism of the RF, where one concrete observation of the RF is transformed. After the
transformation into the Fourier domain, û is a complex number. Therefore, û can
be analyzed in phase Φ and amplitude A

Φ = arg(û) , and A = |û| . (10.14)

In Figure 10.5b the amplitude of the transformed input image a is shown. The cor-
responding inverse transformation of a filtered version is depicted in Figure 10.5d.
For images the information about the spatial locality of structure is stored in the
phase, and the information about the general periodicity is represented within the
amplitude. To highlight this property consider a shift of the image in the spatial
domain, therefore only the phase is influenced, not the amplitude. Thus, no infor-
mation of the locality is included in the amplitude.
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Figure 10.5 Fourier and inverse Fourier

transformation: (a) Input image again from

Figure 10.3b (original) with superimposed

regular grid. (b) Fourier spectra (amplitude)

of the image with characteristic peaks repre-

senting the grid and their multiples. (c) Boxed

version of the fourier spectra. This realizes

a box filter, where frequencies representing

the first multitude of the grid are cut off. For

visualization the square-root of the spectra is

plotted. (d) Inverse Fourier transformation of

boxed spectra.

10.4.3.6

Fourier Transformation of a Common Distribution Function

In some cases the stochastic process is defined by a series of RVs (X1, ..., Xd), and
this models the dimensionality of the image. For example, an image is defined as
the outcome of a dD normally distributed RV. Analogous to the Fourier transforma-
tion of RF, here the transformation is defined on the basis of the common density
distribution function u(x1, ..., xd) which equals the product of the single distribu-
tion function u(xi) if the RVs are independent. The Fourier transformation

û(k) =
∫
Cd

u(x) exp(–ikx)dx , u(x) =
1

(2π)d

∫
Cd

û(k) exp(ikx)dk , (10.15)

where x, k ∈ Rd is the joint characteristics function of the RVs X1, ..., Xd. In other
terms this is the expected value û =

〈
exp(–i

∑d
l=1 klXl)

〉
of the series of RVs in respect

to the Fourier base. û can be interpreted as the probability distribution function of
new RVs X̂1, ..., X̂d, which are also independent, in fact, of the orthogonality of the
Fourier base.

10.4.3.7

Two-Point Correlation Function and Power Spectrum

In cosmology, images of homogeneous and isotropic RFs are often studied. Here,
characteristics of length scale or separation distance are of special interest. The
power spectrum is given by an average over the Fourier modes û(k) with a wave
number k = |k| of the field3) u(x) with x ∈ R3. In configuration space, a field can be
quantified by the two-point correlation function

�(r) :=
〈
u(x)u(x + r)

〉
, (10.16)

3) Note that we omitted the x for one realization
of the RF u(x, x) at the position x, because
cosmological observations always display one
realization.



286 10 Image Processing and Feature Extraction

where the average 〈·〉 is taken over all positions x and all orientations of the sepa-
ration vector r, assuming homogeneity and isotropy. Hence there is only a depen-
dence on r = |r|. The two-point correlation function of a field on a sphere is

C(ϑ) :=
〈
u(θ, φ)u(θ′, φ′)

〉
, (10.17)

where now the average 〈·〉 is taken over all pairs of (θ, φ) and (θ′, φ′) which are
separated by the angle ϑ. Again a power spectrum

Cl :=
〈
|alm|2

〉
=

1
2l + 1

l∑
m=–l

|alm|2 (10.18)

can be defined, where alm are the complex coefficients obtained from an expansion
into spherical harmonics Ylm(θ, φ) due to u(θ, φ) =

∑∞
l=0
∑l

m=–l almYlm. Here l pa-
rameterizes the separation scale and m the direction. In cosmological applications
the so-called angular power spectrum

δT2
l :=

l(l + 1)
2π

Cl (10.19)

is used. Note that, in the case of statistical homogeneity and isotropy, a two-point
correlation function can be obtained by a transformation from its corresponding
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Figure 10.6 Statistical quantities of the CMB:

(a) Angular power spectrum δT2
l of the ob-

served fluctuations in the cosmic microwave

background (CMB) measured by the Wilkinson

Microwave Anisotropy Probe (WMAP) [7]. The

error bars include measurement errors and

the statistical variance. These characteristics

are very sensitive, i.e. the peak positions and

peak heights, to cosmological parameters.

Independent cosmological determinations of

the cosmological parameters are in excellent

agreement with the best-fit standard model

ΛCDM (gray line). The systematic deviations

on largest scales (small l) cannot be explained

by the standard model and are possible

indications of a finite Universe [14]. (b)

Two-point correlation function C(ϑ) of the

best-fit standard model ΛCDM (dark gray line

and the statistical variance as light gray area)

and measurements of WMAP (black line).

This characteristic highlights the largest scales

(ϑ W 180◦/l) where the explanation by the

standard model is limited. Going beyond the

standard model, recent work shows [14], that

beside the suppression of δT2
l on small l the

shape of this characteristic can be reproduced

with high confidence, by studying universes

with a finite spatial extension.
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power spectrum and vice versa. These characteristics carry the same information,
but highlight different separation scales and thus different cosmological features.
In Figure 10.6 the angular power spectrum and the two-point correlation function
of the measured cosmological microwave background (CMB) is shown where now
u(θ, φ) = T(θ, φ) – T̄ (see Section 10.3). In addition to omitting the constant term
(monopole) with l = 0, which is equivalent to T̄, the dipole with l = 1 is, also omitted
due to a superimposed dipole generated by the relative motion of the observer to
the CMB.

10.4.4

Image Registration

The problem in image registration is to find a mapping between a reference image
uref and a template image utem. Formally, the problem is to determine a transforma-
tion φ applied to the template minimizing the difference to the reference image.
This is a minimization problem which could include additional constraints, for ex-
ample, the exact mapping of specific parts within the template and corresponding
parts in the reference image. Here, we describe a generalized framework former-
ly introduced in [15] which is based on variational techniques. Let us define the
optimization problem

E(φ) := D(uref, utem; φ) + αS(φ) + �Csoft(φ)
φ
––→ min , Chard(φ) = 0 , (10.20)

which contains three main terms: (i) a data term D; (ii) a smoothness term S; and
(iii) a (soft) constraint term Csoft. Additionally, hard constraints Chard can be includ-
ed by side conditions. The parameter α steers the smoothness and � controls the
influence of additional constraints, respectively. In Figure 10.7 the functionality
of the three main terms is depicted. The task is to find a transformation φ̂ such
that E(φ̂) is minimal, considering the side conditions. A restricted class of possi-
ble transformations are affine transformations, including translation t, rotation r,
scaling c, and shear s. For these transformations each spatial position x ∈ R3 is
transformed into projective space by Θ(x) = y = (x1, x2, x3, 1). Inverse transforma-
tion Θ–1 is realized by x = (y1, y2, y3)/y4, if the fourth component of y is not equal

Figure 10.7 Image registration: (a) The problem in image

registration is to find a mapping between the template and

the reference image. (b) Additionally, smoothness for the

solving transformation φ could be required, and (c) landmarks

should be matched best for soft constraints and exact for hard

constraints.
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Figure 10.8 Affine transformations: (a) Reference for the

transformations. (b) Translation for t = (0.5, 0.5, 0). (c) Rotation

for r = (15, 0, 0) deg. (d) Scaling for c = (1.5, 1.75, 1.25). (e) Shear

for s = (85, 0, 0) deg.

to zero. Affine transformations in the projective space are realized by a sequential
chained multiplication of transformation matrices

φ(t, r, c, s; y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 t1

0 1 0 t2

0 0 1 t3

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 cos r1 sin r1 0
0 – sin r1 cos r1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ...

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cot s1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ...y , (10.21)

where we indicated all three rotational matrices by the rotation around the x1-axis,
and all three shearing matrices by the shear in the x1x2-plane. Figure 10.8 depicts
examples of those transformations. More advanced transformation techniques can
be found in [9].

For global affine transformations the parameters t, r, c, s ∈ R3 are defined only
once for the domain, while local affine transformations exist for each spatial po-
sition t(x), r(x), c(x), and s(x). This approach is very extensive introducing twelve
unknowns for each spatial position. A simplification assumes constant transfor-
mations in small regions within the total spatial image domain.

10.4.4.1

Data Term

The data term D compares the (gray) values of the reference image uref (or some
extracted feature measure, such as edges, corners, etc.) with the values of the trans-
formed template image utem. In this case several distance measures could be ap-
plied. An intuitive measure of distances is the sum of squared distances (SSD):

D(uref, utem; φ) =
∫ [

uref(x) – utem
(
Θ–1 (φ[t, r, c, s; Θ(x)]

))]2
dx . (10.22)

This distance assumes that the intensities of corresponding values in uref and utem

are equal. If this assumption is not satisfied, correlation-based methods could be
applied, which assume a unimodal distribution of intensity values. For images with
a multimodal histogram, mutual information (MI) related measures could be used,
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which are based on the joint intensity histogram. In general, the data term D is also
called an external force, because this term is mainly driven by the intensity values
of the template and reference.

10.4.4.2

Smoothness Term

In contrast to the data term, the smoothness term S is defined by the mapping φ
which constitutes an internal force by imposing a condition on the set of possible
solutions. The key observation is that in this framework any smoother which is
Gârteaux-derivable could be applied [15]. Because of its similarity with the diffusion
equation in Section 10.4.2 we present as a smoothness condition, the diffusion
smoothness

S(φ) =
∫

‖ ∇φ(t, r, c, s; Θ(x)) ‖2
2 dx . (10.23)

Here the integral, which ranges over the total image domain, induces global
smoothness onto the mapping function φ, by squaring and summing up all first-
order partial derivatives of φ according to the spatial change of the variables t, r, c,
and s. Thus, each strong change in φ causes a high derivative, which is unwanted
and therefore penalized.

10.4.4.3

Constraint Term

Finally, we discuss the inclusion of extra constraints that need to be achieved by
the optimized solution. Assume two sets of landmarks, the first set defined in
the reference image {xref

l }l=1...m, and the second set defined in the template image
{xtem

l }l=1...m, where correspondence between the landmarks is expressed by the same
index. A soft constraint term can be formalized by

Csoft(φ) =
m∑

l=1

‖ Θ–1(φ[t, r, c, s; Θ(xtem
l )]) – xref

l ‖2
2 . (10.24)

This constraint enforces the transformed landmarks of the template to be closely
matched with the landmarks of the reference xref

l , but deviations are possible. In
contrast, for the hard constraint Chard a match should be exact.

10.5

Methods of Image Processing

In this section we discuss some approaches for pre-processing image signals uti-
lizing a filtering process. Many methods in image processing utilize mechanism
that can be described in terms of linear systems theory [2, 9, 16]. Filters can be de-
fined according to their functional purpose, for example, smoothing by elimination
of high-frequency content, or discontinuity detection by extracting high-frequency
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content. We briefly summarize the properties of linear systems and display Gaus-
sian smoothing filters and some related derivative operations. So-called Gabor fil-
ters define band-pass operations for combined smoothing and discontinuity detec-
tion having localized spectral windowing properties. We also show how a bank of
filters can be constructed. Finally, we briefly present approaches to nonlinear filter-
ing as well as approaches that help to detect localized key points which obey local
2D image structure properties.

10.5.1

Filtering Process

We consider here a specific class of system operatorsH to model the filtering stage,
namely those that are linear and space invariant.4) Such systems are commonly
assumed in image processing, since the computations can be fully described using
linear systems theory. A system is linear if the identity

H{a u(x) + b w(x)} = a Hu(x) + bHw(x) , (10.25)

holds. Further, a system is space or shift invariant if

H{u(x – x0)} = v(x – x0) , for H{u(x)} = v(x) , (10.26)

to denote that the system operator response is position invariant given identical
input conditions. Taken together, the system response for an arbitrary input is fully
defined by the correspondence

H{u(x)} = H(x) ∗ u(x) , ! H{û(k)} = Ĥ(k) · û(k) , (10.27)

where the left-hand side denotes the convolution of the input signal u(x) by the
system’s impulse response function H(x) (∗ is the convolution operator). The cor-
respondence (denoted by !) establishes that the same result can be computed in
the spatial as well as the spectral, or Fourier, domain. In the frequency domain k
the convolution is equivalent to a multiplication of the Fourier transforms of the
respective signals. This property is useful to study the characteristics of systems.

10.5.2

Linear and Space-Invariant Filters

10.5.2.1

Gaussian

Smoothing for noise suppression is a key operation in early signal processing. An
ideal low-pass filter T · rect(kT) is defined by a specific cut-off frequency 1/(2T)
in the spectral domain. Due to the similarity theorem the corresponding spatial

4) Space invariance is the generalization of
the time invariance property defined for
time-series analysis.
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filter si(πx/T) (where si(x) = sin(x)/x) is of infinite extent with a damping that is
proportional to the maximum frequency. In order to utilize a filter function that
is localized in the spatial as well as the frequency domain, a Gaussian low-pass is
often employed

HGauss(x) =
exp
(
– ‖ x ‖2

2 /2σ2
)

(
√

2πσ)d
! ĤGauss(k) = exp

(
–
‖ k ‖2

2

2σ̂2

)
. (10.28)

The Fourier transform pair results in two Gaussians which are related by their stan-
dard deviations, namely σ̂ = 1/σ. Therefore a sharp spatial Gaussian corresponds
to a flat Gaussian in the Fourier space and vice versa. (compare Figure 10.9a and
e). Due to the Gaussian damping of higher spatial frequencies the filter applica-
tion reduces the effective resolution of an image, resulting in a coarser scale (see
Section 10.4.2).

10.5.2.2

First-Order Derivative

Spatial derivative operations can also be formulated by filtering operations. For
example, the first-order derivative is denoted by

u(x + ej dx) = u(x)dx0 +
∂

∂xj
u(x)dx1 + O(dx2), j = 1...d , (10.29)

Figure 10.9 Filters and their spectra: (a)

Gaussian filter. (b) Negative of Laplacian of

Gaussian. (c) Odd part of Gabor filter (sine).

(d) Even part of Gabor filter (cosine). In all

Gaussians σ = 1.5, and for the Gabor filters

λ = 2, ψ = 15 deg. The corresponding spectra

of the filters are drawn in the lower part.

(e) shows the lowpass filter characteristic

of the Fourier transformed Gaussian. (f) is

a characteristic bandpass filter. (g) visualizes

the spatial selectivity of the odd part in the

Fourier space, and (h) for the even part. Note

that, for better visibility, all values are rescaled

to the full intensity range.
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where ej denotes the j-th unit vector. Division by dx and rearranging terms results
in the operator for the first-order derivative

H{u(x)} =
u(x + ej · dx) – u(x)

dx
+ O(dx) . (10.30)

All first-order partial derivatives for j = 1, ..., d together form the gradient of the
input image. In Fourier space the derivatives

H{u(x)} =
∂

∂xj
u(x) ! H{û(k)} = ikû(k) j = 1...d , (10.31)

lead to a multiplication of the original spectrum with ik, as the partial derivatives
can be calculated within the second integral of (10.15). Multiplication of the spec-
trum with a linear or faster-than-linear function amplifies noise. This effect can be
reduced by appliance of a Gaussian filter kernel before calculating the derivative of
the input image.

10.5.2.3

Second-Order Derivative and Laplacian of Gaussian (LoG)

The second-order derivatives are defined on the basis of the Hessian matrix

H{u(x)} =
∂2

∂xj∂xl
u(x) ! H{û} = –kjklû(k) j, l = 1...d . (10.32)

In Fourier space the Hessian matrix is the negative of the transformed image û(k)
multiplied by the two frequency components kj and kl. In this case noise is ampli-
fied twice which makes the second-order derivatives highly sensitive, especially for
high-frequency noise.

The trace of this Hessian matrix defines the Laplacian operator L = trace({∂2/
(∂xj∂xl)}j,l=1...n). For suppression of noise again the Gaussian filter could be applied,
before the Laplacian. Due to the law of associativity the convolution of an image
with the Laplacian operator can be applied directly to the Gaussian, resulting in the
Laplacian-of-Gaussian (LoG)

HLoG(x) = L{HGauss(x)} =
1

(
√

2πσ)d

( ‖ x ‖2
2

σ4 –
1
σ2

)
exp
(
–
‖ x ‖2

2

2σ2

)
! ĤLoG(k) = – ‖ k ‖2

2 ĤGauss(k) , (10.33)

which is characteristic for a bandpass filter, where the frequency with maximal
amplification is k̃j = ±

√
2σ̂ for each dimension j. The 2D version of this filter

defines a ring with radius
√

2σ̂ of maximum spectral sensitivity (see Figure 10.9f).

10.5.2.4

Gabor Filter

While the LoG operator specifies an isotropic band-pass filter, often orientation sen-
sitive filter devices are needed, for example, to separate oriented texture patterns of
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similar wavelength properties. Gabor filters specify an example in which a select-
ed set of frequencies are passed which fall into the region of a pair of Gaussian
windows positioned along a given axis of orientation shifted in opposite directions
with respect to the origin (see Figure 10.9 g and h). The combined frequency/phase
shift (defined by the wavelength λ and direction ψ) of the Gaussian filter in the fre-
quency domain leads to a modulation of the space domain Gaussian by the wave
function exp(ik0x).

HGabor(x) = exp(ik0x)HGauss(x) , ! ĤGabor(k) = ĤGauss(k – k0) . (10.34)

Note, that the Gabor filter results in a quadrature filter with an odd (sine) shown in
Figure 10.9 (c) and an even part (cosine) shown in (d),5) with their corresponding
Fourier transforms in (g) and (h), respectively. For the interpretation of these two
parts, again the phase and amplitude as defined in (10.14) are considered. Here,
the amplitude can be interpreted as the power of the filtered image. The phase has
high responses for parts of the image which are coincident with this phase and the
specified wavelength. A separated analysis of the two parts shows that the odd part
(sine) behaves in a similar way to a bandpass filter, where the even part (cosine) has
a Direct Current (DC) level component, due to the residual response

DC(HGabor,even) =

∫
Rd 1 cos(k0x)HGauss(x)dx

(
√

2πσ)d
= exp

(
–
‖ k0 ‖2

2

2σ̂2

)
, (10.35)

for a constant signal. For a DC-level free definition the constant value
DC(HGabor,even) is subtracted from the even part of the Gabor filter, which can
be recognized in Figure 10.9d by a slightly darker gray in the display of responses
as in c, especially for high frequencies.

10.5.2.5

Gabor Filter Bank

Using properly scaled and shifted Gaussian window functions the whole frequency
domain could be sampled using Gabor filters. This, in turn, leads to a signal rep-
resentation by a population of Gabor filter responses (compare Figure 10.10). This
sampling can be achieved in two ways. (i) The Gaussian envelope σ̂l is constant
in all rings; and (ii) the number of Gaussians in each ring is constant, meaning
that Δψl is constant in all rings l. For this second approach the wavelengths and
standard deviations are

λl+1 = λl
1 – sin(Δψ/2)
1 + sin(Δψ/2)

, and σ̂l =
2π
λl

sin(Δψ/2) , l v 0 , (10.36)

where l denotes the number of the ring, given λ0 the radius of the innermost ring.
This scheme constructs Gabor wavelets, defined by a constant number of waves in

5) The Hilbert transform û(x) = u(x) ∗ 1/(πx) of
the even part results in the negative odd part
and the Hilbert transform of the odd part
results in the even part.
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Figure 10.10 Construction of Gabor space:

(a) Gabor filters drawn as circles with radius

of standard deviation for three rings with

Δψ = π/8, and λ0 = 1. Applications using

only the energy of the quadrature Gabor filter

need only a sampling of the half-space (drawn

in gray). Here the whole space (including all

circles) is sampled. (b) The superimposition

of all filter spectra for the even part (cosine).

The three filter rings in the total spectrum are

visible through the three stepped gray valued

regions. For better visibility the square-root of

the spectra is shown.

the envelope of the Gaussian for each ring (self-similarity), due to λl+1/λl = σ̂l/σ̂l+1.
In Figure 10.10 three rings of Gabor filters sampling the Fourier space are depict-
ed. An application of Gabor filters is given in Section 10.5.4 for the extraction of
contour lines from images.

10.5.3

Morphological Filtering

In addition to the linear position-invariant filtering, we briefly present a class of
nonlinear operations based on mathematical morphology. Such nonlinear filters
follow the general schema

H{u(x)} = F {{u(x)|x ∈ N(x)}} , (10.37)

where F operates on a set and returns a single element of this set, and N(x) is
the neighborhood or support for the operator. These filters are also known as rank
order or morphological operators, operating on the order of the elements in the
set. For the first filter this set of input values is sorted and the central element is
selected by the operator F , which is the median of the input data set. This filter
is appropriate for eliminating impulsive noise, visualized in Figure 10.11. In gen-
eral, this filter obtains edges and transforms patches with continuous gray-level
ramps into areas of a single gray-level, caused by the selection of the median el-
ement. Morphological operators select the minimum or maximum from the set.
Therefore, closed objects become smaller according to their spatial extent for se-
lecting the minimum and, respectively, wider for the maximum selection. These
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Figure 10.11 Gaussian and median filter:

A magnetic resonance image is distorted

by Gaussian noise with standard deviation

σ = 0.25 and mean μ = 0.5 (a), and impulsive

noise where 25% of all pixels are disturbed (b).

Results of filtering with a Gaussian kernel with

σ = 0.25 and length of 3 px are shown in (c1)

for Gaussian noise and (c3) for outlier noise,

and with a Gaussian kernel with σ = 1.75 and

length of 7 px in (c2) and (c4), respectively.

Results for median filter with a neighborhood

of 3 ~ 3 px for Gaussian noise are in (d1) and

outlier noise in (d3), and with a neighborhood

of 7 ~ 7 px for Gaussian noise in (d2) and

outlier noise in (d4). Note that the median

filter is appropriate to cope with impulsive

noise, and the Gaussian filter is appropriate

for handling Gaussian noise.

operations can be consecutively combined resulting in an opening or closing of
structures. Further details for opening and closing are reported in Section 10.6.2.

10.5.4

Extraction of Image Structures

The gradient and higher-order derivatives of an image are key approaches for the
extraction of image structures. For the gradient, first-order derivatives (as stated
in (10.30)) are calculated. Each position in the image contains a gradient directed
into the direction of the strongest increasing gray-value ramp (see Figure 10.12b).
An analysis of the structure based on this gradient is not appropriate because un-
correlated noise and a constant gray value patch cannot be distinguished. Thus,
the orientation which best fitts the gradients in a neighborhood (for example, de-
fined by the size of the patches) should be calculated. This could be defined as an
optimization problem,∫

N(x0)
‖ v(x0)∇u(x) ‖2

2 dx = v(x0)t[
∫
N(x0)

(∇u)t∇udx]v(x0)
v
–→ max . (10.38)

The vector product of the gradient integrated in the local neighborhood is the struc-
ture tensor

{J(u)}j,l :=
∫
N(x0)

uxj uxl dx , j, l = 1...d , (10.39)

for all positions x0. The eigenvalue decomposition of J is denoted by the eigenval-
ues λk and eigenvectors vk ∈ Rd for k = 1...d. The main direction in the neighbor-
hood is the eigenvector corresponding to the largest eigenvalue. For the 2D case
the full interpretation of the structure tensor is given in Table 10.2.
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Figure 10.12 Image gradient, edges and contour: (a) Magnetic

resonance image with marked region. (b) Intensity gradient in

marked region. (c) Magnitude of intensity gradient. (d) Contour

constructed of responses for oriented Gabor filters (σ = 1,

Δψ = π/8, λ = π/3). For clarity in (c) and (d) the square- root is

shown.

Table 10.2 Interpretation of the structure tensor for a 2D image.

Condition Interpretation

λ1 W λ2 W 0 constant gray-value in neighborhood
λ1 >> 0, λ2 W 0 directed structure in neighborhood (hint for edge)
λ1 > λ2, λ2 >> 0 changes of gray-values in more directions (hint for corner)

Based on the structure tensor, measures for edges and corners in images can
be defined. A corner is present if both eigenvalues are significantly greater than
zero. A measure considering this condition is the Förstner corner detector [17]. An
edge can be identified by the ratio between the eigenvalues. A contour line simi-
lar to edges is constructed with a small Gabor filter bank, consisting of one scale
and eight orientations, only using the amplitude of the complex filter responses.
From this ensemble of filter responses corresponding to each specific orientation
the sum is calculated, resulting in the contour signal. This sum is depicted in Fig-
ure 10.12d.

10.6

Invariant Features of Images

Above, we have discussed some basic processing approaches for noise suppression,
signal restoration, the detection of localized structures, and their proper coding.
The main aim of signal processing is the extraction of relevant features from im-
ages to generate compact descriptions. Such descriptions need to possess certain
invariance properties, mainly against transformations such as position, rotation, or
scaling. Such descriptions serve as a basis for classification or matching different
representations utilizing proper similarity measures. In this section we focus on
features and descriptions derived thereof which are relevant for Physical Cosmol-
ogy. We first address the aim to find matchings between objects using representa-
tions which are invariant to translation, rotation and scaling. Afterwards, we leave
the direct description of scalar fields and switch to methods of stereography, using
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descriptions of binary fields. We present explicit relations of scalar fields to binary
fields and discuss the connectivity of structures by topological classification. Then
Minkowski Functionals are shown as a full set of shape descriptors which obey ad-
ditivity and are invariant to translations and rotations. We also present their gener-
alization, namely Minkowski Valuations. Finally, we end by illustrating applications
in cosmology.

10.6.1

Statistical Moments and Fourier Descriptors

Representations with invariant properties are helpful for finding and matching ob-
jects and structures. Important invariance properties are translation, rotation, and
scaling. These properties are depicted in Figure 10.8a–d. In the next paragraphs
several representations which are invariant for at least some transformations are
presented.

10.6.1.1

Statistical Joint Central Moments

The statistical joint central moments of the two random variables (RV)s X1 and X2

with the joint probability distribution function u(x1, x2)

μp,q =
〈
(X1 – 〈X1〉)p(X2 – 〈X2〉)q〉

=
∫ ∫

(x1 – x̄1)p(x2 – x̄2)qu(x1, x2)dx1 dx2 , (10.40)

are invariant with translation. If invariance with scale is additionally required we
assume that ũ(x1, x2) = u(x1/α, x2/α). Through simple substitutions in the integrals
we see that μ̃p,q = αp+q+2μp,q. If we divide μ̃p,q through the zeroth moment to the
power of (p + q + 2)/2 we obtain

μ̆p,q = αp+q+2μp,q/(α2μ0,0)(p+q+2)/2 = μp,q/μ(p+q+2)/2
0,0 , (10.41)

which is invariant with scaling. On the basis of the moments a tensor for the mo-
ment of inertia

J =
(

μ2,0 –μ1,1

–μ1,1 μ0,2

)
(10.42)

can be constructed. The orientation of the eigenvector corresponding to the small-
est eigenvalue of J is Φ = 1/2 arctan(2μ1,1/(μ2,0 – μ0,2)), which is the smallest mo-
ment of inertia. This criterion is invariant with scaling and translation, because
of the invariance of μp,q with translation. The calculation of the ratio causes the
invariance with scaling.

10.6.1.2

Fourier Descriptors

Fourier descriptors are a general method used for the compact description and
representation of contours. Therefore, we assume that there exists a parameterized
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description z(t) = z(t + lT) ∈ C, t ∈ [0, ..., T], l ∈ Z of the contour, which is periodic
in T, and t is the parameter for the actual position of the curve. For the Fourier
transformation assume z(t) = x1(t) + ix2(t), that the first component of the curve
defines the real part and the second component defines the complex part. The
Fourier transform

Z(ν) =
1
T

∫ T

0
z(t) exp

(
–2πiνt

T

)
dt , ν ∈ Z (10.43)

provides the Fourier coefficients Z(ν) for the curve. The first coefficient Z(0) is the
mean point or centroid of the curve. The second coefficient Z(1) describes a circle.
Including the coefficient Z(–1), a arbitrarily ellipse can be constructed. For each
pair of Fourier coefficients Z(n) and Z(–n) an ellipse is constructed, which is run
through n times. The reconstruction of the original parameter curve with the Fouri-
er coefficients is

z(t) =
+∞∑

ν=–∞
Z(ν) exp

(
–2πiνt

T

)
. (10.44)

Note that, in practical applications, for appropriate results only a small number of
Fourier coefficients must be calculated. Now we consider the invariance proper-
ties of this representation. A translational shift in the contour only influences the
Fourier coefficient Z(0). A scaling of the contour line influences all coefficients.
The same holds for a rotation of the curve. An invariant representation can be
constructed in three steps. (i) Drop the coefficient Z(0), which gives translational
invariance. (ii) Set the norm of Z(1) to unity, which gives invariance for arbitrary
scaling. (iii) Set all phases in relationship to the phase of Z(1), which gives rotation-
al invariance.

In summary, Fourier coefficients are a good representation of contours and mo-
ments for the total intensities of objects.

In the following sections we leave the direct description of a scalar field and
discuss methods of stereography, particularly binary fields which only have the field
value 0 or 1. This leads to methods of shape description, which we shall discuss
later.

10.6.2

Stereography and Topology

First, we present several definitions and basic methods of stereography. Then we
discuss the topological classification of structures which measures their connectiv-
ity. Furthermore this gives a motivation for the next subsection.

10.6.2.1

Stereography

To analyze a scalar field u(x) where x ∈ Rd with methods of stereography one has to
generate a binary image further called a structure Q. This can be done by thresh-
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olding. One gets the excursion set

Q ν := {x|u(x) v ν} , (10.45)

by discriminating between regions with a higher and lower field value than the
threshold ν. The boundary ∂Q ν of the excursion set Q ν is then obviously given by
∂Q ν := {x|u(x) = ν}. Varying the threshold ν causes in general a variation in the
monochrome image Q ν. So the threshold can be used as a diagnostic parameter to
analyze the scalar field u(x).

Given a structure Q or even only a point distribution, that is a union of points
which can also be understood as a structure Q, one can generate the parallel set Qε.
By putting a ball Bε with fixed radius ε at every point of the structure Q one gets

Q ε = Q ⊕ Bε . (10.46)

The sum is understood as the Minkowski sum C = A⊕B of two sets A and B, which
consists of all points c = a+b that can be written as a vector sum of two points a ∈ A
and b ∈ B. The corresponding difference Q#Bε is called the Minkowski difference.
In image processing these operations are called dilation and erosion. Again varying
the radius ε causes, in general, a variation of the generated structure Qε. Therefore
the radius ε can also be used as a diagnostic parameter.

Note that, in general, (Q ⊕ Bε) # Bε =/ Q =/ (Q # Bε) ⊕ Bε holds true. Both have an
effect of smoothing on a length scale ε. Closing is understood as Q⊕,#

ε = (Q⊕Bε)#Bε

and opening as Q#,⊕
ε = (Q#Bε)⊕Bε where, compared to Q, the structure Q⊕,#

ε loses
small holes and Q#,⊕

ε loses small cusps. As discussed in Section 10.5.3, effects of
closing and opening can also be achieved by applying nonlinear and space-invariant
filters on scalar fields.

Another way to get a diagnostic parameter to analyze a scalar field u(x) is to apply
an appropriate filter before thresholding. Then the individual filtering parameters
can be used as diagnostic parameters. In practice, it is useful to restrict oneself to
one diagnostic parameter which reflects the feature of interest and hold the other
parameters fixed. For filter processes we refer to Sections 10.5.1–10.5.3.

10.6.2.2

Topology

A useful feature to distinguish between different structures is their connectivity. To
analyze the connectivity of a structure Q we use the topological measure called the
Euler Characteristic (EC), denoted by �, which is related to the genus g by � = 1 – g.
The definition we present here is not only motivated by historical reasons from set
theory and convex geometry, but also provides a good access to its interpretation.
For a convex body K the EC is defined by

�(K) :=
{

1 for K =/ ∅
0 for K = ∅ (10.47)

and obeys the functional equation for adding two convex bodys K1 and K2

�(K1 ∪ K2) = �(K1) + �(K2) – �(K1 ∩ K2) and �(cK) = �(K) , (10.48)



300 10 Image Processing and Feature Extraction

the scaling property, for scaling a convex body K with a constant positive real num-
ber c ∈ R+.

There is a demonstrative morphological interpretation of the value of the EC
which is governed by the number N($) of objects with the characteristic $ in the
structure Q. For 2D structures, there are �(Q ) = N(components) – N(holes). Pos-
itive values are generated by isolated objects of a spot-like structure and negative
values point to a mesh-like structure, where the absolute value reflects the strength.
For 3D structures, there are �(Q ) = N(components) + N(cavities) – N(tunnels). If
there is a connected structure then positive values reflect a cheese-like structure
and negative values a sponge-like structure. The absolute value again reflects the
strength. Figure 10.13 illustrates the functional equation of the EC in (10.48) and
its interpretation for 2D structures.

Given a smooth dD structure Q with d > 1 and a regular boundary ∂Q, then
every point x ∈ Rd on its hypersurface has d – 1 principal curvature radii Ri(x)
with i = 1, ..., d – 1. The local mean curvature H and Gaussian curvature G of the
hypersurface are defined by

H :=
1

d – 1

d–1∑
i=1

1
Ri(x)

and G :=
d–1∏
i=1

1
Ri(x)

. (10.49)

Its EC follows from the Gauss–Bonnet theorem after surface integration

�(Q ) =
Γ(d/2)
2πd/2

∫
∂Q

GdA , (10.50)

where dA denotes the element of the hypersurface ∂Q and Γ(x) the Γ-function.
The EC of a dD excursion set Qν follows from the Morse theorem by counting the
different stationary points of the thresholded function which lie in the excursion
set. It is

�(Qν) =
d∑

k=0

(–1)kNk(Qν) , (10.51)

where Nk(Qν) denotes the number of stationary points (∇u = 0) to the index k,
where k is the number of negative eigenvalues of the matrix {∂i∂ju} for every sta-
tionary point. For a 2D excursion set Qν, which was generated from a function u(x)
with x ∈ R2, we get �(Qν) = N(maxima)+N(minima)–N(saddle points), where now
N($) denotes the number of stationary points of kind $ which are in the excursion
set [19].

In practice, the EC is a appropriate measure to study percolation, wetting and
connectivity where only the topology is of interest. To study also the geometry of
structures one needs more measures. This leads to Minkowski Functionals and
their generalization, Minkowski Valuations, which will be studied in the next sec-
tion.
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Figure 10.13 Euler Characteristic (EC). Multiple

union (adding from top to bottom following the

arrows) of convex bodies (light gray) illustrates

the continuation of the functional equation

of the EC in (10.48). The intersections are

shown by dark gray coloration. Comparing the

columns shows the interpretation of the EC for

2D structures, i.e. the value of the EC reflects

the number of components minus the number

of holes [18].

10.6.3

Minkowski Functionals and Minkowski Valuations

Minkowski Functionals (MFs) permit are to analyze the morphology, that is, the
topology and geometry of structures. They map these structures on numbers or, in
a generalized way, on tensors which will be discussed later in the case of Minkowski
Valuations (MVs), with a well-known geometric and topological meaning. Histori-
cally, MFs were introduced in convex geometry by Hermann Minkowski and were
called “Quermaßintegrale”. Appropriations in stochastic geometry and integral ge-
ometry followed [20–22].

10.6.3.1

Stochastic Geometry

If one wants to analyze the morphology of a dD structure, one needs appropriate
measures which map the structure Q on a set of values F(Q ). For simplicity let
these values be real numbers, then the mapping can be formulated by

Q → Fj(Q ) ∈ R for j = 0, . . . , n . (10.52)

Because we are only interested in the morphology of the structure Q we can make
a few assumptions for the mapping and, respectively, the functional F(Q ). Thus the
number n of linear independent functionals Fj(Q ) may be quantified as follows.

(i) Additivity: the functional behaves as a volume, in a mathematical sense like
the functional equation of the EC in (10.48),

(ii) Motion invariance: the mapping is independent of the position and orien-
tation of the structure, that means that the functionals are independent on
applying translations and rotations to the structure Q.

(iii) Conditional continuity: if a structure Q 1 continuously goes over into a struc-
ture Q 2 then also the functional F(Q 1) is continuously goes over into the
functional F(Q 2).

One gets, from the Functional theorem of stochastic geometry which was found by
Hugo Hadwiger [20], that a dD structure has d + 1 linearly independent functionals
which satisfy (i)–(iii). Others follow by linear combination. One full set of these
descriptors are the MFs which represent intuitive parameters in common dimen-
sions (see Table 10.3). Note that there is the freedom of scaling them by positive
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Table 10.3 Geometrical and topological interpretation of the d+1
Minkowski Functionals of structures in common dimensions

d = 1, 2, 3.

d = 1 d = 2 d = 3

F0 length area volume
F1 Euler Characteristic circumference surface area
F2 – Euler Characteristic total mean curvature
F3 – – Euler Characteristic

real numbers c ∈ R+. In reasonable applications, there is a need for normalization.
In any normalization the homogeneity of MF

Fj(cQ ) = cd–jFj(Q ) for j = 0, . . . , d (10.53)

of a dD structure Q holds true. This is consistent with the scaling property of the
EC in (10.48).

10.6.3.2

Integral Geometry

With this interpretation in mind we can focus on an integral geometric approach
which is suitable for the description of a smooth dD structure Q with d > 1 and
a regular boundary ∂Q. This approach leads to a natural generalization of the
framework by calculating higher moments. For this reason we add an extra up-
per index in the notation of the MFs in (10.54) to show that they are tensors of rank
0, namely scalars.

The MF of a structure Q for j = 0 follows by a volume integration and a set of d
MFs for j = 1, . . . , d by a surface integration

F0
j (Q ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N0

0

∫
Q

dV for j = 0

N0
j

∫
∂Q

Sj dA for j = 1, . . . , d .
(10.54)

dV denotes the hypervolume element of the dD structure Q and dA the hyper-
surface element of its (d – 1)D surface. The integrands of a set of the d MFs for
j = 1, ..., d can be generated by the j-th elementary symmetric function Sj, which is
defined by

d∑
j=1

zd–jSj :=
d–1∏
i=1

[
z +

1
Ri(x)

]
. (10.55)

The functions Sj follow by comparing the coefficients of the polynomial in z and
are functions of the j–1 principal curvature radii Rj–1(x) at the position x ∈ Rd. With
the definitions in (10.49) one can see that for d = 2 we have S1 = 1 and S2 = G. For
d = 3 we have S1 = 1, S2 = H and S3 = G and for d > 3 always S1 = 1, S2 = H and
Sd = G. Note the consistency between the statements in Table 10.3. The prefactors
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N0
j for j = 0, ..., d are arbitrary but fixed normalization constants as explained before

are caused by the freedom of normalization [22].
Compared to scalar MFs, one finds that tensor-valued MFs, further called

Minkowski Valuations (MVs) to distinguish clearly between MFs, also obey ad-
ditivity (i) and conditional continuity (iii). But motion invariance (ii) breaks down.
Therefore, MVs obey motion covariance and the number n of linear independent
functionals Fj(Q ) with j = 0, ..., n can again be quantified. Note that, for rank r > 1
in d dimensions, n differs from d + 1 and n u d + r – 1 holds true [23].

By adding the position vector x ∈ Rd in the integrands in (10.54) one gets

F1
j (Q ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N1

0

∫
Q

x dV for j = 0

N1
j

∫
∂Q

Sj x dA for j = 1, . . . , d
(10.56)

for the first-order MVs. Due to the multiplication by a dD vector, the mapping
in (10.52) now reads Q → F1

j (Q ) ∈ Rd for j = 0, . . . , d. Therefore these MVs be-
come dD vectors, that are first-rank tensors.

As mentioned before, there is the possibility of constructing more than d + 1
linear independent MVs of rank r > 1. Second-order MVs can be constructed using

F2
j (Q ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N2

0

∫
Q

x2 dV for j = 0

N2
j

∫
∂Q

Sj xpnq dA for j = 1, . . . , d + r – 1
(10.57)

where n ∈ Rd denotes the normalized normal vector on the hypersurface ∂Q in the
point x and p, q ∈ N0 with rank r = p + q = 2. The multiplication of the dD vectors
in the integrands is understood as a symmetric tensor product, which for two dD
vectors a = (a1, ..., ad) and b = (b1, ..., bd) leads to a d ~ d matrix with the elements
cij = aibj (i, j = 1, ..., d). The mapping in (10.52) now reads Q → F2

j (Q ) ∈ Rd~d for
j = 0, . . . , d+r–1. Therefore these MVs get second-rank tensors with d ~ d elements.

Although higher-rank tensors can be constructed, we will not consider them
here. Next, we show several applications of MFs and MVs motivated by cosmo-
logical interest.

10.6.3.3

Applications

In practice, MFs and MVs turned out to be robust measures for a huge bandwidth
of applications. Due to the intuitive interpretation, the individual measures can be
related to some physical properties like the EC for percolation studies. Also full sets
of theoretical expected values of MFs for several randomly generated structures are
known [19, 21]. In cosmology, galaxy distributions were studied and compared to
several Poisson point processes. Around every point a ball with radius ε was placed
(see (10.46)), where the radius was varied and used as a diagnostic parameter. This
technique is known as the boolean Germ–Grain-Model.

In cosmology random fields also play an important role. Density fluctuations
of the very early universe as imprinted in the CMB, are assumed to be Gaussian.
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To check the Gauss hypothesis, which is a fundamental aspect to allow highly-
precision cosmology and is the basis for simulations, MFs are used [18, 22, 24].
MFs of a thresholded Gaussian random field Qν (see (10.45)) are analytically well
known [19, 22] being

F0
j (Qν) =

⎧⎪⎪⎨⎪⎪⎩ N0
0

[
1 – Φ

(
(ν – μ)/

√
2σ
)]

for j = 0
N0

j Hj–1

(
(ν – μ)/

√
σ
)

for j = 1, . . . , d ,
(10.58)

where

Φ(x) =
(
2/
√

π
) x∫

0
dt exp(–t2) and Hn(x) =

(
(–1)n/

√
2π
) (

d
dx

)n
exp
(
–x2/2

)
(10.59)

is the Gaussian error function Φ(x) and Hn(x) the nth Hermite function. They only
depend on parameters of the stochastic process, that is, the mean μ and the vari-
ance σ of the field u(x) and not of the cosmological process, in particular, the cos-
mological parameters. Depending on the application it can be more convenient to
simulate a huge set of realizations including additional numerical effects like dis-
cretization, pixelation and masking, which also experimental data is dealing with.
Further, one also gets the statistical variance to perform likelihood analyses and one
can define a confidence level. Applications to the CMB are shown in Figure 10.14.

Similarly, the evolution of the LSS of the universe, from its Gaussian origin to its
current observed net-like structure, can be studied by MFs of the total field. Since
high thresholds disentangle the cosmic web by yielding many isolated objects the
concept of shapefinders, which provide measures to distinguish between different
shape characteristics of single objects, is useful. An illustrative example in 2D, ac-
tually on the sphere, as used for an analysis of hot and cold spots in the CMB [18], is
to quantify the elongation of structures being approximately ellipses by the ratio of
their area to their squared circumference E(Q ) := F0

0(Q )/[F0
1(Q )]2. This is a dimen-

sionless, and thereby scale-invariant, shapefinder E, which immediately provides
an axis ratio for expected shapes.

Let us come back to the example of the LSS in 3D. Three independent ratios
of MFs which have the dimension of length, namely thickness T , width W and
length L, can be defined:

T (Q ) :=
F0

0(Q )

2F0
1(Q )

, W(Q ) :=
2F0

1(Q )

πF0
2(Q )

and L(Q ) :=
3F0

2(Q )

4F0
3(Q )

.

(10.60)

An appropriate normalization is N0
0

== 1, N0
1

== 1/6, N0
2

== 1/(6π) and N0
3

== 1/(2π).
Then for every convex body K the propertyL(K) v W(K) v T (K) holds true. Further
dimensionless shapefinders called the

planarity P(Q ) :=
W – T
W + T and filamentarity F (Q ) :=

L – W
L +W
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Figure 10.14 Minkowski Functionals (MFs).

Test on Gaussianity of the fluctuations of the

cosmic microwave background (CMB) with

Minkowski Functionals (MFs). The normalized

signal became thresholded (as illustrated in

(a), where the analyzed structure is the black

area). The corresponding normalized MFs F0
0,

F0
1 and F0

2 are calculated (black dots in graphs

in (b)) and compared to the mean values

(dark gray line) and statistical variances (3σ
as light gray area) of a Gaussian random field.

The area functional F0
0 is equivalent to the

cumulative normalized height distribution and

therefore drops monotonously. By increasing

the threshold, holes appear, get bigger and

become connected. Isolated spots appear,

get smaller and finally vanish. Therefore

the length functional F0
1 increases, reaches

a maximum and decreases again. Negative

values of the connectivity functional F0
2 reflect

the appearance of holes, and positive values

the appearance of isolated spots, where in the

intermediate both balance each other. With

these results likelihood analysis showed a high

confidence level for the CMB being a Gaussian

random field [18].

(10.61)

can be defined, providing appropriate measures to discriminate between LSS of dif-
ferent evolution scenarios of physical modeling and their comparison to real data.
Their behavior is demonstrated in Figure 10.15. These shapefinders also provide
the possibility of categorizing observed galaxy shapes. A real galaxy differs from
a sphere by being an oblate spheroid, (like a pancake) known as the family of spiral
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(a) (b)

Figure 10.15 Shapefinders:. Different cylinders

as test bodies (a). For illustration only their

coat is shown. The ratio of their height to

their diameter is denoted by c. Varying c
from zero to infinity causes a transition from

a pancake to a filament (gray arrows). Note

the invariance of scaling. The scatter plot (b)

of the corresponding shapefinders planarity P

and filamentarity F (black points). The results

of varying c from zero to infinity continuously

are shown as a gray line. Building a pancake

(c → 0) the value of the shapefinder F stays

stable, but P increases. On the other hand,

by building a filament (c → ∞) the value of

the shapefinder P stays stable, but now F
increases.

galaxies, or being a prolate spheroid, (like a cigar) known as the family of elliptical
galaxies [22].

MFs are useful for analyzing structures of a stochastic origin or single objects
with � = 1. Given more than one single object, MFs can have identical values for
different structures (compare (5) and (6) in Figure 10.16). When the relative po-
sition of partial structures is important, as in analysis of the inner structure of
galaxies [25], galaxy clusters or galaxy superclusters [26], one can use MVs for a rea-
sonable description. Due to the concept of center of mass and moments of inertia,
known from mechanics, a possible interpretation becomes obvious [23]. First-order
MVs can be interpreted as the geometrical center of the scalar measure and one can
define curvature centroids

pj(Q ) = F1
j (Q )/F0

j (Q ) with N0
j == N1

j == 1 for j = 0, ..., d . (10.62)

To fulfill the mentioned interpretation of Second-order MVs one considers only
a subset of (10.57) with r = p = 2 and executes an appropriate transformation.
Then one gets the elements

{
Pj(Q )

}
kl

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫
Q

(d2
pj

δkl – xkxl) dV for j = 0∫
∂Q

Sj(d2
pj

δkl – xkxl) dA for j = 1, ..., d
(10.63)

of the curvature tensors Pj(Q ) for every corresponding scalar measure. d2
pj

is the
distance to the corresponding curvature centroid pj, which is used as the origin of
the coordinate system, and δkl is the Kronecker δ. These tensors satisfy the eigen-
value equation

Pj(Q )vm
j (Q ) = λm

j (Q )vm
j (Q ) for j = 0, ..., d and m = 1, ..., d (10.64)
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Figure 10.16 Minkowski Valuations (MVs).

Some simple structures (gray), their curvature

centroids pi with i = 0, 1, 2 and their area ten-

sor P0 (black ellipse, which indicates the ratio

of eigenvalues and eigendirections). A circle

(1) and an ellipse (2) with the same volume.

Because of point symmetry, all centroids co-

incide, but due to orientation and elongation,

the tensors differ. Given an axis-symmetric

structure which is not point-symmetric (3) the

centroids no longer coincide, but still remain

in one straight line, which indicates, as well

as the tensor, the symmetry axis. Breaking

additional axis symmetry is shown in (4). The

scalar Minkowski Functional cannot distin-

guish between structure (5) and (6). Tensor

Minkowski Valuations on the other hand

can. (Reprinted Figure 5 from [23] with kind

permission of Springer Science and Business

Media. We thank the author Claus Beisbart for

providing the data for reproduction.).

with λm
j (Q ) ∈ R, vm

j (Q ) ∈ Rd and vm
j (Q ) · vn

j (Q ) = 0 for m =/ n. Thus the scalar
measures of the structure Q were vectorized, which means parameterized, by the
orientation and strength in orthogonal directions along the direction of the eigen-
vectors vm

i (Q ) and their corresponding eigenvalues λm
j (Q ). Figure 10.16 illustrates

the power of the shape description with MVs on a number of simple 2D structures.
These measures immediately serve as descriptors or, adjusted to the application

combinations, as in the case of MFs in the concept of shapefinders, are more ad-
vantageous. Let us restate the task of quantifying the elongation of structures being
approximately ellipses. For an ellipse E, where a and b denote the two semi-axes,

a/b =
√

λ1
0(E)/λ2

0(E) when a v b then λ1
0(E) v λ2

0(E) holds true. Again an appro-
priate shapefinder is found. Combining this with the one stated before in the case
of MFs, it even provides the possibility of defining quality measures for expected
shapes [18].

10.7

Concluding Remarks

This work was initiated by the observation that, in both research areas, name-
ly Computer Vision and Physical Cosmology similar tasks in image analysis are
employed. Therefore, we have highlighted several methodological approaches con-
cerning topics of Computer Vision and Physical Cosmology in the field of image
processing. The aim was to give some examples that show how different disci-
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plines arrive at related approaches that can be considered at a more systemic level
of a classical processing hierarchy.

Motivated by the recording of the cosmic microwave background (CMB) on the
celestial sphere, we started with projection methods, in particular, the Mollweide
projection (see Figure 10.2). Next, we discussed the representation of images and
characterized four main properties, namely the space an image can be defined on,
the quantization, the resolution and the scale space of intensities. Scale spaces
are known from physics, but here the properties of scale spaces were adapted to
methods of image processing according to [11].

Images and their characteristics were not only defined in the plane, but also
on arbitrary surfaces (see Figure 10.3a). For example, the two-point correlation
function was defined on the sphere and, in addition, the angular power spec-
trum. This angular power spectrum is a measure used to compare the expect-
ed CMB for different models of the Universe with the measured CMB (see Fig-
ure 10.6).

After consideration of image characteristics, the basic methods in image process-
ing, modeled by a filtering process, were discussed. Besides the analysis of simple
filters like the Gaussian or the Laplacian of the Gaussian, we additionally discussed
the Gabor filter and specified a scheme for the construction of a Gabor filter bank
(see Figure 10.10). On the basis of partial derivatives of image intensities an inten-
sity gradient was constructed. This gradient denotes the steepest gray-value ramp.
A structure tensor based on the gradient was defined, containing information of
the local gray-value distribution. For the 2D case, an interpretation of this structure
tensor was given (see Table 10.2).

In the last part we focused on invariant descriptions of image features, where
invariance was restricted to scaling, translation and rotation. First, statistical mo-
ments for continuously valued images and descriptions of contour lines were
described. Therefore, the contour lines were assumed to be defined as periodic
curves and a representation based on Fourier coefficients was employed. Then
we changed to thresholded images, denoted by binary structures which could be
characterized by the Euler Characteristic as a simple measure. But, for the anal-
ysis of the topology and geometry of structures, this measure was not sufficient,
therefore scalar Minkowski Functionals were considered. These measures are suit-
able to analyze structures initiated by a random process, like investigating the
statistical properties of the CMB (see Figure 10.14) or for shape recognition of
single objects by means of shapefinders (see Figure 10.15). Also scalar Minkowski
Functionals do not reveal the full description of structures as explained in Fig-
ure 10.16. Thus, we introduced tensor Minkowski Valuations offering a more
detailed analysis of structures but also leaving motion invariance (translation and
rotation).

In summary, we have outlined the primal methods and general concept of image
analysis. Generally, these methods are located within the first steps of an image-
processing hierarchy, providing image enhancement and basic feature extraction –
normally seen as low- and mid-level vision tasks. Based on these first steps, further
methods like 3D scene reconstruction, optic flow estimation, or classification and
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identification, can be realized. In particular, for the last two tasks the given invari-
ant descriptions are essential. In conclusion, basic methods and general concepts
will also be useful in other research areas besides image processing, but so far,
a starting point has been given for an exchange of problems and existing solutions
among researchers studying our observable world.
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Boosting Ensembles of Weak Classifiers

in High Dimensional Input Spaces
Ludwig Lausser, Friedhelm Schwenker1), Hans A. Kestler1)

11.1

Introduction

Classification is a fundamental method of data analysis, it has numerous appli-
cations in many disciplines. Categorizing of objects, situations, and other data into
classes is a task required in a variety of areas; for example, medical diagnosis and
human-machine interfaces. Humans accomplish this categorization quite easily in
everyday situations such as classifying food, traffic signs, music styles and many
other things. In biological and technical systems the following processing steps will
always appear during classification. Collecting some data about an object, choosing
some criteria (features) to judge it, and finally, predicting a class label for the object.
In the simplest case this label only indicates whether or not the object belongs to
a certain class. In this case the class labels are in the set Y = {+1, –1}. A function,
which assigns such class labels to some data is called a concept. In general, the
true concept of a class is unknown and has to be approximated. This approximating
concept is called a hypothesis or classifier. Normally it is not clear which hypothesis
should be used. In general, a class of parameterized functions (hypothesis space
H) has to be chosen and the parameters of the concrete hypothesis have to be
determined during the learning process. This kind of learning is called supervised
learning. Here the learning algorithm (learner) builds a hypothesis after receiving
some correctly labeled examples from an external source (teacher). For complex
pattern recognition tasks it might be difficult to get a highly accurate hypothesis
from a given hypothesis space and learning algorithm. In such scenarios a single
hypothesis might be insufficient, if it does not predict the class labels accurately.
In this chapter a general method called Boosting is presented, which combines
ensembles of weak hypotheses to a highly accurate (strong) hypothesis.

1) Corresponding authors.
2) It is assumed that hypotheses and concepts

are measurable functions and fullfil some
fairly weak measurability conditions [4].
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11.2

Hypothesis Boosting Problem

The idea of hypothesis boosting was first introduced by Kearns and Valiant [1, 2]
and was formulated for the distribution-free or probability approximately correct
(PAC) learning model [3]. This model deals with the learning of target concepts c.
Concepts are Boolean functions on some domain of instances X. A concept class
C is a set of concepts, which sometimes can be divided into subclasses Cn by a pa-
rameter n (C = ∪nv1Cn). Concepts in Cn have the same domain Xn. It is assumed
that encodings for instances of Xn are bounded by a polynomial in n. Given concept
c ∈ Cn, a tupel (x, y) of an instance x ∈ Xn and a Boolean label y = c(x) is called an
example. The source of such examples is the example oracle EX. Instances of Xn

are drawn independently from an arbitrarily fixed probability distribution D which
is typically unknown. According to such collected examples, a learning algorithm
computes an hypothesis h as an approximation to a concept c (Figure 11.1). The
prediction error2) (also called the generalization error) of a hypothesis can be com-
puted by

PrD[h(x) =/ c(x)] .

Hypothesis h is called ε-close to concept c, if the prediction error is smaller than
ε. Using this vocabulary we can define the main terms of the Boosting Hypothesis
Problem.

Definition 11.1 (Strongly learnable [5])

A concept class C is (strongly) learnable, if there exists an algorithm A such that for all
n v 1, for all target concepts c ∈ Cn, for all distributions D on Xn and for all 0 < ε, δ u 1,
an algorithm A, given parameters n, ε, δ, the size3)s of c and access to oracle EX, runs in
time polynomial in n, s, 1/ε and 1/δ, and outputs a hypothesis h that with probability
at least 1 – δ is ε-close to c under D.

Definition 11.2 (Weakly learnable [6])

A concept class C is weakly learnable if there exists a polynomial p and an algorithm A
such that for all n v 1, for all target concepts c ∈ Cn, for all distributions D on Xn, and for
all 0 < δ u 1, algorithm A, given parameters n,δ, the size s of c, and access to oracle EX,
runs in time polynomial in n, s and 1/δ, and outputs a hypothesis h that with probability
at least 1 – δ is (1/2 – p(n, s)–1)-close to c under D.

The main difference between these two definitions is the error which a learned
hypothesis is allowed to have. A concept class C will be called strongly learnable if
there is an algorithm which creates an ε-close hypothesis. It will be called weakly

3) The size of a concept is a measure of the
length of cs representation, for example in
case of Boolean formulas it is the shortest
Boolean formula computing c.
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Figure 11.1 General scheme of learning used in this chapter.

The learning algorithm accesses an example oracle EX. The

oracle chooses training examples arbitrarily from an unknown

distribution. The learning algorithm produces a hypothesis

according to these examples and other training parameters.

learnable if there is an algorithm which performs slightly better on it than random
guessing (prediction error slightly smaller than 0.5 in the two-class case). Accord-
ing to their performance, learning algorithms are separated into strong and weak
learning algorithms.

The Hypothesis Boosting Problem is formulated by Kearns [1] as follows. “Is it
the case that any C that is weakly learnable is in fact strongly learnable?”

A spectacular answer to this question was given 1990 by Schapire [5].

Theorem 11.1 ([5])

A concept class C is weakly learnable if and only if it is strongly learnable.

Since the equality of weak and strong learnability was proven in 1990, many differ-
ent boosting algorithms were proposed. Although these algorithms differ in detail,
they have much in common. A boosting algorithm is a meta learning algorithm,
which is not able to generate hypotheses on its own. It needs access to a weak learn-
ing algorithm, which will be called WeakLearn in this context. A boosting algorithm
calls WeakLearn many times and generates an ensemble of weak hypotheses. Each
weak hypothesis is trained to counterbalance the misclassifications of its predeces-
sor. The examples for a training set are chosen according to a distribution, which
represents how difficult the single example is classified according to the previous
weak hypothesis. The final strong hypothesis of a boosting algorithm is a combina-
tion of the weak hypotheses.

11.3

Learn

The proof of the important Theorem 11.1 is constructive. In it Schapire [5] de-
scribes an algorithm, which uses a weak learning algorithm to generate a hypothe-
sis with high accuracy. In this context this algorithm will be called Learn in order to
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distinguish it from other approaches. A pseudocode description of Learn is given
in Figure 11.7. The algorithm gets access to the example oracle EX and an weak
learning algorithm WeakLearn(δ,EX) which outputs a (1/2 – p(n, s)–1)-close hypoth-
esis to the target concept c with a probability of at least 1 – δ. The method described
by Schapire combines three hypotheses h1, h2, h3 through a majority vote. Thereby
a single hypothesis hi is either built by a call of WeakLearn or a recursive call of
Learn according to the performance which the final hypothesis should have. This
leads to some kind of tree structured learning scheme (Figure 11.2). The basic idea
of Learn could be seen in the training of a single stage, where for each classifier
a different example oracle EXi is used. While the first classifier h1 is trained on EX1,
a direct copy of EX, h2 receives examples from EX2. 50% of the examples generated
by EX2 are examples which are misclassified by h1. The oracle EX3 for h3 only re-
turns examples where h1 and h2 mismatch. In this way the original distribution of
the examples is modified, and h2 will be confronted with more difficult examples
than h1, and hypothesis h3 specializes in tie breaking. If the original hypothesis h1

of stage produces an error α, the error ε of the stage can be bound by

g(α) = 3α2 – 2α3 .

By using the inverse function g–1(ε) the maximal tolerable error of a single hypoth-
esis can be determined.

The algorithm of Schapire described above was not widely used in real appli-
cations. The reason is the large amount of examples needed for training the weak

W

L

W W W

W W

L L

W W W

L

Figure 11.2 Schematic view of Learn. The

procedure Learn returns a hypothesis, which

is a majority vote of three single hypothesis

h1, h2, h3. Each single hypothesis can be

either built by the weak learning algorithm

WeakLearn (denoted as W) or by a recursive

call of Learn (denoted as L). The three single

hypothesis are trained on examples received

from different example oracles EXi. While

EX1 returns random examples, 50% of the

examples returned by EX2 are misclassified

by h1. EX3 returns only examples, which are

classified in different ways by h1 and h2.
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hypotheses. The example oracles, as they are used here, filter examples from a po-
tentially endless input stream. As the complexity of a hypothesis grows, more and
more conditions have to be satisfied until an example is chosen by an oracle.

11.4

Boosting by Majority

Another boosting algorithm called Boosting by Majority (BBM) (Figure 11.8) was
suggested by Freund [6]. It is a direct derivation from a game introduced by Freund
(Figure 11.3) called the majority vote game . The game is played on a board con-
taining a set of fields F. One player, the weightor, chooses weights wi for each field
(wi v 0 for all i and

∑|F|
i=1 wi = 1). These weights are unknown to the second player,

the chooser, who has to select a subset U ⊆ F such that
∑

F(i)∈U wi v 1/2 + γ. After
this step the fields of U are marked. The game is played for as many rounds as the
weightor wants to play. The weightor’s reward is the number of fields which were
marked in more than 50% of the rounds. The goal of the weightor is to maximize
his reward.

Freund derived an optimal weighting strategy for the weightor and used it to
develop the BBM algorithm. The BBM version described here is a boosting by
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Figure 11.3 Majority vote game. The majority

vote game is played by two players, the

weightor and the chooser. First the weightor

assigns some weights wj to each fields of

the board game (a) (wj v 0 and
∑

wj = 1).

Those weights are unknown to the chooser.

In a second step the chooser selects some

fields, until the sum of their weights is larger

than 1/2 + γ. In this figure the chosen fields

are marked by a box (b). These steps will be

repeated until the weightor decides to stop (c).

The reward of the weightor is the number of

fields, which have been marked in more than

50% of all cases. In this example the reward is

three (d).
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resampling algorithm in contrast to the boosting by filtering algorithm Learn de-
scribed above. Here the example oracle EX is only used once to create an ini-
tial sample S = (S1, . . . , SN), Sj =

(
xj, yj

)
. For each example Sj in S there exists

a weight Dj := D
(
xj

)
describing the “difficulty” of Sj. The whole vector D de-

scribes a distribution over S. According to D, subsamples of S are composed
to train the single weak hypothesis by calling the subroutine FiltEX. The role
of the BBM is the role of the weightor in the majority vote game. WeakLearn
is the chooser which has to achieve an accuracy of at least 1/2 + γ on all N
training examples. The number of used weak hypotheses k and the strategy
how to adapt the weights Dj are derived from the majority vote game setting.
The final hypothesis hM is then the unweighted majority vote of all weak hypo-
theses.

Although the BBM was much more practical to use than its antecessor, it was
not often applied to real data problems. The problem of this algorithm was the pa-
rameter γ, which influences the reweighting strategy of distribution D. Parameter
γ has to be an upper error bound of all hypotheses, otherwise BBM will fail. An
adequate γ is hard to find or even unknown.

11.5

AdaBoost

The most popular boosting algorithm, called AdaBoost (= Adaptive Boosting) was
introduced by Freund and Schapire [7] in 1995. A pseudocode description of Ada-
Boost for the two-class classification problem is given in Figure 11.9. The algo-
rithm produces a threshold classifier, which simply computes the weighted sum
of the weak classifiers’ output. In each iteration t a weak hypothesis ht is calculat-
ed by the chosen algorithm WeakLearn with respect to the training sample S and
the distribution Dt (Figure 11.4). As for the BBM, the weighted error εt is calcu-
lated, but it is used in a different manner by the AdaBoost algorithm. First the
Dt+1 is adapted directly with respect to εt. In this way no concrete assumptions
about the weak classifiers’ accuracy are needed and the parameter γ of the BBM
can be dropped. AdaBoost also combines the trained weak hypotheses ht with re-
spect to εt in order to create a weighted majority vote, this combined hypothesis is
denoted by hf. Adapting on the performance of the single weak classifier was the
very new feature of AdaBoost which entitles the algorithm. Because of its simplic-
ity AdaBoost has been used in many applications and became the basis of many
new machine-learning algorithms (see the paper by Freund and Schapire [8] for an
overview).

AdaBoost can be implemented as a boosting by resampling algorithm. But there
is also a technique called boosting by reweighting which can be applied. It can only
be chosen, if the selected WeakLearn algorithm is able to handle weighted training
errors on its own. WeakLearn has this ability when the hypothesis produced by it is
more likely to classify an example correctly if the example’s weight is high. In this
technique the whole sample S is used as training data and the single examples are
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Figure 11.4 Schematic view of AdaBoost

which iteratively trains weak hypothesis hi by

using a weak learning algorithm WeakLearn.

The single examples in the training sample

are weighted after the distribution Di. The

distribution Di+1 is an update of Di according

to the weighted training error εi of hi. Exam-

ples, which are misclassifed by hi will receive

a higher weight in Di+1 . The error εi also

determines an weight αi, which can be seen

as the influence of hi on the final weighted

majority vote hf.

weighted according to the distribution Dt. In this way the weak hypothesis should
be able to classify some hard learnable data correctly.

In the next sections, some theoretical bounds of the training and generalization
error are reviewed.

11.5.1

Training Sample Error

The training error of a hypothesis h(x) is the empirical error measured on the train-
ing sample. It is denoted by

P̂r
[
h(x) =/ y

]
=

1
N

N∑
i=1

[h(xi)=/yi] ,

where is the indicator function. Freund and Schapire [7] derived an upper bound
for the training error of the hypothesis hf built by AdaBoost. It depends on the
weighted training errors εt of the ensemble’s hypotheses ht (see Figure 11.9) and
the total number of AdaBoost iterations T

P̂r
[
hf(x) =/ y

]
u

T∏
t=1

[
2
√

εt (1 – εt)
]

.
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If εt < 1/2 for all t, the AdaBoost algorithm decreases the overall training error of
hf exponentially fast to zero.

11.5.2

Generalization Error

The generalization error PrB(h(x) =/ y) is the probability that a hypothesis h misclas-
sifies unseen examples with respect to distribution B on sample space X. Using
techniques from structural risk minimization [9] the generalization error can be
bounded with high probability (see Freund and Schapire [7]) by

PrB(hf(x) =/ y) u P̂r
[
hf(x) =/ y

]
+ O

⎛⎜⎜⎜⎜⎜⎝
√

Td
N

⎞⎟⎟⎟⎟⎟⎠ .

This bound depends on T, the number of weak hypotheses, d the VC-dimension [9]
of the hypothesis space H, and the sample size N. Although this bound increases
with T and therefore overfitting should be observed quite often, some numerical
studies report a different behavior of AdaBoost. In these studies AdaBoost has de-
creased the generalization error, even if the training error has dropped to zero after
some iterations [10–14].

As a result of examining this phenomenon Schapire et al. found another way of
bounding the generalization error of AdaBoost [15]. This bound depends on the
margins of the single training examples. The margin of a training example (x, y)
with respect to αt is defined as

ρ(x, y, αt) =
y
∑t

i=1 αihi(x)∑
i |αi|

.

Here αt is the vector of the t single weights αi assigned to the weak classifiers hi

by the AdaBoost algorithm. The margin lies in the interval [–1, +1] and can be used
as a confidence measure for the quality of the single prediction. A high magnitude
therefor shows high confidence in the prediction. Because the margin depends
on the label y of x, it is positive if the example is classified correctly and negative
otherwise. We will also denote the margin as ρ(x, y) if its clear which αt is meant.
The generalization error can be bounded with high probability by the margin as
follows:

P̂r
[
ρ(x, y) u θ

]
+ O

⎛⎜⎜⎜⎜⎜⎝
√

d
Nθ2

⎞⎟⎟⎟⎟⎟⎠ .

The term P̂r
[
ρ(x, y) u θ

]
denotes the empirical margin error measured on the train-

ing sample

P̂r
[
ρ(x, y) u θ

]
=

1
N

N∑
i=1

[ρ(xi ,yi ,αt)uθ] .

Here θ > 0 is an arbitrary threshold which can be seen as a minimum confidence
value which must be achieved for correct classification. The main insight for this
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bound is that the generalization error of AdaBoost can be diminished by maximiz-
ing the margins of the single training examples.

Schapire et al. [15] show, that Adaboost is a rapid method for maximizing the
margin. They show that the margin error can be bound in terms of the total number
of iterations T and weighted training errors εt of the AdaBoost algorithm for any θ

P̂r
[
ρ(x, y) u θ

]
u

T∏
t=1

[
2
√

ε1–θ
t (1 – εt)

1+θ
]

.

So also after the training error drops to zero, ρ can further be decreased by adding
an ht with εt < 1/2 and the generalization error will further decrease. Note that this
argument does not prevent AdaBoost from overfitting behavior, it only delays this
effect sometimes.

11.5.3

AdaBoost on Noisy Data

On noisy data AdaBoost does not perform as well as described in Section 11.5.2.
Data is called noisy if some of the shown training examples are corrupted, for in-
stance, if some examples were labeled incorrectly or single features were measured
wrongly. Here we will talk of a noisy example, if it has a wrong label. A noisy data
sample contains a certain amount of noisy examples.

Trained on a noisy data sample, the classifier generated by AdaBoost tends to
overfit. This effect was investigated in several empirical studies (e.g. [16, 17]) and
theoretical work (e.g. [18] ). The experiments showed that the generalization ability
of an AdaBoost classifier decreases, as the fraction of noisy examples in the training
sample rises. This is not a phenomenon, which is only observed for AdaBoost clas-
sifiers. But, according to some comparative studies, AdaBoost suffers more from
this problem than the other ensemble methods [16].

One explanation for this can be found in AdaBoost’s selection strategy for com-
bining the weights αt and adapting distributions Dt. Breiman [19] has shown,
that AdaBoost minimizes a functional G in each iteration t which depends on
αt = (α1, · · · , αt)

T:

G(αt, αt–1) =
N∑

i=1

e–φ(xi,yi ,αt)

Here φ(xi, yi, αt) is an unnormalized version of the margin

φ(x, y, αt) = y
t∑

i=1

αihi(x) .

Rätsch et al. [18] have prove that AdaBoost can be seen as a gradient descent pro-
cedure and that the reweighting scheme in the (t + 1)-th iteration is equivalent to
normalizing the gradient of G(αt+1, αt) with respect to φ(xi, yi, αt)

Dt+1(xi) =
∂G(αt+1, αt)
∂φ(xi, yi, αt)

/ N∑
j=1

∂G(αt+1, αt)
∂φ(xj, yj, αt)

.
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By rewritting this expression, the following explicit formula for reweighting can be
derived:

Dt+1(xi) =
exp
(
–1/2ρ(xi , yi, αt)

)|αt|∑N
j=1 exp

(
–1/2ρ(xj , yj, αt)

)|αt |

The most interesting part of this formula is its numerator. Here, the negative mar-
gin is the argument of an exponential function, which is raised to the power of |αt|.
For a constant exponent, examples with a large margin are assigned small weights
in the next iteration and examples with small margins receive large weights. The
denominator normalizes the single weights. It can be shown that |αt| increases at
least linearly in t, if each weak classifier achieves a weighted training error smaller
than 1/2. While this parameter increases, the weighting strategy of AdaBoost gets
more and more selective in giving large weights to only a few examples with very
small margins.

Let for example xi and xj be two data points with margins ρ(xi, yi, αt) = 0.4 and
ρ(xj, yj, ct) = 0.3. The numerator assigns to them for |αt| = 1 the values 0.8187 and
0.8607. For |αt| = 1000 this values are 1.3839 ~ 10–87 and 7.1751 ~ 10–66 and the
difference between them is about 20 orders of magnitude. If enough iteration steps
were carried out, the weighted error of a weak hypothesis will only be determined
by the examples with the smallest margin.

Noisy examples tend to be surrounded by data points with different labels and
will be more difficult to learn for AdaBoost. Therefore, these examples will receive
lower margins than the ordinary data. So in later iterations the AdaBoost algorithm
will only be concerned with learning the noisy data points and will lose its classifi-
cation ability for the regular data, which will lead to overfitting.

11.6

BrownBoost

In order to create boosting algorithms, which are more robust against noise, it
was not only derivates from AdaBoost (e.g. [18, 20–22]) which were suggested. The
BrownBoost [23] algorithm, introduced by Freund, is an enhancement on his earli-
er BBM algorithm. Freund’s intention was to create a variant of the BBM algorithm,
which does not depend on any assumption about the training error of the weak hy-
potheses.

For this let 0 < δ < γ and h′ be a hypothesis with very low precision (error
> 1/2 – γ) but with error < 1/2 – δ, such that it can be achieved by almost all
hypotheses. Such a hypothesis h′ can be built from an ordinary hypothesis h whose
error is 1/2 – γ, γ > δ by creating a probabilistic hypothesis

h′(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
h(x), with probability δ/γ

0, with probability (1 – δ/γ)/2

1, with probability (1 – δ/γ)/2 .
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Choosing such an hypothesis h′ during the BBM training would not have much
effect on reweighting the distribution of the single training examples. Testing
h′ on this modified distribution will return an error which is also lower than
1/2 – δ with high probability. In this way h′ can be used in many consecutive
iterations until its error becomes larger than 1/2 – δ and very close to 1/2. Used
in this way, BBM creates a weighted majority sum, where each weak hypothe-
ses h′i is weighted by the number of iterations it has “survived”. Although the
noise level of the single hypotheses h′i is very high, a final hypothesis with ex-
pected error ε could be achieved, if at least O(δ–2 ln(1/ε)) boosting iterations
were carried out. Because of the very small value of δ and the dependence
of the number of iterations on δ–2, the run-time of this algorithm is not very
attractive.

In a next step we can think of an algorithm which uses weak hypotheses with
δ → 0. Defining time t = δ2i and “location”

rδ = δ
%t/δ2&∑

j=1

h′j (x)

this can be interpreted in the limit δ → 0 as Brownian Motion with drift, a special
kind of stochastic process (see e.g. [24]) with mean μ(t) and variance σ2(t)

μ(t) =
∫ t

0

1
γ(s)

ds, σ2(t) = t .

Here 1/2 – γ(t) is the weighted error of the hypothesis h at time t.
An pseudocode of BrownBoost is given in Figure 11.10. The overall structure of

BrownBoost is very similar to the structure of BBM or AdaBoost. One difference
is that BrownBoost works continuously with time. Time ti and its weight αi are
determined by solving the differential equation in step 3 of the algorithm. The
procedure stops if there is no time left.

Besides the training sample S and the WeakLearn procedure, BrownBoost just
needs a parameter c, which determines the amount of time BrownBoost is allowed
to use, and a parameter ν, which is used to avoid degenerate cases.

It can be shown that c and the overall training error ε of the final hypothesis hf

are directly related:

ε = 1 – erf(
√

c) = 1 –
2
π

∫ c

0
e–x2

dx . (11.1)

The algorithm therefore will run out of time before it learns the last εN examples.
This fraction will consist of the hardest training examples. In a setting with noisy
data this fraction will hopefully contain the noisy examples. If we can guess the
percentage of noisy data in the training sample, we can find a c, which will pay
more attention to the ordinary data than to the noisy ones.

We compared the sensitivity to noise of BrownBoost with AdaBoost and a 1-NN
classifier by a four-fold cross-validation experiment [25]. To that end an artifical
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dataset was built containing 300 examples. Each example consists of 20 features in
[–1, +1]. The values are chosen with respect to a uniform distribution and the data
is separated by the concept con:

con(x) =

⎧⎪⎪⎨⎪⎪⎩+1 , if 0.75 sin(πx7) < x14

–1 , otherwise .

The experiments were performed at noise levels of 0%, 10% and 20%, which means
that a certain amount of class labels are toggled. To estimate sensible values for the
number of hypotheses we ran BrownBoost on the data assuming a 0% noise level.
We used this maximal number of hypotheses (200) in all subsequent experiments
with AdaBoost. The amount of time for BrownBoost is determined by the noise
level and (11.1). The WeakLearn algorithm used produces simple threshold classi-
fiers

hi,j,t(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩sign( [tuxj] – 0.5), if i = 1

sign( [tvxj] – 0.5), otherwise .

The experiment was repeated ten times on newly sampled datasets. The results
are given in Figure 11.5. The 1-NN classifer was outperformed by both boosting
approaches. AdaBoost seems to perform better in the noise-free case. BrownBoost
has lower error rates for the higher noise levels.

Ada 0% Brown 0% 1−NN 0% Ada 10% Brown 10% 1−NN 10% Ada 20% Brown 20% 1−NN 20%

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r

Figure 11.5 Comparison of AdaBoost, BrownBoost and 1-NN for different noise levels.
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11.7

AdaBoost for Feature Selection

With some slight modifications, AdaBoost can be used for feature reduction in
high-dimensional data. This was, for example, suggested by Viola and Jones [26].
Their work is about robust real-time object detection on visual data. In this kind of
application several thousands of sub-images of an image have to be scanned and
classified by a detector. In this data often only a few sub-images are of interest.
Because of this imbalance a detector will be judged rather by its false positive rate
and its detection rate than by its classification error. An accurate detector will have
a high detection rate and a low false positive rate.

In order to achieve this in real time, the classifier should evaluate as few as pos-
sible features while classifying an example. Also, single features have to be com-
putable quickly. By using a special representation of the image data, called integral
images, Viola and Jones were able to create features, which can be computed in
constant time for any scale of the input image. The set of possible features increas-
es exponentionally with the size of the minimum sub-image shown to the detector.
For a basic size of 24 ~ 24 pixels the set of all possible features already contains
over 160 000 features. The overall structure of the detector is a conjunction of sev-
eral ensembles hi

ada trained by the AdaBoost scheme:

hcas(x) =
∧

K

hi
ada(x) .

The features which will be used in a single stage are chosen during the training
of the AdaBoost ensemble. Each member of this ensemble is restricted to a sin-
gle feature of the set. Usually these weak hypotheses are returned by WeakLearn,
calling this procedure a weak hypothesis for each single feature is built. The weak
hypothesis is returned which minimizes the weighted training error. In this way it
is not only the best weak hypothesis, but also the best feature which is chosen. By
iteratively increasing the number of weak hypotheses a small set of features can be
found which achieves the predefined false positive rate and detection rate.

By evaluating the cascade iteratively, normally only a few stages of the cascade
have to be evaluated. An example will be rejected with a negative label immediately,
if it has received its first negative label by an AdaBoost classifier. Particularly in
a detection task there will usually be a higher number of negative examples than
positive. Additionally a classifier hi

ada does not need to classify examples correctly
which have been rejected by a previous stage j < i. So the training set can be adapted
for each single stage. Let dei and fai denote the detection rate and false positive rate
of the classifier hi

ada on such a training set

dei = P̂rV

[
hi

ada(x)|∧j<i hj
ada(x) ∧ (y = 1)

]
,

fai = P̂rV

[
hi

ada(x)|∧j<i hj
ada(x) ∧ (y = –1)

]
.

Here the class label y = 1 stands for an object x of interest and V is the distribu-
tion of the examples in the validation set. The cascade’s false positive rate Fai and
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Table 11.1 Experiments with a cascaded classifier for zebra

crossing detection. The table shows the amount of sub-images

which were rejected by the i-th stage of the cascade by several

driving scenarios. The rows “false detections” and “correct

detections” show the number of sub-images which received the

label 1 from the cascade.

Stage City Highway Crossways Zebra crossing

1 67.49% 65.98% 66.83% 64.44%
2 22.14% 24.78% 23.90% 23.04%
3 4.80% 4.37% 4.71% 5.43%
4 0.77% 0.83% 0.76% 1.13%
5 1.55% 1.47% 1.34% 1.66%
6 0.35% 0.26% 0.27% 0.47%
7 1.97% 1.35% 1.43% 2.51%
False detections 0.92% 0.95% 0.75% 0.07%
Correct detections – – – 0.06%

Figure 11.6 Image of the zebra crossing experiment.

detection rate Dei at stage i can be determined as

Dei =
∏
jui

dej

Fai =
∏
jui

faj
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The pseudocode of the cascade’s training algorithm is given in Figure 11.11. The
parameters of this procedure contain upper bounds for the false positive rates of
a single stage fa and the whole cascade Fatarget and a bound for the detection rate of
a single stage de. These three parameters determine the structure of the cascade.
The algorithm adds at each iteration i an AdaBoost ensemble to the cascade until
the detectors false positive rate Fai is smaller than Fatarget.

The parameters fa and de determine the number ni of weak hypotheses in a sin-
gle AdaBoost ensemble. This number is increased iteratively until both bounds are
fulfilled. The AdaBoost algorithm was built to minimize a classification error. In
order to do so it might happen that the detection rate decreases. By decreasing the
threshold of hi

ada both the detection rate and the false positive rate will increase. If
a threshold can be found for which both bounds fa and de hold then this method
will be preferred to increasing ni. A single-stage classifier of a higher stage will be
more complex than that of a lower one; ni is also the number of features which
have to be evaluated. By combining these techniques the expected number of fea-
ture, which have to be evaluated by a cascade Ncas is much smaller than that of
a monolithic detector

Ncas = n1 +
K∑

i=2

nipi–1 <<
K∑

i=1

ni = Nmon .

Here pi denotes the positive rate that a random example passes stage i. Note that
small values for fai not only improve the performance of the final detector but also
increase the average speed of the final cascade.

In practical applications the cascaded structure is very advantageous. The results
of an experiment with a cascade trained for detecting zebra crossings (Figure 11.6)
are shown in Table 11.1. The table shows the fraction of sub-images, which were
rejected in the i-th stage of the cascade. The tests were made for different driving
scenarios. It can be seen that most of the sub-images can be rejected at early stages.
These classifiers consist of a very small set of features and are therefore very simple.
The more complex classifiers must only be evaluated for an small percentage of all
sub-images. Note that the results of Table 11.1 come from a pure classifier trained
by the algorithm of Viola and Jones. These results can be optimized by using ad-
ditional pre- and postprocessing steps [27]. In this way over 95% of all sub-images
can be rejected in the first stage of the cascade.

11.8

Conclusion

In this chapter an overview of the boosting approach has been given. The hypoth-
esis boosting problem, introduced by Kearns in 1988 [1] and Kearns and Valiant
in 1989 [2], was presented and a review on the very first boosting algorithms of
Schapire [5] and Freund [6] was given (Learn and BBM). Some weaknesses of these
algorithms were discussed, which motivated the development of the AdaBoost al-
gorithm by Freund and Schapire in 1995 [7]. This boosting algorithm is the most
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popular one. Some theoretical work on this algorithm was currently demonstrated.
It was also shown that AdaBoost is susceptible to noise. The algorithm BrownBoost
of Freund developed in 2001 [23] was introduced as a possible way of dealing with
noise. The way in which Boosting leads naturally to feature selection via a cascade
of classifiers was demonstrated by Viola and Jones [26] and our own work [27].

Learn(ε,δ,WeakLearn,EX)

Input:
error parameter ε
confidence parameter δ
weak learning algorithm WeakLearn
example oracle EX
(implicit) size parameters s and n

Procedure:
if ε u 1/2 – 1/p(n, s) then return WeakLearn(δ,EX)
α ← g–1(ε)
EX1 ← EX
h1 ← Learn(α, δ/5, EX1)
τ1 ← ε/3
let â1 be an estimate of a1 = Prv∈D

[
h1(v) =/ c(v)

]
:

choose a sample sufficiently large that |a1 – â1| u τ1 with probability v 1 – δ/5
if â1 u ε – τ1 then return h1

defun EX2()
{ flip coin
if heads, return the first instance v from EX for which h1(v) = c(v)
else return the first instance v from EX for which h1(v) =/ c(v) }

h2 ← Learn(α, δ/5, EX2)
τ2 ← (1 – 2α)ε/8
let ê be an estimate of e = Prv∈D

[
h2(v) =/ c(v)

]
:

choose a sample sufficiently large that |e – ê| u τ2 with probability v 1 – δ/5
if ê u ε – τ2 then return h2

defun EX3()
{ return the first instance from EX for which h1(v) =/ h2(v) }

h3 ← Learn(α, δ/5, EX3)

defun h(v)
{ b1 ← h1(v), b2 ← h2(v)
if b1 = b2 then return b1

else return h3(v) }
return h

Output:
a hypothesis that is ε-close to the target concept c with
probability v 1 – δ

Figure 11.7 Pseudocode description of the algorithm Learn.
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BBM(EX,γ,WeakLearn,N)

Input:
example oracle EX
an algorithm WeakLearn which generates weak hypothesiss with training error smaller than 1/2 – γ
with probability 1 – δ
sample size N

Procedure:
Call EX N times to generate a sample S =

{
(x1, y1), . . . , (xN, yN)

}
. To each example (xj , yj) in S corre-

sponds a weight D1(j) = 1/N and a count rj = 0.
Find a (small) k that satisfies

k∑
i=%k/2&

(
k
i

)
(
1
2

– γ)i(
1
2

+ γ)k–i <
1
N

(For example, any k > 1/(2γ2) ln(N/2) is sufficient.)
Do for t = 1 . . . k

1. Do for l = 1 . . . (1/(1 – δ)) ln(2k/δ) or until a weak hypothesis is found

(a) Call WeakLearn, referring it to FiltEX (Dt) as its source of examples, and save the returned
hypothesis as ht

(b) If
∑N

j=1 Dt(j) [
ht (xj )=/yj

] < 1/2 – γ then declare ht a weak hypothesis and exit loop.

2. Increment rj by one for each example on which ht(xj) = yj.

3. Update the weights of the examples according to Dt(j) = at
rj

, where

at
r =
(

k – t – 1⌊
k/2
⌋

– r

) (
1
2

+ γ
)%k/2&–r ( 1

2
– γ
)%k/2&–t–1+r

4. Normalize the weights by dividing each weight by
∑N

j=1 Dt(j)

Output:
A hypothesis hM that is consistant on a random sample of size N

hM(x) = sign

⎛⎜⎜⎜⎜⎜⎜⎝ k∑
t=1

ht(x)

⎞⎟⎟⎟⎟⎟⎟⎠

Subroutine FiltEX(Dt )

Choose a real number x uniformly at random in the range 0 u x < 1.
Perform a binary search for the index j for which

j–1∑
i=1

Dt(j) u x <
j∑

i=1

Dt(j) where
0∑

i=1

Dt(j) := 0

Return the example (xj, yj)

Figure 11.8 Pseudocode description of the algorithm Boosting by Majority (BBM).



328 11 Boosting Ensembles of Weak Classifiers in High Dimensional Input Spaces

AdaBoost(S,WeakLearn,T)

Input:
sequence S of N labeled examples

〈(
x1, y1

)
, . . . ,

(
xN , yN

)〉
where xi ∈ X and yi ∈ {–1, 1}

weak learning algorithm WeakLearn
integer T specifying number of iterations

Init:
distribution D1 with Di

1 = 1/N for all i ∈ {1, . . . , N}

Procedure:
Do for t = 1, 2, . . . , T

1. Call WeakLearn, providing it with the distribution Dt;
get back a hypothesis ht : X → {–1, 1}.

2. Calculate the error of ht : εt =
∑N

i=1 Dt(i) [ht (xi )=/yi ].

3. Set αt = ln
(
(1 – εt)/εt

)
4. Update weights vector

Di
t+1 =

Di
t exp

(
–αt [h(xi )=yi]

)
Zt

where Zt is a normalization factor

Output:
A hypothesis hf

hf(x) =

⎧⎪⎪⎨⎪⎪⎩1, if
∑T

t=1 αtht(x) > 0
–1, otherwise

Figure 11.9 Pseudocode description of the algorithm AdaBoost.
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BrownBoost(S,WeakLearn,c,ν)

Input:
sequence S of N labeled examples

〈(
x1, y1

)
, . . . ,

(
xN, yN

)〉
where xi ∈ X and yi ∈ {–1, 1}

weak learning algorithm WeakLearn
a positive real-valued parameter c. (Total amount of time)
a small constant used to avoid degenerate cases ν > 0

Procedure:
Set initial margin r1(xi, yi) = 0 for all i ∈ {1, . . . , N}
“remaining time” s1 = c
Do for i = 1, 2, . . .

1. Associate with each example a positive weight

Wi(x, y) = e–(ri(x,y)+si )2/c

2. Call WeakLearn with the normalized distribution Di = Wi(x, y)/
∑

(x,y) Wi(x, y) and receive from it
a hypothesis hi(x) which has some advantage over random guessing

∑
(x,y) Di(x, y)hiy = γi > 0

3. Let γ, α and t be real-valued variables that obey the following differential equation:

dt
dα

= γ =

∑
(x,y) exp

(
– 1

c
(
ri(x, y) + αhi(x)y + si – t

)2) hi(x)y∑
(x,y) exp

(
– 1

c
(
ri(x, y) + αhi(x)y + si – t

)2)
Where ri(x, y), hi(x)y and si are all constants in this context. Given boundary conditions t = 0, α = 0
solve the set of equations to find ti = t∗ > 0 and αi = α∗ such that either γ∗ u ν or t∗ = si

4. Update the prediction value of each example to

ri+1(x, y) = ri(x, y) + αihi(x)y

5. update “remaining time” si+1 = si – ti

Until si+1 u 0

Output:
A hypothesis hf

hf(x) =

⎧⎪⎪⎨⎪⎪⎩1, if
∑

i αihi(x) > 0
–1, otherwise

Figure 11.10 Pseudocode description of the algorithm BrownBoost.
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Cascade(EX, WeakLearn, fa, de, Fatarget)

Input:
example oracle EX
weak learning algorithm WeakLearn
maximum acceptable false positive rate per layer fa
minimum acceptable detection rate per layer de
maximum acceptable overall false positive rate Fatarget

Init:
P set of positive examples according to EX,
N set of negative examples according to EX,
Fa0 = 1.0, De0 = 1.0, i = 0

Procedure:
While Fai > Fatarget

i = i + 1, ni = 0, Fai = Fai–1

While Fai > fa ~ Fai–1
ni = ni + 1
hi

ada = AdaBoost({P, N} , WeakLearn, ni)
Evaluate current cascaded classifier on a validation set to determine Fai and Dei

Decrease threshold of hi
ada until his detection rate dei u de ~ Dei–1 (determine Fai again)

N = ∅
If Fai > Fatarget refill N with negative examples from EX which are misclassified by the current
cascade

Output:
A hypothesis hcas

hcas(x) =
∧

K

hi
ada(x)

Figure 11.11 Pseudocode description of the algorithm Cascade.
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12

The Sampling Theorem in Theory and Practice
Wolfgang Arendt, Michal Chovanec, Jürgen Lindner, Robin Nittka1)

12.1

Introduction and History

Today the sampling theorem plays an important role in many areas, in theory as
well as in practice. This contribution tries to shed some light on applications on the
one hand and theory on the other, with two proofs being presented in the theoreti-
cal part. For a more detailed exposition of the sampling theorem and its importance
in various fields we refer to the standard textbooks, for example [1–6].

In signal processing, sampling means to convert an analog signal (a function of
a continuous-time variable) into a sequence of numbers (a function of a discrete
time variable). A precondition is that the signal is band-limited, i.e. that its Fourier
transform is zero for all frequencies outside a given frequency interval. By taking
samples with a rate greater than the length of this interval in Hz, the theorem
says that the exact reconstruction of the continuous-time signal from its samples is
possible. The theorem also gives a formula for the reconstruction. Band-limitation
indicates how fast the signal can change in time and hence also how much detail it
can convey between two adjacent discrete instants of time.

From an historical point of view, the sampling theorem has two parts. The first
part asserts that a band-limited function is completely determined by its samples,
the second shows how to reconstruct the function from its samples. A few au-
thors [7] suggested that the first part of the theorem goes back to a paper of Cauchy
from 1841 [8]. However, the paper does not contain such a statement and it seems
to be Borel [9] who stated the mathematical form of the theorem for the first time
in 1897. Within the engineering community, this first part is contained in the work
of Nyquist [10] in 1928. He demonstrated that 2B independent pulse samples per
second could be sent through a system having a pass-band interval of [–B, B]. How-
ever, he did not consider the sampling and reconstruction of continuous signals. At
the same time as Nyquist, Küpfmüller [11] obtained a similar result and, further-
more, discussed the sinc-function impulse response of a band-limiting filter. Here

1) Corresponding author.
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sinc(x) = sin(x)/x is the sine cardinal. This band-limiting and reconstruction filter
is sometimes called the Küpfmüller filter.

Both parts of the theorem (i.e. including reconstruction) were presented to the
Russian communication community by Kotelnikov in 1933 [12]. In 1939, these
were also described in the German literature by Raabe, an assistant of Küpfmüller,
in his PhD thesis. Both parts of the sampling theorem were given in a somewhat
different form by J.M. Whittaker [13] in 1935 and, slightly earlier, also by Ogura [14].

The theorem in the precise form in which we use it today was proved by
C.E. Shannon [15] in 1949, hence it is often called Shannon’s theorem. It was
introduced to Japanese literature by Someya [16] at the same time. In the En-
glish literature, Weston [17, 18] proved it independently of Shannon at about the
same time. The fact that so many people have independently contributed to the
discovery of the theorem is best reflected in the various names one may find
attached to the theorem in the literature, such as, for example, the Nyquist–
Shannon sampling theorem, Whittaker–Kotelnikov–Shannon sampling theorem,
Whittaker–Kotelnikov–Raabe–Shannon–Someya sampling theorem, and others.

As there have been various attempts to trace the origins of the sampling theorem,
we should mention at least J.R. Higgins [19] (where, more generally, the history
of the cardinal series can be tracked down), A.J. Jerri [20], H.D. Lüke [21], and
E. Meijering [22].

12.2

The Sampling Theorem in Applications

There are many applications of the sampling theorem – in theory as well as in
practice. “In theory” means that the sampling theorem is used as a basis for fur-
ther theoretical derivations or descriptions, and “in practice” means that it forms
the basis for real products or systems; for example, in the field of information
transmission or information storage. Of course, the theoretical formulation of the
sampling theorem is the basis for all these applications.

12.2.1

Applications in Theory

The general field dealing in a theoretical way with signals is called signal theory,
and there is a more application-oriented counterpart called signal processing, which
again contains a discipline described by digital signal processing. Signal theory is
a special kind of mathematics dealing to a large extent with functions of one vari-
able, which we will denote by s. We will denote the time variable by t, hence s(t)
stands for the signal value at time t. Because signal theory as a discipline was de-
veloped within the wider field of electrical engineering, there is much special ter-
minology, definitions, descriptions and theorems which have no direct counterpart
in classical mathematics. Because systems with signals as their input and output,
especially linear time-invariant systems, can also be described with signals, a com-
mon name for this area is also signals and systems. System theory is also related to
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these disciplines, but here the system itself is the focus of attention. The sampling
theorem belongs to all those areas.

Because signals are functions, we take the domain and range for classification.
Domain and range are the sets of numbers from where the t-values or the cor-
responding s-values are taken. It is common to use two types of sets for domain
and range to define four groups of signals: continuous and discrete. “Continuous”
means intervals of the set of real numbers, and “discrete” stands for a subset of
the set of integer numbers. Based on this, the three most important signal types
are: continuous-time continuous range signals (also called analog signals), discrete-
time continuous range signals (discrete-time signals for short), and discrete-time
discrete range signals (also called digital signals). In theory and in corresponding
applications it is also common to deal with complex-valued signals, vector-valued
signals and multi-dimensional signals.

The sampling theorem states that there is a mapping of analog signals s(t) to
discrete-time signals sdiscr(k) and vice versa. Here k ranges over the integers. The
mapping is unique in both directions, as long as the analog signals are band-
limited and the sampling rate 1/Δt is taken appropriately. “Band-limited” means
that the Fourier transform (or spectrum) S( f ) of s(t) equals zero for all frequen-
cies f outside an interval [–fc, fc]. With the sampling rate 1/Δt > 2fc we define the
corresponding discrete-time signal as follows:

sdiscr(k) = s(k · Δt)

A handy formulation is common in connection with the sampling theorem. Sam-
pling in the time domain with distance Δt leads to a periodic repetition with period
1/Δt in the frequency domain. Of course, if the periods in frequency do not over-
lap (we say there is no aliasing), the band-limited signal s(t) can be reconstructed
exactly by restricting the periodic repetition to [–fc, fc], i.e. by applying the transfer
function of an ideal low-pass filter with cut-off frequency fc. In the time domain
this means interpolation of sdiscr(k) with the inverse Fourier transform of [–fc,fc]

which is 2fc · sinc(2πfct). It is straightforward to see that the following is also true.
Sampling with Δf in the frequency domain leads to a periodic repetition with 1/Δf
in the time domain. It is also easy to see that the discrete Fourier transform (DFT)
includes both, periodicity and sampling in time and frequency as a precondition. If
the DFT is taken together with the sampling theorem for analog signals this must
be taken into account.

The examples above show that the sampling theorem leads to a more general
theory of signals and systems, and it is also the theoretical background for connect-
ing the DFT with the Fourier transform. Also, the understanding of sampling in
frequency domain is enabled by the sampling theorem.

12.2.2

Applications in Practice

The application of the sampling theorem in practice concerns many fields: infor-
mation transmission and storage, control and measurement systems, acoustic sig-
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nal processing, to mention only a few examples. There are also applications which
use a two-dimensional form of the sampling theorem with signals s(x, y). Instead
of time functions we then have functions which depend on the spatial coordinates
x and y. In practice this might be related to digital photography, for example. With
a time dimension t added we have s(x, y, t), which is suitable for describing video
signals.

In many applications in technology, digital signal processing (DSP) plays an im-
portant role. Because powerful, small and cheap DSP hardware is available today,
there is a trend to process analog signals in a digital way wherever it is possible.
The sampling theorem is the basis needed for that.

In reality, an analog signal may be a voltage, produced for example by a micro-
phone. A signal s(t) then stands for the variation of the voltage over time. The first
step towards digital processing of such a voice signal is to pass it through a so-
called anti-aliasing low-pass filter with cut-off frequency fc. This guarantees that we
have a band-limited signal at the output. So the basic precondition for the appli-
cation of the sampling theorem is fulfilled. DSP requires a further step: quantiza-
tion. This is because the samples sdiscr(k) are from the field of real numbers, but
“digital” means that they have to be integer numbers. Quantization performs this
mapping, with the disadvantage that it is not reversible. What numbers must be
taken for the cut-off frequency fc of the anti-aliasing low-pass filter and for the
number of binary digits (bits) to get integer values in range? Both depend on the
type of analog signal and the application – finally on what a user accepts as being
“good enough”. While for speech signals with telephone quality a sampling rate of
8 ksamples/s with 8 bit/sample is sufficient, we do accept music signals only with
at least 32 ksamples/s and 14 bit/sample quantization. For music Compact Discs
(CDs) we have 44.1 ksamples/s and 16 bit/sample in reality. For images there is no
fixed number of samples/mm, but for the quantization 8 bit/sample is accepted
as good enough. For color images the triple of samples for three basic colors, for
example RGB, are called pixels – so we can also say 24 bit/pixel is good enough for
ordinary images.

12.2.3

Special Case: Applications in the Field of Information Transmission

To transmit the sequence of quantized samples of an analog signal, for example
of a speech signal, from a transmitter to a distant receiver, digital transmission
methods must be used. For such digital transmission methods, analog signals play
an important role again, because any physical transmission channel can only have
physical quantities (like voltages or field strengths, for example) at its input and
output. Sequences of numbers (digital signals) are artificial and must be represent-
ed by measurable physical quantities.

The basic principle of digital transmission is the following: The transmitter se-
lects an analog signal ei(t) (elementary signal, basic waveform, transmit impulse)
from a predefined set Ae of signals and sends it via the channel to the receiver. The
receiver knows this set Ae, and for a given signal at its input it decides, with this



12.2 The Sampling Theorem in Applications 337

knowledge, what has been sent. If M is the number of signals in Ae the number of
information bits transmitted with a selection/reception of a certain ei(t) is log2(M)
(more precisely, this is only true if all signals are selected with the same probabili-
ty). The number of information bits is the number of bits needed to represent the
counting number i in binary form. This means that, for any digital transmission
scheme, the numbering of the analog signals ei(t) is the information being trans-
mitted. So again analog signals play an important role. At first glance there is no
restriction for selecting the different ei(t). But in reality for every transmission only
limited bandwidth is available, so the ei(t) have to be band-limited. This means that
the precondition for the application the sampling theorem is fulfilled. Therefore
it is not a surprise that in real digital transmission systems it is also common to
apply DSP whenever possible. As mentioned above, analog signals must be used
on any physical channel. So one of the final steps in a transmitter is digital to ana-
log conversion (DAC), and in the receiver one of the first steps is analog to digital
conversion (ADC).

The examples and explanations up to here are concerned with the application of
the sampling theorem in its original form, i.e. sampling of signals (or time func-
tions) and periodic repetition of their spectra. As mentioned in Section 12.2.1 there
is a second form: sampling in the frequency domain and periodic repetition in the
time domain. This form has also very important practical applications. All digital
broadcast transmission systems like Digital Audio Broadcast (DAB), Digital Video
Broadcast (DVB-T), and Digital Radio Mondiale (DRM) are based on it. Moreover,
the same is true for many wireless local area network (WLAN) transmission meth-
ods, and also for internet connections via DSL (Digital Subscriber Line). Addition-
ally, there is a trend to have it for all wireless transmission schemes in future. The
digital transmission method used in all those systems is called Orthogonal Fre-
quency Division Multiplexing (OFDM). As a generalization of the simpler scheme
described before, we transmit here not only one basic waveform at a time, but M
of them “in parallel”, which is also termed multiplexing. For each m = 1, . . . , M we
define a set of waveforms by em(t) = xm · um(t) with xm ∈ Ax. The transmit symbol
alphabet Ax contains Mx complex numbers. They are used as complex amplitudes
for the signals um(t), and they produce for each m the variety in the number of
waveforms that we need for information transmission. The number of possible
waveforms for fixed m is therefore Mx, and log2(Mx) bits are transmitted for each
m. Because we have M transmissions in parallel, the total number of bits transmit-
ted in one symbol period is M · log2(Mx). DVB-T, for example, has a mode where
M = 6817 (from 8192 possible) waveforms um(t) and a transmit symbol alphabet
Ax where up to 64 symbols are used.

Before we try to understand multiplexing and also OFDM a little bit better, we
have to know that all waveforms em(t) are summed up before leaving the transmit-
ter. The transmit signal in one symbol interval is then

s(t) =
M∑

m=1

em(t) =
M∑

m=1

xm · um(t)
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with xm ∈ Ax. Up to this point we are dealing with what we call multiplexing based
on linear modulation methods, which is more general than OFDM. For OFDM
two tricky ideas play an important role. The first is that eigenfunctions of linear
time invariant systems (LTI systems) are taken to build the set of functions um(t).
The background for this choice is that real physical transmission channels can
be modeled as linear systems, and if the transmitter and/or the receiver does not
move too fast, time invariance can also be assumed. With this precondition we can
say that the transmitted signals do not vary in their shape while being transferred
through the channel – this is the definition of eigenfunctions. The only effect the
channel causes in the received signal is a complex factor, namely the eigenvalue λm

which corresponds to the eigenfunction um(t). So, for um(t) being transmitted, the
corresponding received waveform is λm · um(t).

What are the eigenfunctions of LTI systems? The answer to this question has
been known for a long time and is basic knowledge in many disciplines: complex
exponential functions. So we define um(t) � e2πifmt. Here we denote the imaginary
unit by i �

√
–1 to be consistent with Section 12.3, even though usually it is de-

noted by j within the engineering community. The eigenvalues λm depend on the
frequency fm. In the area of signals and systems it is basic knowledge that the eigen-
values λm( fm) are identical with the Fourier transform of the impulse response h(t)
of the LTI system, which is called the transfer function H( f ) of the LTI system. As
a result, the mapping from channel input to channel output is

e2πifmt �→ H( fm) · e2πifmt.

Different eigenfunctions (with different frequencies fm) are orthogonal and the
channel preserves this orthogonality. The orthogonality is a very suitable condition
to separate the parallel transmissions at the receiving side without mutual interfer-
ence (often called crosstalk). In OFDM the um(t) are called subcarriers of the OFDM
transmission.

One problem remains to be solved. We understand this by looking at the mech-
anism we need for a continuous digital transmission. We have to transmit em(t)
(and hence the um(t)) more than once. We have to do it successively in symbol time
intervals TS (the symbol interval has already been mentioned). A simple approach
might help at a first glance. Let us define

um(t) � rect
(

t
TS

)
· e2πifmt

with the rectangular function rect = [–1/2,1/2]. For Δf � mini=/k

∣∣∣ fi – fk
∣∣∣ = 1/TS

we have also orthogonality between the waveforms (or subcarriers), as before. The
problem with this approach is that the um(t) are no longer eigenfunctions of the
channel. So the orthogonality will be lost at the output of the channel. Now the
second tricky idea enters. We extend um(t) periodically to a slightly larger interval,
for example

um(t) � rect
(

t
TS + TG

)
· e2πifmt .
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The value TG is the so-called guard time. The effect is the following. If the chan-
nel impulse h(t) response has a finite duration th, we can always find an inter-
val of duration TS in the received signal, which is identical to the case in which
we transmit real eigenfunctions of infinite duration, as long as TG > th. This is
easy to prove and will not be done here. As a final result, we only waste a little
bit of the energy of the transmitted em(t) but with the consequence that the chan-
nel cannot destroy the orthogonality. To give real numbers, again for the DVB-T
example from before, the fraction of TS + TG used as a guard interval can be select-
ed from 1/4, 1/8, 1/16 or 1/32. This is identical to the fraction of wasted symbol
energy.

Back to the sampling theorem for this OFDM example. At the transmit side we
have periodic signals with period TS. This enables us to use the discrete Fourier
transform (DFT) for the preparation of the whole transmit signal s(t) in each sym-
bol interval. In practice the inverse DFT (or inverse FFT) is taken. This leads to
another interpretation: s(t) may also be considered as a result of a Fourier synthesis
with Fourier coefficients xm. At the receiving side we have to remember the trick
explained just before, for example, cutting out the proper period in the received
signal. With this we have also periodic signals at the receiving side. Without addi-
tive noise or other interference, the DFT gives back the transmitted Fourier coeffi-
cients xm, of course multiplied by the eigenvalue caused by the channel. Therefore
the total transmission of the complex transmit symbols (or Fourier coefficients)
from transmitter to receiver can be described by the mapping xm �→ H( fm) · xm

for m = 1, . . . , M and xm ∈ Ax. Cutting out the proper period of the received sig-
nal and using the DFT is identical with a periodic extension of this cut-out. This
again corresponds to sampling in the frequency domain. The samples are the val-
ues H( fm) · xm.

12.3

Mathematical Formulation of the Sampling Theorem

We start by introducing some notation that will frequently be used throughout the
rest of this article. Then we state the version of the sampling theorem considered
here using precise mathematical notation. After that, two independent proofs are
presented.

12.3.1

Notation

The Lp(a, b)-spaces (1 u p < ∞) consist of (equivalence classes of) complex-valued
measurable functions f such that | f |p is integrable over the interval (a, b); in the
following we will primarily consider the case (a, b) = . If the reader is not familiar
with this concept they might think of f as being a piecewise continuous function
satisfying the integrability condition. For p = 2, L2(a, b) is a Hilbert space equipped
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with the inner product

(
f | g
)
�
(
f | g
)
L2 �

(
f | g)L2(a,b) �

∫ b

a
f(x)g(x)dx .

We need the (unnormalized) sine cardinal

sinc: → , sinc(x) �

⎧⎪⎪⎨⎪⎪⎩(sin x)/x if x =/ 0 ,

1 if x = 0 .

The characteristic function of a set M ⊂ will be denoted by

M: → {0, 1}, M(x) �

⎧⎪⎪⎨⎪⎪⎩1, x ∈ M ,

0, x � M .

Series over are always understood as

∞∑
k=–∞

ak � lim
n→∞

n∑
k=–n

ak ,

if the limit exists.

12.3.2

The Sampling Theorem

We now state the main result. For an interpretation of the theorem, Ω is the band-
width of the spectrum G of a signal g, and ωs is the sampling frequency.

Theorem 12.1 (Sampling Theorem) Let ωs > 0 and G ∈ L1( ). Assume that there
exists a positive number Ω < ωs/2 such that G vanishes outside the interval [–Ω, Ω].
Then

g(t) �
∫ Ω

–Ω
e2πityG(y)dy

satisfies the relation

g(t) =
∞∑

k=–∞
sinc
(
ωsπ
(
t –

k
ωs

))
g
(

k
ωs

)
. (12.1)

In particular, the series in (12.1) converges for every t ∈ .

This is an exact formula for reconstructing a band-limited function g on the whole
real line from its values on a sufficiently narrow grid. In particular, a signal is
uniquely determined by its band-width and samples which are taken at a rate that
exceeds the Nyquist rate which is twice the bandwidth.

We remark that, in general, the theorem does not remain true if we relax the
assumption Ω < ωs/2 to Ω u ωs/2. Imagine a situation like g(t) = sin

(
πωst/2

)
,
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corresponding to Dirac impulses G =
(
δωs/2 – δωs/2

)
/2i in the frequency domain.

Then all samples equal zero and we cannot distinguish g from the zero signal.
Thus g cannot be reconstructed. But of course the condition G ∈ L1( ) is also not
satisfied in this example. However, at least this gives an impression that in general
oversampling is needed, i.e. we have to require the strict inequality. Still, as an
alternative, we may only admit more regular functions G, for example only G in
L2( ). Then indeed the theorem remains true for Ω = ωs/2 as careful inspection
of the proof in Section 12.3.4 shows.

Remark 12.1 Note that under the hypotheses of Theorem 12.1, the signal g possesses
a holomorphic extension to the whole complex plane. It is a consequence of the identity
theorem for holomorphic functions that the signal has infinite duration unless it is iden-
tically zero. Thus the sum in (12.1) is infinite, but in practice we can only take a finite
number of samples. Still, merely taking an approximation, the procedure works extremely
well in applications.

12.3.3

Efficient Proof

In this section we give a short proof which uses only a well-known result about the
convergence of a Fourier series. Even though the calculations are easy to under-
stand, the physical interpretation of the mathematical manipulations are not clear.
In other words, it is not apparent what happens “behind the scenes”.

The key to the proof is to identify the sampling theorem in a special case as
a Fourier series expansion and to extend this observation by uniform convergence
to a wide class of functions. It seems that Vachenauer [23, Section 11.6.5] was the
first author who made this idea into a rigorous proof.

12.3.3.1

Dirichlet’s Theorem

For a function h: (–ωs/2, ωs/2) → we define the Fourier coefficients

ĥ(k) �
1

ωs

∫ ωs/2

–ωs/2
e–ik2πx/ωs h(x)dx .

Under certain regularity conditions on h the (formal) Fourier series

∞∑
k=–∞

eik2πx/ωs ĥ(k)

represents h(x) for all x ∈ (–ωs/2, ωs/2). For our proof it is necessary to know that
the Fourier series of a continuously differentiable function converges uniformly
to the function on each interval of the form [–Ω, Ω] with 0 < Ω < ωs/2. This is
asserted by the following theorem. Notice that we allow h(–ωs/2) to be different
from h(ωs/2).
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Theorem 12.2 (Dirichlet) Let h:
[
–ωs/2, ωs/2

] → be a continuously differentiable
function. Then for every 0 < Ω < ωs/2 the Fourier series of h converges to h uniformly on
[–Ω, Ω].

Proof This is a special case of the Dini–Lipschitz test [24, Chapter II, Section 10].
In the literature there are also some versions of this theorem which are closer to
the formulation above, see for example [25, Theorem 15.5]. q

From the preceding result the well-known fact can be deduced that the Fourier
series of a continuously differentiable, ωs-periodic function converges uniformly
on the whole real line.

12.3.3.2

A First Attempt of a Proof

At this point we insert a proof of the sampling theorem using Fourier series which
most mathematicians would probably come up with as their first idea on how to at-
tack the problem. But it does not yield the result in the generality of Theorem 12.1,
nor is it simpler than the next proof we will give. However, the approach is more
natural and should not be missing in a compilation of proofs for the sampling
theorem.

Assume, in addition to the assumptions in Theorem 12.1, that G is continuously
differentiable. The relation

Ĝ(–k) =
1

ωs

∫ ωs/2

–ωs/2
eik2πx/ωs G(x)dx =

1
ωs

g
(

k
ωs

)
(12.2)

is an immediate consequence from the definitions of g and the Fourier coefficients
Ĝ(k) of G. From the remark after Theorem 12.2 we also know that the Fourier series
of G converges to G uniformly on

[
–ωs/2, ωs/2

]
since there exists a continuous-

ly differentiable, ωs-periodic function on which agrees with G on this interval.
Due to this uniform convergence we are allowed to interchange summation and
integration in the following calculation.

g(t) =
∫ Ω

–Ω
e2πityG(y)dy =

∫ ωs/2

–ωs/2
e2πity

∞∑
k=–∞

Ĝ(–k) e–ik2πy/ωs dy

=
∞∑

k=–∞
Ĝ(–k)

∫ ωs/2

–ωs/2
e2πiyt e–2πiyk/ωs dy

=
∞∑

k=–∞
g
(

k
ωs

)
sinc
(
πωs

(
t –

k
ωs

))
This is the sampling theorem. For the last transformation we have used formu-
la (12.2) and the identity

1
ωs

∫ ωs/2

–ωs/2
e–ik2πy/ωs e2πity dy =

e2πi(t–k/ωs)ωs/2 – e–2πi(t–k/ωs)ωs/2

ωs2πi (t – k/ωs)
(12.3)

=
sin (ωsπ (t – k/ωs))

ωsπ (t – k/ωs)
= sinc

(
ωsπ
(
t –

k
ωs

))
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which holds at least if k =/ tωs. But note that, due to continuity, the left most and
right most expressions are also equal for k = tωs.

12.3.3.3

The Efficient Proof

Now we demonstrate how the sampling theorem can be proved using an idea which
is similar to the approach in the preceding section, but applies to a much wider
class of functions. The difference is that we write the factor e2πity as a Fourier series
instead of G.

We apply Dirichlet’s theorem to the function

h:
[
–

ωs

2
,

ωs

2

]
→ , h(y) � e2πity

for fixed t ∈ . We have already computed the Fourier coefficients ĥ(k) of this
function in (12.3). Hence h can represented as

h(y) =
∞∑

k=–∞
sinc
(
ωsπ
(
t –

k
ωs

))
eik2πy/ωs ,

where the series converges uniformly on [–Ω, Ω] if 0 < Ω < ωs/2. Note that this
proves formula (12.1) for the special case g(t) � e2πity for fixed y ∈ (–ωs/2, ωs/2).
The general case now follows. In fact, under the assumptions of Theorem 12.1 we
can compute g, interchanging summation and integration by virtue of the uniform
convergence.

g(t) =
∫ Ω

–Ω
h(y)G(y)dy

=
∞∑

k=–∞
sinc
(
ωsπ
(
t –

k
ωs

)) ∫ Ω

–Ω
eik2πy/ωs G(y)dy

=
∞∑

k=–∞
sinc
(
ωsπ
(
t –

k
ωs

))
g
(

k
ωs

)
This is the sampling theorem.

Remark 12.2 The assumption G ∈ L1( ) is stronger than necessary. The proof shows at
once that we only need to be allowed to interchange summation and integration in order
to prove the theorem. For example, for the Dirac delta function G = δ0 the proof remains
valid, which shows that the sampling theorem is true for the constant function g = 1.

More generally, (12.1) holds if g is the inverse Fourier transform of a signed, finite
measure μ on whose support is contained within an interval [–Ω, Ω] for 0 < Ω <
ωs/2, i.e. for functions of the form

g(t) �
∫ Ω

Ω
e2πity dμ(y) .

The above proof carries over to this situation verbatim.
Note that, in the proof, the assumption of G being band-limited is applied where

we have to assert uniform convergence of the Fourier series on the support of G.
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12.3.4

Conventional Proof

In this section we demonstrate how the sampling theorem follows from the theory
of Fourier transformations. The proof follows those found in the majority of the lit-
erature on this subject, particularly within the engineering community. For readers
used to convolution theorems and with a solid knowledge of standard transforma-
tions this proof is straightforward and easy to understand. However, as we strive to
make all arguments as mathematically precise as possible, we run into a delicate
problem at one point of the proof; we will address it at the end of this section in
more detail.

12.3.4.1

Tempered Distributions

We need a rather general concept of Fourier transforms. To this end we introduce
the space of Schwartz functions

S �
{
ϕ ∈ C∞ ( ) | xkϕ(m)(x) is bounded for all m, k ∈ 0

}
of all rapidly falling, smooth functions. Although we require much if we say that
a function lies in S, there exist many Schwartz functions, for example e–x2

. Note
that a Schwartz function multiplied by a polynomial remains a Schwartz function
and that derivatives of Schwartz functions are also Schwartz functions.

We say that a sequence (ϕn)n∈ of Schwartz functions converges in the space S to
a function ϕ ∈ S, if xkϕ

(m)
n (x) converges to xkϕ(m)(x) uniformly on for every choice

of k, m ∈ . We remark that this is a very strong kind of convergence: it is hard for
a sequence to converge in S.

We call the space of all (sequentially) continuous linear maps S → the space
of tempered distributions and denote it by S′. Note that it is easy for a linear map
S : S → to be in S′ as only under the strong assumption ϕn → ϕ in S does the
convergence S(ϕn) → S(ϕ) have to hold. We usually write 〈S,ϕ〉 instead of S(ϕ). We
say that a sequence (Sn)n∈ ⊂ S′ converges in S′ to S ∈ S′, if it converges pointwise
– in other words, if 〈Sn,ϕ〉 → 〈S,ϕ〉 for every ϕ ∈ S.

Note that every integrable or bounded function f can be considered to be a tem-
pered distribution Jf via the identification〈

Jf,ϕ
〉
�
∫

f(x)ϕ(x)dx (ϕ ∈ S) . (12.4)

In fact, this map is one-to-one in the sense that Jf = Jg implies f = g almost every-
where, see [26, Chapter I, Section 1.5]. Hence many function spaces, for example
the space of integrable functions and the space of bounded functions, are identified
with subspaces of S′ and for this reason distributions are often called generalized
functions.

The next four sections deal with operations involving tempered distributions and
their properties. We closely follow the presentation of distributions as found in the
Appendix of [27].
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12.3.4.2

Fourier Transformation

For an integrable function f ∈ L1( ) it is possible to define the following functions
as the integrals converge.

F f(x) �
∫

e–2πixyf(y)dy (x ∈ )

F̄ f(x) �
∫

e2πixyf(y)dy = F f̄(x) (x ∈ )

The functionsF f and F̄ f are called the Fourier transform and inverse Fourier trans-
form of f, respectively.

It can be immediately seen that F f is bounded for every f ∈ L1( ). Moreover, it is
an easy calculation involving integration by parts to obtain the following formulae
for arbitrary m ∈ and ϕ ∈ S.

F
(
ϕ(m)
)

(x) = (–2πix)m F ϕ(x)

F ((–2πi·)m ϕ
)

(x) = (F ϕ)(m) (x)

As a consequence, F ϕ ∈ S if ϕ ∈ S, using that xkϕ(m)(x) ∈ S for all m, k ∈ 0.
Furthermore, one can see that F :S → S is continuous, using the above formulae
and the theorem about interchanging integration and uniform convergence.

The Fourier transformation is well-behaved in the space S, which is the main
reason for introducing S in the first place. But also the larger space L2( ) which
contains S is related to this operation as the following theorem shows. We will
make use of this fact when we show that F can be extended even to tempered
distributions in a sensible way.

Theorem 12.3 (Plancherel) The Fourier transform F on S extends to a unitary opera-
tor on L2( ). In particular,

(
f | g)L2 =

(F f | F g
)
L2 for all f, g ∈ S.

Proof For the proof we use the inversion theorem (Theorem 12.4). We may do
so because the proof of the inversion theorem does not depend on Plancherel’s
theorem.

Let f, g ∈ S be arbitrary. Since F̄ F f = f, we can proceed as follows.(
f | g
)
L2 =
∫ (

F̄ F f
)

(x)g(x)dx =
∫ ∫

e2πixy (F f
)
(y)dy g(x)dx

=
∫ (F f

)
(y)
∫

e2πixyg(x)dx dy =
∫ (F f

)
(y)
(F g
)

(y)dy

=
(F f | F g

)
L2

The interchange of integrals is allowed by virtue of Fubini’s theorem because f and
g decrease sufficiently fast at infinity.

Using the density of S in L2( ), we conclude that F can uniquely be extended to
a unitary linear operator on L2( ). This concludes the proof of the theorem. q
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The operator can be extended even to a much larger space: We define the Fourier
transform of tempered distributions S to be the functional F S acting as 〈F S,ϕ〉 �
〈S,F ϕ〉 on ϕ ∈ S. The linearity of F S is obvious, and by the continuity of F on S
the functional F S is continuous, hence F S ∈ S′. Moreover, it is obvious from the
definition of convergence in S′ that the map F :S′ → S′ is continuous. Note that
all this can be done analogously for F̄ .

It is a remarkable consequence of Plancherel’s Theorem that this definition is
consistent. For every f ∈ L2( ) and, in particular, for f ∈ S, we have defined F f in
two different ways, namely the definition for the function f as in Theorem 12.3 and
for the distribution Jf as defined in (12.4). But in fact those two definitions agree.

Proposition 12.1 (Consistency of F ) If f ∈ L2( ) then F Jf = JF f.

Proof Let ϕ ∈ S be arbitrary.〈
F Jf,ϕ

〉
=
〈
Jf,F ϕ

〉
=
∫

f(x) (F ϕ) (x)dx =
(
f | F ϕ

)
L2

=
(
f | F̄ ϕ̄

)
L2

=
(
F f | F F̄ ϕ̄

)
L2

=
(F f | ϕ̄)L2 =

∫ (F f
)

(x)ϕ(x)dx =
〈
JF f,ϕ

〉
This shows F Jf = JF f in the sense of tempered distributions. q

12.3.4.3

Inversion Theorem

Now we are going to show that F is invertible, its inverse being F̄ . For this pur-
pose we need the Fourier transform of the constant function � 1. It is possible
to compute F by an extensive and tricky, though very elegant calculation [27, Ap-
pendix (3.28)]. For our purposes, we mention it as an example of a Fourier trans-
form without proof.

Example 12.1 Let δ0:S → denote the Dirac distribution
〈
δ0,ϕ

〉
� ϕ(0) for ϕ ∈ S.

Then F � F J = δ0.

We also need the following translation lemma for Fourier transforms.

Lemma 12.1 Let a ∈ , and define La ϕ ∈ S by (Laϕ) (x) � ϕ(x + a). Then
(F Laϕ) (x) = e2πixaF ϕ(x) for every ϕ ∈ S.

Proof This follows from the substitution rule as follows.

(F Laϕ) (x) =
∫

e–2πixyϕ(y + a)dy =
∫

e–2πix(y–a)ϕ(y)dy = e2πixaF ϕ(x) q

Now we are able to prove the inversion theorem.
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Theorem 12.4 (Inversion Theorem for S) The operator F :S → S is bijective, its in-
verse being F̄ :S → S.

Proof Let ϕ ∈ S and a ∈ be arbitrary.

ϕ(a) =
〈
δ0, La ϕ

〉
= 〈F , Laϕ〉 = 〈 ,F Laϕ〉

=
∫

e2πiaxF ϕ(x)dx =
(
F̄ F ϕ

)
(a)

This shows F̄ F ϕ = ϕ. The equality F F̄ ϕ = ϕ can be proved analogously. q

An entirely different, more direct, approach to this theorem can be found in [28,
Chapter II, Section 1.6].

From the definition of the Fourier transform of tempered distributions the cor-
responding statement in S′ follows directly.

Corollary 12.1 (Inversion Theorem for S′) The operator F :S′ → S′ is bijective, its
inverse being F̄ :S′ → S′.

12.3.4.4

Examples

For later use, we give further examples of Fourier transforms.

Example 12.2 (Sine Cardinal sinc and the Rectangle Impulse) For ωs > 0 define
fωs (x) � ωs sinc (πωsx). Then F fωs = (–ωs/2,ωs/2).

Proof Let x =/ 0. Then(
F̄ (–ωs/2,ωs/2)

)
(x) =

∫ ωs/2

–ωs/2
e2πixy dy =

1
2πix

(
eπixωs – e–πixωs

)
=

sin (πxωs)
πx

= fωs (x) .

Proposition 12.1 now asserts that F̄ (–ωs/2,ωs/2) = fωs in the sense of tempered dis-
tributions. Applying F to both sides of the identity, Corollary 12.1 proves the claim.
q

Example 12.3 (Shah-Function XT) For T > 0 consider XT:S → defined as XT �∑
n∈ δnT ∈ S′, i.e., 〈XT,ϕ〉 � ∑n∈ ϕ(nT) for ϕ ∈ S. Then XT is a tempered distribu-

tion and FXT = 1/T X1/T.

Proof It is easy to see that XT is linear and continuous, hence XT ∈ S′.
Fix ϕ ∈ S and define ψ(x) �

∑
n∈ ϕ (x + n/T). Then ψ is continuously differen-

tiable on according to a theorem on differentiation of a series of differentiable
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functions. The function ψ is 1/T-periodic because a shift of its argument by a mul-
tiple of 1/T corresponds to a rearrangement of the summands of this absolutely
convergent series.

Using the 2πi-periodicity of the e-function and the substitution y = x + n/T, we
can compute the Fourier coefficients of ψ. The interchange of summation and
integration occurring here is easily justified by Fubini’s theorem after noticing that
the integrand is bounded by C/n2 for a sufficiently large constant C > 0. Thus

ψ̂(k) = T
∫ 1/T

0
ψ(x) e–ik2πTx dx = T

∑
n∈

∫ 1/T

0
ϕ
(
x +

n
T

)
e–ik2πTx dx

= T
∫
ϕ(y) e–2πikTy dy = T (F ϕ) (kT) .

Applying Theorem 12.2 with ωs = 1/T we conclude in particular that the Fourier
series of ψ represents ψ at 0, but a much weaker version of Dirichlet’s theorem
would have been sufficient for this.

〈FXT,ϕ〉 =
∑
k∈

(F ϕ) (kT) =
1
T

∑
k∈

ψ̂(k) =
ψ(0)

T

=
1
T

∑
n∈
ϕ
(n
T

)
=
〈

1
T
X1/T,ϕ

〉
This proves the claim. q

Example 12.3 asserts that for a function ϕ ∈ S there is a relation between the values
of ϕ on a lattice and the values of F ϕ on an inverse lattice which is known as the
Poisson summation formula. In fact, this relation holds true for a much wider class
of functions, see [24, Chapter II, Section 13].

12.3.4.5

Convolution

Another important concept in signal theory is the convolution

(ϕ ∗ ψ) (x) �
∫
ϕ(x – y)ψ(y)dy (12.5)

of two sufficiently fast decreasing functions, for example, ϕ, ψ ∈ L2( ). Under the
Fourier transformation, the convolution becomes a multiplication, which is one of
the reasons that make Fourier transforms particularly useful for calculations. For-
mulae of this kind are called convolution theorems. We prove a rather general one
(Theorem 12.5) for use in our second proof of the sampling theorem, as we need
this identity not only for functions for which the expression in (12.5) is defined, but
also for tempered distributions. Unfortunately, it is not possible to obtain a convo-
lution theorem for arbitrary ϕ, ψ ∈ S′. In fact, it is not even possible to consistently
define the convolution or multiplication of such general distributions.

First we note that the convolution defined as in (12.5) of a function in L1
c ( ), i.e.

an integrable function with bounded support, and a Schwartz function, is again
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a Schwartz function. More precisely, let g ∈ L1
c ( ) and define ǧ ∈ L1

c ( ) by ǧ(x) �
g(–x). Then ǧ ∗ϕ is differentiable, and its derivative is ǧ ∗ϕ′. It is not too hard to see
that indeed ǧ ∗ ϕ ∈ S and convolution with ǧ is a continuous operation on S.

With this knowledge we may define the convolution of a tempered distribution
U and a function g ∈ L1

c ( ) by
〈
U ∗ g,ϕ

〉
�
〈
U, ǧ ∗ ϕ〉. It is obvious that U ∗ g is

linear. By continuity of the convolution with ǧ the functional U ∗ g is continuous,
thus U ∗ g ∈ S′.

Example 12.4 Let h ∈ L1
c ( ) and T > 0. We define H(x) �

∑
k∈ h

(
x – k/T

)
, so that

the function H is a sum of shifted copies of h. Then h ∗ X1/T = JH, and in particular
JH ∈ S′.

For those familiar with the definition of the Lp-spaces, we point out that it is cor-
rect to define H as above. Different representatives of the same equivalence class
in L1

c ( ) give functions that agree almost everywhere, and each such H is locally
integrable because on compact sets only finitely many summands do not vanish.
Thus H is well-defined as an element in L1

loc( ).

Proof Let ϕ ∈ S.〈
h ∗X1/T,ϕ

〉
=
∑
k∈

(
ȟ ∗ ϕ

) (
k
T

)
=
∑
k∈

∫
h
(
x – k

T

)
ϕ(x)dx

=
∫ (∑

k∈
h
(
x – k

T

))
ϕ(x)dx =

〈∑
k∈

h
(
· – k

T

)
,ϕ
〉

Here we have interchanged summation and integration. This is allowed because
the intersection of the supports of h

(
x – k/T

)
and ϕ(x) leaves any compact set as

|k| becomes large. Thus we can exploit the fast decay of ϕ to show integrability of
the product on the product space, and then Fubini’s theorem justifies the calcu-
lation. q

For functions η with the property that ηϕ ∈ S for every ϕ ∈ S we define multiplica-
tion of a tempered distribution U with η by

〈
ηU,ϕ

〉
�
〈
U, ηϕ

〉
. We denote the set

of all such functions η by OM and mention that OM is the set of all infinitely differ-
entiable functions such that the function and all of its derivatives are bounded by
polynomials. It is easy to see that for such η the functional ηU is again a tempered
distribution for every U ∈ S′.

We remark that convolution and multiplication defined in the setting of tem-
pered distributions are consistent with the usual definitions if the tempered distri-
bution can be represented by a function in the sense of (12.4).

As mentioned before, we will now relate the convolution and multiplication of
tempered distributions as defined above via the Fourier transformation.

Theorem 12.5 (Convolution Theorem) Assume that U ∈ S′ and g ∈ L1
c ( ). Then

F g ∈ OM and F (U ∗ g
)

= F g · FU.
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Proof According to a theorem about the differentiation of parameter integrals, the
function F g is infinitely differentiable and its n-th derivative is given by

(F g
)(n) (x) =

∫ (
–2πiy

)n e–2πixyg(y)dy .

Since g is integrable and the other factor of the integrand is bounded on the (com-
pact) support of g, we see that for n ∈ the function

(F g
)(n) is bounded, hence

F g ∈ OM.

Now we show F (U ∗ g
)

= FU · F g. Let ϕ ∈ S. It is a straightforward calcula-
tion involving Fubini’s theorem and linear substitution to show that the identities
F̄ (ǧ ∗ ψ

)
= F̄ ǧ · F̄ψ and F̄ ǧ = F g hold for every g ∈ L1

c ( ) and ψ ∈ S. Setting
ψ = F ϕ this proves ǧ ∗ F ϕ = F (F g · ϕ) and hence〈F (g ∗ U

)
,ϕ
〉

=
〈
U, ǧ ∗ F ϕ〉 =

〈
U,F (F g · ϕ)〉 =

〈F g · FU,ϕ
〉

for every ϕ ∈ S. q

Note that the proof can be carried out analogously for F̄ to get the corresponding
convolution theorem for the inverse Fourier transform under the same assump-
tions.

This is not the most general version of the convolution theorem that can be
proved. In fact, there are many generalizations to the statement above, none of
them being the single most general truth.

12.3.4.6

The Conventional Proof

Now we demonstrate our second proof of the sampling theorem utilizing the theory
of Fourier transforms and the convolution theorem. Readers familiar with these
concepts and formulae for transforms will find this approach easy to understand.
They easily obtain a picture of what is happening, switching their point of view
from the time domain to the frequency domain and back. Nevertheless, there are
some very delicate mathematical problems involved in this calculation, which we
will point out afterwards.

As in the sampling theorem we fix values ωs > 0 and 0 < Ω < ωs/2. Let G
be a function in L1( ) vanishing outside [–Ω, Ω]. Define g(t) � F̄G as in Theo-
rem 12.1. Note that g ∈ OM which follows as in the proof of Theorem 12.5. We
define ga � gX1/ωs , i.e.,

〈
ga,ϕ
〉

=
∑
k∈

g
(

k
ωs

)
ϕ

(
k

ωs

)

for all ϕ ∈ S. Note that ga only depends on samples of g taken on a grid with
mesh size 1/ωs. We define the distribution ga because we want to put the sequence
of measurements into the framework of tempered distributions in order to apply
Fourier transformation and convolution.
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From Example 12.4 we know that G ∗Xωs =
∑

k∈ G (· – kωs). We can obtain G
from G ∗Xωs by restricting the function G ∗Xωs to the interval (–ωs/2, ωs/2) be-
cause the shifted copies of G occurring in the series

∑
k∈ G (· – kωs) do not overlap

due to Ω < ωs/2 (in other words, there is no aliasing). Thus

G =
(
G ∗Xωs

)
(–ωs/2,ωs/2) . (12.6)

We point out that here we require the signal to be band-limited. Additionally, we
see from this argument that the condition Ω u ωs/2 is optimal since G ∗Xωs does
not uniquely encode the data of G if G has a broader spectrum. However, we can
permit Ω = ωs/2 here.

At this point we see what happens if the signal fails to be band-limited. In this
case higher and lower frequencies contribute to the values that G ∗ Xωs has on
(–ωs/2, ωs/2). If we try to reconstruct the signal as if it were band-limited, we ar-
rive at the signal belonging to the spectrum (G ∗Xωs ) (–ωs/2,ωs/2). From this point
of view it is reasonable to assume that we maintain most of the original signal’s in-
formation even if G is merely negligibly small outside (–ωs/2, ωs/2), but does not
vanish.

Now we use the convolution theorem for the inverse Fourier transform and Ex-
ample 12.3 and obtain

F̄ (G ∗Xωs

)
= F̄G · F̄Xωs = g · 1

ωs
X1/ωs =

1
ωs

ga . (12.7)

Remember that ga is determined by the samples of g. Thus the samples contain
the same information as G ∗ Xωs . In view of identity (12.6) this allows us to ob-
tain G and finally g. In other words we have shown that the samples contain all
information about the signal.

We combine Example 12.2 with the formulae (12.6) and (12.7).

F g = G =
(
G ∗Xωs

) · (–ωs/2,ωs/2)

= F
(

1
ωs

ga

)
· F (ωs sinc (πωs·))

(�)
= F (ga ∗ sinc (πωs·)

)
(12.8)

We now apply F̄ to both sides.

g(t) =
(
ga ∗ sinc (πωs·)

)
(t)

(�)
=
∑
k∈

g
(

k
ωs

)
sinc
(
πωs

(
t –

k
ωs

))
This last relation is the sampling theorem, and thus the proof is complete.

However, at the moment the identities marked with (�) can be understood on-
ly formally. This convolution does not fit into the framework of Section 12.3.4.5
because none of the functions has compact support. More seriously, none of the
Fourier transforms is in OM. This means that the products in (12.8) have to be un-
derstood as products of functions and cannot be seen as products of a tempered
distribution and a function in the sense of Section 12.3.4.5. In fact, the authors do
not know of any convolution theorem in the literature that covers this situation.
Therefore, it is necessary to give an ad hoc justification of those manipulations
which we will do in the next section under slightly more restrictive assumptions
on G. Apart from this, the proof is complete at this point.
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12.3.4.7

A Convolution Theorem for a Specific Function

The proof of the last section is complete once the following result is proved. We
still use the same notation as in the last section.

Lemma 12.2 Let G ∈ L1 (–Ω, Ω). The following identity holds almost everywhere and
(equivalently) in the space of tempered distributions.

F gaF sinc (πωs·) = F
⎛⎜⎜⎜⎜⎜⎜⎝∑

k∈
g
(

k
ωs

)
sinc
(
πωs

(
· – k

ωs

))⎞⎟⎟⎟⎟⎟⎟⎠ (12.9)

The series on the right-hand side converges pointwise to a bounded function and thus can
be considered to be an element of S′.

We are not able to prove this lemma to this generality without simply paraphrasing
the ideas of the first proof. Therefore we will show the result only for G ∈ L2(–Ω, Ω),
but provide a direct proof. In practice this is no severe restriction. For example,
bounded functions automatically are in L2. The only cases where we lose generality
is the case of functions having integrable poles that are not square-integrable.

Proof We now assume G ∈ L2(–Ω, Ω). The idea is to approximate sinc (πωs·) in the
norm of L2 by functions with bounded support to which the convolution theorem
applies. We then prove the claim by taking the limit.

To this end, choose any sequence sn ∈ L2
c ( ) converging to s � sinc (πωs·) in

L2( ) such that |sn | u |s|, for example sn(t) � sinc (πωst) (–n,n). According to the
convolution theorem F gaF sn = F (ga ∗ sn

)
.

First we show F gaF sn → F gaF s in S′. For this, fix ϕ ∈ S. Note that F gaϕ ∈ L2( )
by the same arguments as in Example 12.4 (remember that F ga is a sum of shifted
copies of G). Now we exploit the continuity of the scalar product and the operator
F in L2 to see that

〈F gaF sn,ϕ
〉

=
∫

F gaF snϕ =
(
F sn | F gaϕ

)
L2

→
(
F s | F gaϕ

)
L2

=
∫

F gaF sϕ =
〈F gaF s,ϕ

〉
This shows the convergence in S′ to the left-hand side of (12.9).

Next we are going to show that, indeed,

h(t) �
∑
k∈

g
(

k
ωs

)
sinc
(
πωs

(
t –

k
ωs

))

converges for every t ∈ and represents a bounded function. First we identi-
fy g
(
–k/ωs

)
/ωs as being the k-th Fourier coefficient of G ∈ L2

(
–ωs/2, ωs/2

)
. By
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Bessel’s inequality (see [24, Chapter I, Section 7]) the sequence
(
g
(
k/ωs

))
k∈ is

square-summable. Moreover, it can be seen that for every t ∈ the sequence

(ak(t))k∈ �
(
sinc
(
πωs

(
t –

k
ωs

)))
k∈

is square-summable and that the corresponding series of squares is uniformly
bounded for t ∈ . In fact, |ak(t)| u 1 for all k and t. Moreover, for fixed t ∈
we pick n ∈ such that n u ωst u (n + 1) and obtain

∣∣∣ak(t)
∣∣∣ = ∣∣∣∣∣∣ (–1)k sin (ωsπt)

π (ωst – k)

∣∣∣∣∣∣ u
⎧⎪⎪⎨⎪⎪⎩
(
π(k – (n + 1))

)–1 , if k > n + 1 ,(
π(n – k)

)–1 , if k < n .

By this we can estimate
∑∞

k=–∞ |ak(t)|2 u 3 + 2/π
∑∞

k=1 1/k2 independently of t ∈ .
Schwarz’s inequality (see [24, Chapter I, §9]) now asserts (absolute) convergence of
the series h(t) and gives a uniform bound for |h(t)|.
Finally we show that ga ∗ sn → h in S′. Let ϕ ∈ S.

〈
ga ∗ sn,ϕ

〉
=
〈
ga, šn ∗ ϕ

〉
=
〈
gX1/ωs ,

∫
sn(t – ·)ϕ(t)dt

〉
=
∑
k∈Z

∫
g
(

k
ωs

)
sn

(
t –

k
ωs

)
ϕ(t)dt

Note that
∣∣∣g (k/ωs

)
s
(
t – k/ωs

)
ϕ(t)
∣∣∣ is an upper bound of the above integrand. The se-

ries
∑

k∈Z
∣∣∣g (k/ωs

)
s
(
t – k/ωs

)∣∣∣ is uniformly bounded according to the last paragraph,
and of course ϕ is integrable. This shows that we are in the position to apply Fubi-
ni’s and Lebesgue’s theorems to deduce what we have claimed.

〈
ga ∗ sn,ϕ

〉→ ∫ ∑
k∈Z

g
(

k
ωs

)
s
(
t –

k
ωs

)
ϕ(t)dt =

〈
h,ϕ
〉

By continuity of F on S′ we conclude that F (ga ∗ sn
) → F h. This is the conver-

gence to the right-hand side of (12.9). The lemma is proved. q

We remark that this section can be generalized to the case G ∈ Lp(–Ω, Ω) for any p >
1 without much effort by using interpolation theorems to get some decay rate for
the Fourier coefficients. However, this does not even cover the case G ∈ L1(–Ω, Ω)
completely, let alone the measures in Remark 12.2.
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Coding and Decoding of Algebraic–Geometric Codes
Martin Bossert, Werner Lütkebohmert1), Jörg Marhenke

13.1

Introduction

Coding theory is a vast area of research and has numerous practical applications in
the storage and transmission of digital data. By coding one adds redundancy to the
data in order to detect or correct possible errors that occurred during transmission
or during the read–write process. In this article we focus on algebraic–geometric
codes; and in particular on Reed–Solomon codes. In addition, we describe the con-
cept of forward error correction and give some specific algorithms for the correc-
tion of errors.

After an introduction to the concepts of coding theory and methods of decoding,
some basic results about Goppa codes, here called algebraic–geometric codes, are
explained. The coding procedure for the latter codes merely consists of computing
Riemann–Roch spaces which can be done using methods from algebraic number
theory. The decoding method for hard decoding up to half the minimum distance
and the one beyond half the minimum distance, which are due to Feng-Rao and
Sudan, respectively, are presented. A specific algorithm for the decoding of Reed–
Solomon codes beyond half the minimum distance is sketched. Furthermore, an
algorithm for the use of possibly existing reliability information, so called soft-
decision, is described.

13.2

Introduction to Linear Codes

Let F := Fq be a finite field with q elements; for example, let F = Z/pZ be the prime
field with p elements. The Hamming weight on the F-vector space Fn

wt(x) := #{ i ; xi =/ 0 } for x = (x1, . . . , xn) ∈ Fn

1) Corresponding author.
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gives rise to a distance function

d(x, y) := wt(x – y) for x, y ∈ Fn

For a nonempty subset C ⊂ Fn the minimum distance of C is defined by

d(C) := min{d(x, y) ; for x, y ∈ C with x =/ y}

For any a ∈ Fn and r ∈ R we denote by

B(a, r) := {x ∈ Fn ; d(a, x) u r}

the ball at a with radius r. For t ∈ R with 1 + 2t = d(C) the balls

B(c, t) ∩ B(c′, t) = ∅ for c, c′ ∈ C with c =/ c′

are disjoint; this number t is called the error-correction bound.
Fixing the parameters (n, d) and the base field with q elements, one can look at

the number

Aq(n, d) := max{M ; there exists C ⊂ Fn with #C = M ; d(C) v d }

Quite often one is interested in the ratios

R(C) := (logq #C)/n the information rate
δ(C) := d(C)/n the relative minimal distance .

Upper bounds are easy to prove. A simple but important bound is

Theorem 13.1 (Singleton Bound) For a code with parameters (n, d) the following holds

logq(#C) + d u n + 1 .

For a relative distance 0 u δ u 1 one can consider

aq(n, δ) := lim sup
n→∞

1
n

logq Aq(n, δn) .

This is the asymptotic maximal information rate with fixed relative distance. Due
to the Singelton Bound one has

1 – δ v aq(δ) for 0 u δ u 1 .

For lower bounds one considers the entropy function which is defined for 0 u t u
(q – 1)/q by

Hq(t) := t logq(q – 1) – t logq t – 1 – (1 – t) logq(1 – t) .

By simple combinatorial arguments one can show:



13.3 Introduction to Forward Error Correction 357

Theorem 13.2 (Gilbert–Varshamov Bound)

aq(δ) v 1 – Hq(δ) for 0 u δ u (q – 1)/q

A linear code is a linear subspace C ⊂ Fn, its dimension is k = logq(#C), its length n
is equal to the dimension of the ambient space Fn, and its minimum distance is d :=
d(C) = min{wt(x) ; x ∈ C – {0}}. The Hamming bound for a linear (n, k, d) code over
the alphabet of size q is given by

qk

⎛⎜⎜⎜⎜⎜⎜⎜⎝'d–1/2(∑
i=0

(
n
i

)
(q – 1)i

⎞⎟⎟⎟⎟⎟⎟⎟⎠ u qn

and counts the number of vectors of the space which lie inside the spheres.

In the sequel we will consider linear codes only. For such codes we have defined
parameters (n, k, d) above, hence, R(C) = k/n and δ(C) = d/n. It is known that linear
codes exists with rate δ and information rate greater than 1 – Hq(δ). More precisely
one has the following result which, for q v 49, gives a lower bound which improves
the Gilbert–Varshamov-bound in a certain range of δ.

Theorem 13.3 (Tsfasman–Vlădut–Zink) If q is a square, then

aq(δ) v
(
1 –

1
√

q – 1

)
– δ for 0 u δ u 1 –

1
√

q – 1

This relies mainly on the idea of Goppa constructing linear codes by methods from
algebraic geometry which we will describe in Section 13.4.

13.3

Introduction to Forward Error Correction

When digital data is transmitted, or when it is stored on a medium, errors occur
due to statistical disturbances. The statistics of the errors only are important for
forward error correction and therefore channel models are used in order to describe
the error occurrence. Shannon has defined in his landmark paper A mathematical
theory of communication [1] the capacity of a channel and has proved that reliable
transmission is only possible when a code of rate less than the capacity is used. In
the following we will describe a selection of channel models and the basic concepts
of forward error correction methods.

The channel is characterized by the conditional probabilities pr(y|x) that a symbol
y from a finite or infinite alphabet is received when a symbol x from the code
alphabet is sent via the channel.

An error has occurred if y =/ x in the case that the channel output alphabet is
identical to the code alphabet.
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Figure 13.1 Binary symmetric channel.

For memoryless channels the reception of a vector y = (y1, y2, . . . , yn) when the
codeword x = (x1, x2, . . . , xn) was transmitted has the probability

pr(y|x) =
n∏

i=1

pr(yi|xi)

because the transmissions of the individual symbols are independent of each other.
In the following we introduce the two most common channel models.

13.3.1

Binary Symmetric Channel, BSC

The input and output alphabet of the BSC is {0, 1} and the conditional probabilities
are pr(0|0) = pr(1|1) = 1 – ε and pr(0|1) = pr(1|0) = ε which explains the name
symmetric. In Figure 13.1 the BSC is depicted. If we transmit codewords of length
n the probability pr(τ) that τ errors occur in the codeword is

pr(τ) =
(
n
τ

)
ετ(1 – ε)n–τ

which follows the binomial distribution. The received vector y can be calculated by
adding an error vector e to the transmitted codeword c, that is y = c + e (note that
the addition is in the field).

13.3.2

Additive White Gaussian Noise Channel, AWGN

The input alphabet is binary, namely {1, –1}. Usually binary codes are defined over
the field {0, 1} but due to signal transmission the mapping [1 �→ 0 , –1 �→ 1] is intro-
duced. The channel output consists of real numbers y ∈ R. Figure 13.2 shows the
conditional probability densities pd(yi|xi = 1) and pd(yi|xi = –1) which determine
the probability that yi ∈ [a, b] lies in the interval [a, b]

pr(yi ∈ [a, b]|xi) =
∫ b

a
pd(yi|xi)dyi =

∫ b

a

1
√

2πσ2
e–(yi–xi)2/2σ2

dyi .

The variance σ2 determines the quality of the channel: the larger the variance the
larger the number of errors. Note that an error occurs only if the sign of the received
y is different from the sign of the transmitted symbol.
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erroneous
if +1 was sent

erroneous
if −1 was sent

y

−1 +1

p(yi|xi=−1) p(yi|xi=1)

Figure 13.2 Additive white Gaussian noise channel with normalized binary phase shift keying.

Whenever the output alphabet is larger than the input or code alphabet, one can,
in addition, use reliability information. Consider the so-called L-value

Li = log
pr(xi = 1|yi)
pr(xi = –1|yi)

. (13.1)

The sign of Li is the binary decision for the symbol. If the probability for –1 is larger,
the fraction is smaller than 1 and the logarithm is negative. However, the absolute
value of |Li | represents the reliability of the decision. The larger |Li| the larger the
difference between the two probabilities.

13.3.3

Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Decoding

A decoder should decide on the maximal probability pr(x|y) for an input word x
and received word y. Clearly the assumption is that the decoder knows the channel
statistics, observes y, and knows which code C is used. Applying Bayes rule we can
calculate

arg max
x∈C

pr(x|y) = arg max
x∈C

pr(y|x) · pr(x)
pr(y)

= arg max
x∈C

pr(y|x) · pr(x) .

Now we can distinguish between two cases, first the decoder has knowledge about
the a priori probability pr(x), a codeword x that is transmitted, and second, that this
is not known. In the first case the decoder does a maximum a posteriori (MAP)
decision according to the above equation, and in the second case it is called a max-
imum likelihood (ML) decision as follows

arg max
x∈C

pr(x|y) = arg max
x∈C

pr(y|x)

ML decoding is used when the a priori probabilities are not known or they are
identical for all codewords.



360 13 Coding and Decoding of Algebraic–Geometric Codes

13.3.4

Hard- and Soft-Decision Decoding

If the decoder cannot use reliability information, according to (13.1) the decoding
method is called hard-decision decoding. Note that this can have two causes, first
that the channel model does not give reliability information as, for example, the
BSC; or that the algorithm used is not able to include the additional reliability in-
formation in its decision. The case when reliability information is used is called
soft-decision decoding and is preferable, if possible, because the decoding perfor-
mance is improved considerably.

Unfortunately, ML decoding is computationally too complex in many cases.
Therefore one must use suboptimal decoding algorithms which are described in
the following.

13.3.5

Bounded Distance Decoding

The name bounded distance is given to all decoding algorithms which put spheres
around the codewords of a certain radius in the Hamming metric (hard-decision).
All the received vectors which are in one of the spheres are decoded by the code-
word which is the center of the sphere. Clearly, the radius t of the spheres can be
less than half the minimum distance of the code, equal to or larger than, respec-
tively. In the first case the decoding capability of the code is not used fully. The
second case is called bounded minimum distance decoding and is the standard
case. Note that this is not ML decoding because the number of vectors outside the
spheres with radius half the minimum distance is larger than 0 for all code class-
es except the so-called perfect codes which fulfill the Hamming or sphere-packing
bound with equality. For the case when we have a decoding algorithm which is able
to decode beyond half the minimum distance, the decision might not be unique
because two or more codewords may exist with the same distance to the received
vector. If the decoder provides a list of possible codewords it is called a list decoder.

13.4

Algebraic–Geometric Codes

The famous Reed–Solomom codes (Example 13.1) are generalized by algebraic–
geometric codes. The basic ideas of constructing linear codes by algebraic curves
were invented by Goppa [2]. There are two approaches to algebraic–geometric
curves.

The first one starts with a function field of transcendance degree 1; say F :=
F(�, η) with one relation f (�, η) = 0 for some absolutely irreducible polynomial
f ∈ F[T1, T2]. The geometric object behind it is the set of the discrete valuations
v : F → Z with v|F = 0. A morphism of function fields is a morphism of fields
inducing the identity on the base field.
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The second approach starts with an absolutely irreducible polynomial f as above.
To describe the geometric object, one looks first at the vanishing locus V( f ) ⊂ A2

F
;

that is the set of all geometric points in the affine 2-plane A2
F

which are zeros for f.
Then one takes the topological closure Y ⊂ P2

F
in the projective space of V( f ); that

is Y = V(̃f ) ⊂ P2
F
, where

f̃(T0, T1, T2) := T deg f
0 · f

(
T1

T0
,

T2

T0

)
∈ F[T0, T1, T2]

is the homogenization of f. If Y is smooth, then Y is already the geometric ob-
ject. Unfortunately, Y may happen to have singular points. Therefore, one has to
resolve the singularities by blowing-up or by performing the normalization of Y
and, hence, gets the associated smooth projective curve X → Y which lives in some
projective space PN

F
. The morphisms of curves are the mappings locally defined by

polynomials.
There is an equivalence of categories between function fields and smooth pro-

jective algebraic curves. The valuations of a function field F correspond bijectively
to the geometric points of the curve X. The function field associated to a curve is
the field of rational functions on the curve. A smooth projective curve has genus
g := dimFΩ1

X(X ) being the dimension of the F-vector space of regular differential
1-forms.

For the following, let us fix a smooth algebraic curve X ⊂ PN
F

with function field F
as above. A point P ∈ X is called rational if its coordinates in the ambient space PN

F

are numbers in the base field F; in terms of the corresponding valuation v : F → Z,
which means that the residue field of v is equal to the base field F. Moreover, let
us fix an n-tuple E := (P1, . . . , Pn) of mutually different rational points of X and
a divisor D on X whose support is disjoint from E. The divisor D determines a finite-
dimensional F-vector space of rational functions

L(X, D) := {φ ∈ F ; div(φ) + D v 0 } .

The ordered set E of rational points gives rise to a linear map

evE : L(X, D) → Fn ; φ �→ (φ(P1), . . . , φ(Pn))

by evaluating functions at E. The image of evE is a linear code CL(E, D) of length n.
The crucial point of this construction is that one can exactly determine the dimen-
sion of the code by the theorem of Riemann–Roch and estimate the minimum
distance due to the fact that the number of zeros of a rational function is equal
to the number of poles; the latter is bounded by deg(D). A further big advantage
of algebraic–geometric curves is the geometric interpretation of the parity check
matrix. Namely, there is a dual construction by taking residues

resE : Ω1(X, E – D) → Fn ; ω �→ (resP1 (ω), . . . , resPn (ω)) .

The image of resE is a code CΩ(E, D) ⊂ Fn and its parameters can also be estimated.
The canonical pairing Fn ~ Fn → F ; (x, y) �→ ∑n

i=1 xiyi induces a commutative
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diagram

L(X, D) ~ Ω1(X, E – D)

evE resE

��

�� F

id

��

; (φ, ω) �→ ∑P∈E resP(φ · ω)

Fn ~ Fn �� F ; (x, y) �→ ∑n
i=1 xiyi

Since the upper horizontal map is zero due to the residue theorem, we see that
CΩ(E, D) is orthogonal to CL(E, D). Summarizing we state the result as follows.

Theorem 13.4 Keep the above situation. Assume n := #E > deg(D) v 2g – 1. Then the
following holds:
(1.1) The map evE is injective and dimF CL(E, D) = deg(D) + 1 – g.
(1.2) The minimum distance fulfills d(CL(E, D)) v n – deg(D).
(2.1) The map resE is injective and dimF CΩ(E, D) = n – deg(D) + g – 1.
(2.2) The minimum distance fulfills d(CΩ(E, D)) v deg(D) + 2 – 2g.
(3) Under the canonical pairing Fn ~ Fn → F the codes CL(E, D) and CΩ(E, D) are
orthogonal complements to each other.

Example 13.1 Let X = P1
F

be the projective line with point P∞ at infinity. For k, n ∈ N
with q v n > k v 1 set D := (k – 1) ·P∞ and let E = (P1, . . . , Pn) be a set of rational points
on the affine line. Then g = 0 and

CL(E, D) := {(φ(P1), . . . , φ(Pn)) ; φ ∈ F[T] , deg φ < k}

CΩ(E, D) :=
{(

φ(P1)
Φ′(P1)

, . . . ,
φ(Pn)
Φ′(Pn)

)
; φ ∈ F[T] , deg φ u deg Φ – k – 1

}
where Φ(T ) = (T – T(P1)) · (T – T(Pn)) and Φ′(T ) is the formal derivative. The code
CL(E, D) is the famous Reed–Solomon code.

A linear code C has high density if R(C) + δ(C) is close to 1. For example, the Reed–
Solomon code satisfies

dim CL(E, D)
n

+
d(CL(E, D))

n
=

k
n

+
n – k + 1

n
= 1 +

1
n

.

Unfortunately, n is bounded by the number q := #F of elements of the base field.
The advantage of more general algebraic–geometric codes is that the number of
rational points is not bounded by q. In the case g v 1, Theorem 13.4 yields

R(C) + δ(C) v
deg(D) + 1 – g

n
+

n – deg(D)
n

= 1 +
1 – g

n

where one can choose n = #C(F) as the number of rational points of C. Due to
a theorem of Weil, one knows |#C(F)–(q+1)| u 2g ·√q. Thus, to produce codes with
high density, of arbitrarily large length, amounts to constructing curves with many
rational points compared to its genus. This is precisely what is done in proving
Theorem 13.3.
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Theorem 13.5 If q is a square, then

lim sup
g→∞

max{#X(Fq) ; X/Fq curve with g(X ) = g}
g

=
√

q – 1 .

Example 13.2 Let q = �2 be a square. The Hermite curve is defined by the locus

X := V(T �+1
0 + T �+1

1 + T �+1
2 ) ⊂ P2

F .

It is a smooth curve of genus is �(� – 1)/2 and it has �3 + 1 points given explicitly by

X (F) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, α, �) ; 1 + α�+1 = –��+1 with α ∈ F , � ∈ F~

(1, α, 0) ; 1 = –α�+1

(0, 1, �) ; 1 = –��+1 with � ∈ F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ .

For example P := (0, 1, 1) belongs to X if � is a power of 2. A basis of L(X, N · P) is given
by the elements

fi,j :=
T i

0T j
1

(T1 + T2)i+j for 0 u i u � , 0 u j , (� + 1) · (i + j ) – i u N

The pole order of fi,j is � · i + (�+ 1) · j. Evaluating the functions ( fi,j) at the rational points
gives a basis of the Hermite code in Fn for n := N + 1 – g if N > �(� – 1) – 2.

13.5

Computation of Riemann–Roch Spaces

Given a smooth projective curve X over F equipped with an n-tuple E of rational
points and a divisor D on X with supp(D) ∩ E = ∅, the construction of the corre-
sponding algebraic–geometric code amounts to finding a basis of the Riemann–
Roch space L(X, D). Namely, evaluating such a basis at E produces a generator
matrix of CL(E, D). In this section we will briefly explain an effective method of
producing such a basis. The tools are taken from algebraic number theory. The
main steps are discussed in the following:

As in Section 13.4 we start with an affine coordinate ring

B := F[�, η]/( f ) where f ∈ F[T1, T2] is monic in T2

of X̃ := V(T deg f
0 f (T1/T0, T2/T0)) ⊂ P2

F
. Then F[�] is a free polynomial ring and B is

a finitely generated free F[�]-module of rank N := degT2
( f ). First one computes the

normalization A of B; this is exactly the ring of regular functions on U := X – Pol(�)
where Pol(�) denotes the set of poles of �. One knows that B and A have the same
field of fractions and that A is a free F[�]-module of the same rank as B. Then one
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does the same for A′ := O(U′) where U′ := X – V(�) the complement of the zeros of
�. Actually it suffices, to do this only in a neighborhood of V(�).

Then it is easy to determine a basis of any ideal I ⊂ A resp. A′ due to the theory
of elementary divisors. Now consider a divisor D of X. As above, one can calculate
a basis of

I(D|U) = F[�] f1 ⊗ . . . ⊗ F[�] fN
I(D|U′ ) = F[�] f ′1 ⊗ . . . ⊗ F[�] f ′N

Again, by the theory of elementary divisors, one can arrange these bases in such
a way that

fi = �ni f ′i for i = 1, . . . , N .

Finally an F-basis of L(X̃, D) is given by the system(
�λi fi ; 0 u λi u –ni , i = 1, . . . , N

)
For the computation of the normalization we can make use of the criterion for
normality due to Grauert and Remmert [3, Appendix 3.3, Rule 7].

Lemma 13.1 Let B be a reduced noetherian ring and let I ⊂ B be an ideal with the
following properties

(i) I contains a nonzero divisor of B,
(ii) I is reduced,

(iii) the non-normal locus of B is contained in V(I).
Then B is normal if and only if B = HomB(I,I).

If B is not normal we have B � B′ := HomB(I,I). Moreover, B′ is a commutative
ring and canonically contained in A; that is B � B′ ⊂ A. Then we replace B by B′. By
repeating this process, one obtains the normalization A since, due to the fact that
A is a noetherian R[�]-module, the process produces a situation B = B′ which is
then equal to the normalization. The representation of HomB(I,I) as a B-algebra
of finite type is slightly awkward, a full description of the entire algorithm can be
found in [4].

Of course, this method to compute the normalization can be applied to the ring
B defined above. A suitable ideal I is generated by the discriminant of B over F[�].
Unfortunately, if X has many ramification points, the computations become long
and complicated. To overcome this problem, Pohst and Zassenhaus have developed
the Round-2 algorithm which carries out the above enlargement process locally for
a prime factor of the discriminant. Thus the algorithm becomes more efficient.
Further improvement comes from the use of a criterion due to Dedekind which
simplifies the first step of enlargement for each prime.

Proposition 13.1 (Dedekind) Let B and f be as before and let p ∈ F[T1] be a prime
element. Let f =

∏s
i=1 fi

ei
be the factorization of the reduction f of f modulo p and set
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g :=
∏s

i=1 fi where fi are monic liftings of fi. Let h be a monic lifting of f /g and set

ψ =
1
p

(gh – f ) ∈ (F[T1])[T2] .

Then B is normal above p if and only if gcd(ψ, g, h) = 1.
If this is not the case, let U be a monic lift of f / gcd(ψ, g, h). Then

B′ := B +
1
p

UB ⊆ A

is a strict enlargement of B.

With this theorem, we can decide, for a given prime p, whether B is normal above
p. If this is not the case, the theorem gives an enlarged algebra B′ ⊆ A. Hence,
the first step of enlargement for each prime can easily be computed. Then one
continues with the Round-2 algorithm. Originally, the Round-2 algorithm was used
in algebraic number theory. A detailed description of the Round-2 algorithm for
this case can be found in [5].

13.6

Decoding up to Half the Minimum Distance

In this section we will give an overview of the algorithm of Feng and Rao for decod-
ing an algebraic–geometric code if the weight of the error is below half the mini-
mum distance; see [6]. We will construct a bounded minimum distance decoder;
that is an algorithm to compute the retraction map

ρ :
⋃
c∈C

B(c, t) → C , c + x �→ c for x ∈ B(0, t) .

Let us start with following data

X smooth projective curve over F of genus g
P, P1, . . . , Pn mutually different rational points of X
E := (P1, . . . , Pn) ⊂ X(F) n-tuple of rational points
D := (2g + 2t – 1) · P n > deg(D) v 2g – 1 .

Due to Theorem 13.4 we know

dimF CL(E, D) = g + 2t dimF(CΩ)(E, D)) = n – g – 2t
d(CL(E, D)) v n – deg(D) d(CΩ)(E, D)) v 2t + 1 .

So we can repair t errors in a word of CΩ(E, D). Consider a vector

a := c + e ∈ Fn with c ∈ CΩ(E, D) , e ∈ B(0, t) .
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In order to determine the error e, we first try to find the positions

M(e) := { i ; ei =/ 0 }

of the defective components of a and define the corresponding divisor

M :=
∑

i∈M(e)

Pi .

Next we define the commutative diagram of bilinear forms

Fn ~ L(X, D)

(id,evE)

��

�� F

id

��

; (a, φ) �→ [a , φ] :=
n∑

i=1

aiφ(Pi)

Fn ~ CL(E, D) �� F ; (x, y) �→ x · y :=
n∑

i=1

xiyi

We know [a, φ] = [e, φ] for φ ∈ L(X, D) since L(X, D) is orthogonal to Ω1(X, E – D).
The way to estimate the set M(e) is to look at

L(̃t · P – M) = Ker
(
L(̃t · P) → HomF(L((2g + t – 1) · P),F)

)
σ �→ (h �→ [e, hσ])

By the theorem of Riemann–Roch one knows that L(̃t ·P – M) =/ 0 for some t̃ u g + t.
Unfortunately, when computing this kernel, elements hσ lying in L((2g + t + t̃ –
1) · P) are involved, but we only know [e, φ] for elements φ ∈ L((2g + 2t – 1) · P). So
the required elements are known only for t̃ u t. Therefore one proceeds stepwise
starting with t̃ = t. If L(̃t · P – M) =/ 0, then we can compute an element in the
kernel. If L(̃t ·P – M) = 0, one needs the algorithm of Feng and Rao to calculate the
elements required to determine the kernel in the case t̃ + 1.

In the following, we explain the idea of the algorithm. We consider functions
φλ ∈ L(X, λ · P) with pole order λ at P, if such a function exists, otherwise we set
φλ := 0. Then define the syndromes

Sλ,λ′ := [e , φλφλ′ ] for λ + λ′ u s := (̃t + 1) + 2g + t – 1 .

The Sλ,λ′ in the given range are precisely the elements needed to compute the ker-
nel L((̃t + 1) · P – M). They are known for λ + λ′ u t̃ + 2g + t – 1 by assumption. We
need to know Sλ,λ′ for λ + λ′ = s = t̃ + 2g + t. It is easy to see that one knows these
elements if one of them is known. This means that from each element Sλ,λ′ one
can calculate the syndrome [e, φs]. Due to the condition L(̃t · P – M) = 0, one can
guess the elements Sλ,λ′ and, hence, [e, φs]. For theoretical reasons, the majority of
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these guesses is correct. Thus the majority determines the whole diagonal Sλ,λ′ for
λ + λ′ = s.

Finally, after at most g steps, we end up with a function σ ∈ L(̃t · P – M) with
σ =/ 0. The number of zeros of σ is bounded by t̃ u g + t. So we have estimated the
defective positions M(e) by the zeros Z(σ) of σ. Finally it remains to solve the linear
system of equations∑

j∈Z(σ)

Xj · φλ(Pj) = [e , φλ] for λ = 0, . . . , s := t̃ + 2g + t – 1 .

We know that there is a solution; namely x = e. This solution is unique. Namely, if ẽ
is a further solution, the difference e– ẽ belongs to CΩ(E, s · P), since it is orthogonal
to CL(E, s · P). It has weight wt(e – ẽ) u t̃ + t which is smaller that the minimum
distance of CΩ(E, s ·P) due to Theorem 13.4 which is s + 2 – 2g v t̃ + t + 1. This shows
the uniqueness of the solution.

Example 13.3 Consider the Hermite curve of Example 13.2 over the field with q := 64
elements which is given by the equation

X := V(T 9
0 + T 9

1 + T 9
2 ) ⊂ P2

F .

It has genus g = 28. Let P := (0, 1, 1) and E := (P1, . . . , P512) be the set of all rational
points of X different from P. For t = 114, we obtain the code CΩ(E, 283 · P). It has
length 512, dimension 256, minimum distance v 229. Its information rate is 0.5 and its
relative minimal distance is v 0.447; so it is of high density. It can repair up to 114 errors
in a received word. Using the algorithm explained above, a modern computer will do the
decoding in a second. If there are t̃ defective positions in a received word, the algorithm
usually needs max{0, t̃ – 86} steps to compute unknown diagonals of the matrix (Sλ,λ′ ).

Example 13.4 For Reed–Solomon codes, the decoding is much simpler and by using
the Euclidean algorithm the computations can be done very quickly. To explain this,
we transform the Reed–Solomon code defined in Example 13.1 by means of the discrete
Fourier transformation in F

F : Fn → L(P1, (n – 1) · P∞) ; (a0, . . . , an–1) �→ 1
n

n–1∑
i=0

aiT i .

For natural numbers k, t with n := q – 1 v k v 1 and n – k = 2t we define

RS(k) := {C ∈ F[T]/(T n – 1) ; C(� �) = 0 for 1 u � u 2t}

where � is a generator of the multiplicative group of F. Then we set

B := (�1, . . . , �n) .

The Fourier transform gives rise to an isomorphism

F : CL(B, (k – 1) · P∞) →̃ RS(k)



368 13 Coding and Decoding of Algebraic–Geometric Codes

of the Reed–Solomon code defined in Example 13.1 to RS(k) preserving the weight. Name-
ly, for any polynomial f = f0+. . .+fn–1T n–1 ∈ F[T] with evaluation c := evB( f ), the Fourier
transform F(T ) := F (c) fulfills

F( �–i) =
1
n

n–1∑
j=0

f ( � j)�–ij =
1
n

n–1∑
j=0

n–1∑
�=0

f�� j�–ij =
1
n

n–1∑
�=0

f�
n–1∑
j=0

�(�–i)j = fi . (13.2)

Therefore F(�–i) = 0 for k u i u n – 1 if f ∈ L(P1, (k – 1) · P∞). Moreover, one has
(�–(n–1), . . . , �–k) = (�1, . . . , �2t) as �n = 1.
For decoding, one prefers the representation of codewords by their Fourier transforms.
Decoding a received word R = C + E where the error polynomial E = E0 + . . .+ En–1Tn–1 ∈
F[T] satisfies wt(E) u t and where C ∈ RS(k) amounts to solving the congruence

ω == σ ·
2t∑
�=1

R(��)T � = σ ·
2t∑
�=1

E(��)T � mod T 2t+1 (13.3)

with relatively prime polynomials σ, ω ∈ F[T] satisfying σ(0) = 1 and deg ω u deg σ u t,
since R(��) = E(��) as C(��) = 0 for 1 u � u 2t; see [7]. The latter can easily be calculated
by the generalized Euclidean algorithm to determine the greatest common divisor of T 2t+1

and
∑2t
�=1 R(��)T �. Then the error is given by

M := {i ∈ {0, . . . , n – 1} ; σ(i) = 0}

E(T ) :=
∑
i∈M

EiT i with Ei :=
–ω( �–i)�i

σ′( �–i)
. (13.4)

For more details see [8] or [9, Section 3.5].

13.7

Interpolation-Based Decoding

The last section showed how to repair errors of weight up to half the minimum
distance t. That method fails completely if a received word a contains more defec-
tive positions. A different approach was invented by Sudan. It will produce a list of
codewords within a certain radius τ of a which can be larger than t. If τ is larger
than t the list may contain more than one element. Sudan’s idea is to transform
the decoding problem into a curve-fitting problem; see [10]. It improves the error-
correcting capabilities of Reed–Solomon codes of rate below 1/3. Later Guruswami
and Sudan enhanced this algorithm; see [11].

This idea can be applied to the case of general algebraic–geometric codes. This
was shown by Shokrollahi and Wasserman in [12]. As in the original case, this
algorithm is capable of correcting errors beyond half the minimum distance if the
information rate of the code is not too high. In all cases the running time of the
algorithm increases enormously compared to the bounded maximum-likelihood
decoder.
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Keep the situation of Section 13.6 with a divisor D := N · P for N v 2g – 1. To
explain the idea of Sudan in decoding the code C := CL(E, D), we consider the ring
A of regular functions on X – {P}

A :=
∞⋃

λ=0

L(X, λ · P) .

The valuation – ordP on A extends to a valuation on the polynomial ring A[Z ] by
setting w(Z) := N. So one obtains the valuation

w : A[Z ] → N ; w

⎛⎜⎜⎜⎜⎜⎜⎝∑
μ

qμZμ

⎞⎟⎟⎟⎟⎟⎟⎠ := max
μ ; qμ=/0

{– ordP(qμ) + μ ·N } .

For a natural number b we define the F-vector space

A[Z ](b) := {Q ∈ A[Z ] ; w(Q) u b} .

Proposition 13.2 Let b ∈ N be an integer with b v N. Then

dimF A[Z ](b) v
1

2N

[
(b – g + 1)2 + N(b – N – g)

]
.

Proof A natural number λ is called a gap with respect to the point P if L(X, λ · P) =
L(X, (λ–1) ·P). There are g gaps and each gap λ satisfies λ u 2g – 2. Furthermore, for
each natural number λ the number of μ ∈ Nwith λ + μ ·N u b is given by

[
b – λ/N

]
+

1. Then it follows that

dimF A[Z ](b) v
b∑

λ=0 , λnot gap

([
b – λ

N

]
+ 1
)

v
b∑

λ=0

([
b – λ

N

]
+ 1
)

–
g–1∑
λ=0

([
b – λ

N

]
+ 1
)

=
b∑

λ=g

([
b – λ

N

]
+ 1
)

=
b–g∑
λ=0

([
λ
N

]
+ 1
)

v
b–g∑
λ=0

(
λ
N

+
([

λ
N

]
+ 1 –

λ
N

))

v
(b – g)(b – g + 1)

2N
+
[
b – g

N

]
· N · (N + 1)

2N

v
1

2N

[
(b – g)2 + (N + 1)(b – N – g + 1) + b – g

]
=

1
2N

[
(b – g + 1)2 + N(b – N – g)

]
q
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Definition 13.1 Let Q ∈ A[Z ] and let (x, a) be a pair of a rational points x of X and an
element a ∈ F. Then write

Q(Z) =
deg Q∑

μ=0

qμ(Z – a)μ

with qμ ∈ A. The pair (x, a) is a zero of Q of multiplicity at least m if qμ vanishes at x of
order at least m – μ for all μ = 0, . . . , m.
For a ∈ Fn and E := (P1, . . . , Pn) we say (E, a) is a zero of Q of multiplicity at least m if
(Pi, ai) is a zero of Q of multiplicity at least m for i = 1, . . . , n.

Remark 13.1 For f ∈ A the polynomial (Z – f ) ∈ A[Z ] has a zero of multiplicity at
least 1 at (x, f (x)) for any rational point x of X. Any multiple of (Z – f ) has a zero of
multiplicity at least 1 at (x, f (x)) as well.

Proposition 13.3 Let a ∈ Fn. Let U ⊂ A[Z ] be a linear subspace of dimension at least
n ·
(

m+1
2

)
+ 1. Then there exists a nonzero Q ∈ U such that Q vanishes at (E, a) with

multiplicity at least m.

Proof The condition of vanishing at one (Pi, ai) is equivalent to
(

m+1
2

)
linear con-

straints on the vector space U. q

Theorem 13.6 Let f ∈ L(X, N · P) with c = evE ( f ). Let m v 1 be an integer. Let b ∈ N
and consider a polynomial Q ∈ A[Z ](b). Let a ∈ Fn and assume that Q vanishes at (E, a)
of multiplicity at least m. If d(a, c) < n – b/m, then (Z – f ) divides Q.

Proof Consider the function h := Q( f ) ∈ A and note that its pole order at P is at
most b. On the other hand, h vanishes to order at least m at Pi if ai = ci. The latter
happens n – d(a, c) times. Thus the degree of the zero divisor of h is greater than
b. Since the number of poles and zeros of h must be equal unless h = 0, the claim
follows. q

Corollary 13.1 In the above situation, let b ∈ N be minimal such that

dimF A[Z ](b) v n ·
(
m + 1

2

)
+ 1

Set

τm := n –
b
m

.

Let a ∈ Fn be a received word. Then, there exists a nonzero polynomial Q ∈ A[Z ](b)
which vanishes at (E, a) of multiplicity at least m. If c ∈ C satisfies d(a, c) < τm, then
c = evE( f ) for an f ∈ L(X, N · P) and (Z – f ) divides Q.
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Since N and, hence, b v N + g are large compared to g, the dimension of A[Z ](b) is
bounded below by dimF A[Z ](b) v (b – g)2/2N in order to ensure that the condition
of Corollary 13.1 is fulfilled; see Proposition 13.2. The ratio N/n = (k – 1 + g)/n =
k/n + (g – 1)/n is close to the information rate R := k/n. Setting approximately

b = g +
√

2nN
(

m+1
2

)
, we see that this method can correct any error with weight less

than

τm = n –
b
m

= n

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 –
g

mn
–

√(
R +

g – 1
n

) (
m + 1

m

) ⎤⎥⎥⎥⎥⎥⎥⎥⎦
errors.

For small values of m, the estimate for τm is bad, explicit computations will show
much better values; see Example 13.5. For large m we have approximately

τ∞/n = 1 –

√
R +

g – 1
n

.

Let us briefly discuss some numerical results in order to compare the different
methods; the bounded minimum distance decoding t/n and the interpolation-
based decoding τ∞/n. Here we assume that n is large compared to the genus g so
that the above approximations t/n := (1 – R)/2 and τ∞/n = 1 –

√
R are well chosen.

R 0.1 0.2 0.3 0.4
t/n 0.45 0.40 0.35 0.30
τ∞/n 0.684 0.553 0.452 0.367

To decode a received word a ∈ Fn one has to compute a nonzero interpolation
polynomial Q ∈ A[Z ] such that (E, a) is a zero of Q with multiplicity at least m.
This computation is easily done, since it simply means solving a system of linear
equations. In a second step, one has to find all linear factors (Z – f ) of Q such that
f ∈ L(X, N · P) and d(a, evE( f )) < τm. Due to Corollary 13.1 this gives a list of all
codewords within radius less than τm of a. Clearly, the crucial calculation which
can be rather long is the factorization of Q.

This can be done in the following way. Choose a geometric point P on X such
that its residue field k(P) has degree [k(P) : F] > N. So P is not rational and, hence,
it lies on X – {P}. So it corresponds to a maximal ideal of A which we denote by P
also. Then the mapping

L(X, N · P) → A/P = k(P)

is injective, since the degree of the zero divisor of a function f ∈ L(X, N ·P) mapped
to 0 would be greater than or equal to [k(P) : F] which exceeds N. Let Q ∈ k(P)[Z ]
be the image of Q. Now look at linear factors Z–f of Q with f ∈ L(X, N·P) regarded as
a subset of k(P). In any case, the factorization can be lengthy if the field k(P) is very
large, although there are good factorization algorithms over finite fields; see [5].

In the case of multiplicity m = 1, it is not necessary to perform such a large field
extension k(P). Namely, if one chooses a polynomial Q of minimal degree in Z
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vanishing at (E, a) of multiplicity 1, there exists a pair (Pi, ai) for some i ∈ {1, . . . , n}
such that the derivative ∂Q/∂Z(Pi, ai) =/ 0 where ai = f (Pi) for some f ∈ L(X, N · P)
with d(a, evE( f )) u τ1. Namely, there exists an f ∈ L(X, N ·P) with d(a, evE( f )) u τ1 so
that one can write Q(Z) = (Z – f ) ·R(Z). Since the degree of Q is minimal, R( f ) =/ 0
and, hence ∂Q/∂Z( f ) =/ 0. Thus there exists an index i such that ∂Q/∂Z(Pi , ai) =/ 0.
Now let Pi ⊂ A be the maximal ideal corresponding to Pi. Then the residue field
fulfills k(Pi) = F. Now we apply Newton’s method to lift the zero ai to a zero f ∈
A/PN+1

i and one factors the polynomial Q over A/PN+1
i . Since the restriction ρi :

L(X, N · P) → A/PN+1
i is injective, one will recover f as an element in the image of

f ∈ L(X, N · P) under ρi. For more details see [13].
If the numbers b, n, N are small, the estimates of Proposition 13.2 give too rough

a value. In that case it is better to compute the dimension precisely. To conclude
this section, we discuss several choices of parameter in the case of Reed–Solomon
codes.

Example 13.5 Consider again the Reed–Solomon code of Example 13.1. In particular,
by choosing F = F64 and D = 15 · P∞ we obtain a [64, 16, 49]-code. Thus, it can correct
up to 24 errors using a bounded minimum distance decoder. If we set m = 1 and use the
algorithm above we are now able to correct up to τ = 27 errors. Namely, b = 36 fulfills

dimF A[Z ](36) = 37 + (37 – 15) + (37 – 30) = 66 v 64 ·
(
2
2

)
+ 1 = 65

and, hence τ1 – 1 = 64 – 36/1 – 1 = 27.

The [64, 32, 33] Reed–Solomon code with D = 31 · P∞ can correct up to 16 errors by
maximum-likelihood decoding. By interpolation-based decoding for m = 1 we have for
b = 48

dim A[Z ](48) = 49 + (49 – 31) = 67 v 65

and, hence, τ1 – 1 = 64 – 48 – 1 = 15. Thus, no gain over the classical decod-
ing methods is achieved in this case. Increasing the parameter m to m = 3 will
extend the error correction radius to τ = 17. Namely, the degree is b = 139 as
dim A[Z ](139) = 140 + 109 + 78 + 47 + 16 = 390. In this case τ3 = 64 – 139/3 > 17.
Using Corollary 13.1 one shows that τ → 19 as m → ∞ for this code. In other words, we
cannot arbitrarily extend the error correction radius by means of this method.

13.8

Power Decoding of Low Rate Reed–Solomon Codes

In this section we describe a simple method proposed in [14] to decode Reed–
Solomon codes of rate R < 1/3 beyond half the minimum distance. We keep the
notations of Example 13.4. The main idea can be deduced from the Fourier trans-
form given by (13.2).



13.9 Interpolation-Based Soft-Decision Decoding 373

Consider some f = ( f0, . . . , fn–1) ∈ Fn and let f (T ) = f0 + . . . fn–1T n–1 denote the as-
sociated polynomial. Moreover, denote by F(T ) := F (evB( f )) the Fourier transform.
The convolution theorem of the Fourier transform relates the componentwise mul-
tiplication to the polynomial multiplication modulo (T n – 1). Namely,

f 〈ν〉(T ) := f ν
0 + . . . + f ν

n–1T n–1corresponds to F ν(T ) mod (T n – 1) . (13.5)

Clearly, according to (13.2) we obtain F ν(�–i) = f ν
i for all i = 0, . . . , n – 1. It is

sufficient to consider powers 1 u ν < n. Now let r = c + e ∈ Fn be a received word
consisting of a codeword c ∈ CL(B, (k – 1) · P∞) and an error e ∈ Fn. Then we can
consider the ν-th power of the i-th component

rν
i = (ci + ei)ν = cν

i + ẽi(ν) .

If ei = 0 then it follows that ẽi(ν) = 0 for all 1 u ν < n. Moreover, we consider the
words

r〈ν〉 := (rν
0, . . . , rν

n–1) := c〈ν〉 + ẽ(ν) where c〈ν〉 := (cν
0, . . . , cν

n–1) .

In order to obtain c〈ν〉 as a codeword of a Reed–Solomon code with minimum dis-
tance larger than 1 we have to restrict to all ν with ν · (k – 1) < n. Due to (13.5) it
follows that

c〈ν〉 ∈ CL
(
B, (ν · (k – 1) + 1) · P∞

)
.

Clearly, the code CL
(
B, (ν · (k – 1) + 1) · P∞

)
is corrupted by the error ẽ(ν). Each error

ẽ(ν) has the same error positions as the original error e, but most likely different
error values. Therefore, more equations like (13.3) can be found to determine the
error positions.

In [14] it is shown that the decoding performance of this power decoding is the
same as for the Sudan [10] algorithm, which is computationally much more com-
plex. However, there is a principal difference between the algorithm of Sudan and
power decoding. When the Sudan algorithm gives a list of possible codewords of
size larger than 1, power decoding yields a failure. Furthermore, the newly ob-
tained equations may be linearly dependent. However, the probability for this is
very small, hence the word error probabilities of the two algorithms are virtually
identical.

13.9

Interpolation-Based Soft-Decision Decoding

Consider the situation of Section 13.7. In this section we want to work with a curve-
fitting where the multiplicities at the interpolation points are not uniform. They
will be adjusted by information known about the channel. Let us first explain the
new curve-fitting problem. We start with a matrix

M = (mP,α)P∈E,α∈F ∈ M(n ~ q,N)
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where we took some numbering on F in order to arrange the numbers mP,α as
a matrix. For such a matrix we define the cost of M by

γ(M) :=
∑
P∈E

∑
α∈F

mP,α(mP,α + 1)
2

.

For a = (aP)P∈E ∈ Fn the score of a with respect to M is defined by

SM(a) :=
∑
P∈E

∑
α∈F

mP,α · δα,aP

where δα,� is the usual Kronecker delta. In a similar way to Theorem 13.6, one
demonstrates the following.

Proposition 13.4 Let M = (mP,α)P∈E,α∈F as above. Let Q ∈ A[Z ](b) be a polynomial
with multiplicity at least mP,α at (P, α) for all (P, α) ∈ E ~ F. Let f ∈ L(X, N · P) with
c := evE( f ). If SM(c) > b, then (Z – f ) divides Q.

Corollary 13.2 Let γ(M) be the cost of M. Let b ∈ N be the least integer such that

dimF A[Z ](b) v γ(M) + 1

Then, for any a ∈ Fn, there exists a nonzero polynomial Q ∈ A[Z ](b) vanishing at (P, α)
with multiplicity at least mP,α for all (P, α) ∈ E ~ F.
Assume that (b + g2 – 3g – 2gN ) > 0. If f ∈ L(X, N · P) with c := evE( f ) fulfills SM(c) v
g + 1 +

√
2Nγ(M), then the linear factor (Z – f ) divides Q.

Proof Vanishing at all (P, α) poses γ(M) linear constraints on Q. So there exists
a nonzero polynomial as asserted. Due to Proposition 13.2 we know dimF A[Z ](b)
> γ(M) if (b–g)2 v 2Nγ(M), respectively b v g+

√
2Nγ(M). Since b is the least integer

satisfying dimF A[Z ](b) v γ(M) + 1, we have SM(c) > b. Thus the claim follows from
Proposition 13.4. q

For the distribution of the multiplicities we make use of information we know
about the channel. More precisely, we assume that the conditional probabilities
pr(y|x) are known; see Section 13.3. So, for a received word y = (y1, . . . , yn) ∈ Fn we
try to concentrate the multiplicities mP,α on words which were most likely sent. In
view of Proposition 13.4 we have to maximize the expected value of the score with
respect to a fixed cost γ. The expected value of the score under the condition that
y = (yP)P∈E ∈ Fn is received, is given by

E(SM(X )|y) :=
∑
x∈Fn

SM(x) · pr(x|y) .
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One can rewrite this in the following way

E(SM(X )|y) =
∑
x∈Fn

⎛⎜⎜⎜⎜⎜⎝∑
P∈E

∑
α∈F

mP,α · δα,xP

⎞⎟⎟⎟⎟⎟⎠ · pr(x|y)

=
∑
P∈E

∑
α∈F

mP,α

∑
x∈Fn

δα,xP · pr(x|y)

=
∑
P∈E

∑
α∈F

mP,απP,α(y)

where

πP,α(y) :=
∑
x∈Fn

δα,xP · pr(x|y)

is the probability for having sent a vector x ∈ Fn with component xP = α under
the condition that y is received. The matrix Π(y) := (πP,α(y)) is called the reliability
matrix of y. Since the problem is discrete, it is hard to find the optimal multiplicity
matrix M with γ(M) equal to a fixed cost γ if we know the reliability matrix Π(y).
But, for certain values γ, there is an algorithm which produces the optimal M;
see [15].

Fix a number s of interpolation points and a reliability matrix Π = (πP,α). One
constructs a multiplicity matrix M = (mP,α) in the following way.

For � = 0, . . . , s set

� = 0 : Π(0) = (πP,α(0)) := Π M(0) := (mP,α(0)) := 0 .

Given Π(� – 1) and M(� – 1), find a position (P, α) maximal among the entries of
Π(� – 1) and change only this position in the following way

� v 1 : πP,α(�) :=
πP,α(� – 1)

mP,α(� – 1) + 2
mP,α(�) := mP,α(� – 1) + 1

Π(�) := (πP,α(�)) M(�) := (mP,α(�)) .

Then M(s) has maximal expected score E(SM(X )|y) among all multiplicity matrices
M with γ(M) = γ(M(s)). Namely, let BP,α(�) be the rectangle with length � and height
πP,α/�. The total length and the area of the collection B := (BP,α(�)) is given by

γ(M) =
∑
P,α

mP,α(mP,α + 1)
2

=
∑
P,α

mP,α

mP,α∑
�=1

� = length(B)

E(SM(X )|y) =
∑
P,α

mP,απP,α =
∑
P,α

mP,α∑
�=1

πP,α = area(B) .

So to maximize the area of B by a given total length means to pick the s rectangles
with the largest height. This is precisely what the algorithm does.

For the value γ := γ(M), the multiplicity matrix M is optimal.
Finally, let us discuss the cost γ(M). To produce a list of possible code words

c = evE( f ) one has to factorize a polynomial Q(Z) of weighted degree b which is
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related to γ(M); approximately b = g + 1 +
√

2Nγ(M). The difficulty of factoring Q
can be measured by

degZ(Q) �
b
N

=
g + 1

N
+

√
2γ(M)

N
.

We see that complexity of the factorization task is growing proportionally to
√

γ(M).

13.10

Soft-Decision Decoding with the Dorsch Algorithm

In order to illustrate the advantages of using the reliability information provided
by the channel, we describe the Dorsch algorithm [16] proposed in 1979 by Dorsch.
For simplicity, in the following we consider a code C(n, k, d) over the binary field.
The data is transmitted over the AWGN channel, see Section 13.3, and the decoder
calculates the L-values according to (13.1). Without loss of generality we may as-
sume that these L-values are in decreasing order, that is

|L1| > |L2| > . . . > |Ln| .

Note that the probability that two L-values are identical is zero, therefore we can
write > instead of v. The idea for the Dorsch algorithm is that in the k most reli-
able positions the probability for an error is smaller than in the remaining n – k
positions.

We recall that the encoding of a linear code is done by a mapping of k information
symbols to n code symbols. The algorithm calculates the codeword ĉ associated to
the k most reliable received values sgn(Li), i = 1, . . . , k. We call a set of k positions
a systematic set if they can be used as information positions, which means that
these positions determine the codeword. However, the number of systematic sets
is less than

(
n
k

)
and, hence, arbitrary k positions may not uniquely determine a code-

word. In this case we have to use the k + l most reliable positions for some l v 1
such that a systematic set is included as a subset.

So the following mapping is calculated(
sgn(L1), sgn(L2), . . . , sgn(Lk)

) �→ ĉ = (ĉ1, ĉ2, . . . , ĉn) ∈ C

where sgn(Li) = ĉi, i = 1, . . . , k. In many cases the estimated codeword ĉ will be
the transmitted codeword. This is a decoding method with extremely low compu-
tational complexity. However, it has only good performance if the channel is quite
good in the sense that it has a very small variance.

The Dorsch algorithm proposes to increase the decoding performance and also
the decoding complexity by the following step. Rather than re-encoding the k most
reliable positions only, we do another k re-encoding trials in which we successively
change the sign of Li for i = 1, . . . , k. By this method we exclude all errors of weight
1 in the first k positions.
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In order to check which of the solutions is the best we may use, for example, the
squared Euclidean distance

dE(y, c) =
n∑

i=1

(yi – ci)2 .

Note that we use the mapping ci = (–1)ai where ai ∈ {0, 1}. Clearly the solution with
the smallest Euclidean distance has the largest probability. For this case we have
k + 1 re-encoding trials, which is still of small complexity.

If we use, in addition, another
(

k
2

)
re-encodings where we change any possible

two signs of the k most reliable received positions, again we increase the decod-
ing complexity but also the decoding performance. A further extension to three
or more positions is obvious. However, unfortunately the complexity grows expo-
nentially. In [17] it is shown that, increasing the number of positions changed for
re-encoding, the decoding approaches the performance of ML decoding, which is
the best possible. Infact, for two positions, the decoding is already very good.
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Investigation of Input–Output Gain in Dynamical Systems

for Neural Information Processing
Stefano Cardanobile, Michael Cohen, Silvia Corchs, Delio Mugnolo, Heiko Neumann1)

14.1

Overview

The processing of sensory signals in the human cortex is currently the subject of
numerous studies, both at an experimental and a theoretical level. These studies
investigate the principles of interactions between pairs of cortical areas. Different
theoretical models have been derived from the experimental results and then pro-
posed, in order to describe the processing of stimuli in V1, the primary visual cor-
tex.

Several models assume layers of discrete sets of neurons arranged in a regular
grid structure to be coupled via feedforward and feedback connections. These lo-
cal connection structures can be considered as local filters of parametrized spread,
which implement local center-surround interactions as well as modulatory outer-
surround ones. In such representations of two-layer architectures, at each location,
pairs of neurons define a local recurrent system of two neurons that is driven by
an external input to one of those neurons. In this contribution we provide an ele-
mentary mathematical investigation of the stability of a core model of feedforward
processing that is modulated by feedback signals. The model essentially consists
of a system of coupled nonlinear first-order differential equations. In this paper we
will address the issues of the existence, asymptotics, and dependence on parame-
ters of the corresponding solutions.

14.2

Introduction

The cerebral cortex is organized into different areas, each of them consisting of
several layers of neurons that are connected via feedforward, feedback, and lateral
connections. The human cortical architecure is organized in a hierarchical struc-

1) Corresponding author.
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ture of mutually interacting stages and the majority of cortical areas are connected
bidirectionally, see [6], whereas lateral connections enable the interaction of neurons
in the same layer.

Several empirical studies have investigated the principles of cortical interactions
between pairs of bidirectionally coupled cortical areas, particularly at early stages
in the processing hierarchy. For example, it has been shown that the analysis of
input stimuli in the primate visual cortex is mainly driven by propagation and fil-
tering along feedforward neural pathways. The output of such filtering processes
are modulated by activations in a neighborhood in the spatial or feature domain
(via lateral connections) as well by activations at stages higher up in the hierarchy
(via fast-conducting feedback connections, see [8]).

Several authors have investigated the influence of higher cortical stages on re-
sponses in the primary visual sensory area of the cortex (commonly denoted by
V1), and in particular, the shaping of feature selectivity of neurons at the earlier
stage. Ample experimental evidence exists, [4, 9, 14, 15], which supports the view
that the interaction between neural signals along different directions of signal flow
can be characterized by basic properties such as driving feedforward processing
and modulation of activation patterns by higher-order activities via top-down feed-
back processing. Several computational neural models that draw upon these empir-
ical findings have been proposed. The feedforward and feedback processing along
mutually excitatory connections raises the question of stability in such neural net-
works.

Most of the proposed developments have been derived on the basis of numeri-
cal and experimental investigations. In the present paper we consider the model
proposed by Neumann and coworkers [1, 13, 17]. It features a modulatory feedback
mechanism for feature enhancement along various dimensions of input signal fea-
tures, such as oriented contrast, texture boundaries, and motion direction. These
gain-enhancement mechanisms are combined with subsequent competitive mech-
anisms for feature enhancement. The architecture of this model is well-behaved,
i.e. it complies with basic assumptions of the theory and, in particular, the neural
activities appear stable for large ranges of parameter settings.

At a mathematical level, this model essentially consists of a coupled sys-
tem of nonlinear first-order Ordinary Differential Equations (ODEs). No for-
mal mathematical analysis of this neural model has yet been performed. The
aim here is to discuss the existence and uniqueness of solutions to the sys-
tems, as well as to present an elementary stability analysis dependent on the
settings.

The mechanisms of the considered model can be summarized as defining a cas-
cade consisting of three computational stages, see Figure 14.1.

1. An initial (linear) feedforward filtering stage along any feature dimension.

2. A modulatory feedback activation from higher cortical stages (via top-down
connections) or lateral intra-cortical activation (via long-range connections).

3. A final competitive center-surround interaction at the output stage.
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Figure 14.1 Scheme of the model circuit composed of three

sequential stages. For a mathematical description of the

computational stages, see text.

The different steps can be adequately modeled by a coupled system of ordinary
differential equations. The core equations can be summarized as follows:

dc(t)
dt

= –c(t) + B {s ∗ Γ} (t) (14.1)

dx(t)
dt

= –A x(t) + Bc(t)
(
1 + CzFB(t)

)
(14.2)

dy(t)
dt

= –A y(t) + Bf(x(t)) – (D + Ey(t))
{
f(x) ∗Λ

}
(t) . (14.3)

The evolution of the input filtering is described by (14.1): s denotes the feedforward
driving input, c is the filtered input or simply the input and Γ is a filter which is
properly selected for the current processing scheme and goals (here ∗ denotes the
convolution operation). The first negative term on the r.h.s of all three equations
represents a decay term.

The second stage, modeled in (14.2), computes the activity x of a model neuron
in terms of its potential. Such activity is assumed to be driven by the input c plus
a feedback input. The feedback signal zFB is a function of the output stage y, name-
ly zFB = g(y). The core nonlinearity for selective modulatory enhancement of inputs
c is generated by the gating mechanism (1 + CzFB(t)), i.e. the feedback zFB will be
controlled by the input c in a multiplicative form. If no input is present, available
feedback should not generate new activation, whereas if available input is not sup-
ported by any feedback, the feedforward activity should not be suppressed. In case
both input as well as feedback activation are available, this always leads to an en-
hancement of activation at time t by an amount c(t) ·C ·zFB(t) which is proportional
to the product between feedforward and feedback activity.

The third stage describes, in (14.3), the evolution of the activity y of a second
interacting neuron. A feedforward excitatory term f(x) and an inhibitory term (D +
Ey(t))

{
f(x) ∗Λ

}
(t) are present. The inhibitory term accounts for the lateral connec-

tions from the first layer of neurons (the lower neuron in Figure 14.2) through
the convolution of f(x) with the inhibitory kernel Λ. The term Ey(t) normalizes the
x-activities in the pool of cells covered by the inhibitory kernel.

The parameters A, B, C, D and E are constants. The simplest choice for the func-
tion f in (14.3) is the identity function: f(x) = x. Another possible choice that results
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in a faster increase of the activity is f(x) = x2. The function g in (14.2) accounts
for net computational effects of higher stages taking y activities as input and trans-
forming them nonlinearly, before feeding the result into the feedback signal path-
way. A common choice for g is a sigmoid function.

For stationary input luminance distributions, dc(t)/dt = 0, and the resulting
equilibrium term for c can be treated as a constant c0 for the remaining two equa-
tions to describe activities x and y, respectively. Throughout we will impose this
(quite restrictive) assumption, which dramatically simplifies the analysis of the sys-
tem’s time evolution.

In the case of stationary input, c is commonly referred to as tonic input: the input
is switched on and is kept constant during the evolution process of the dynamical
system. Under this assumption, (14.2) simplifies to read

dx(t)
dt

= –A x(t) + Bc0

(
1 + CzFB(t)

)
. (14.4)

Under certain circumstances (as, e.g. in the case of spatially constant input), the
inhibitory convolution term

{
f(x) ∗Λ

}
(t) of (14.3) can be simply replaced by a point

evaluation, i.e. by f(x)(t), thus neglecting lateral connections.2) In the absence of
lateral connections, we are thus led to consider

dy(t)
dt

= –A y(t) + (B – D)f(x(t)) – Ey(t)f(x(t)) (14.5)

instead of (14.3). Such a modified setting is clearly easier to investigate than a sys-
tem with spatio-temporally varying external input. In order to fix the ideas, we will
begin by studying this simplified model in Section 14.3. This will allow us to dis-
cuss elementary properties of the system using simple linear algebraical tools for
the qualitative analysis of ODEs.

We can consider our model as a two-dimensional dynamical system with un-
knowns x = x(t) and y = y(t). A symbolic representation of this two-dimensional
system given by (14.4)–(14.5) is shown in Figure 14.2. This basic unit, namely the
recurrent connected pair of neurons x, y will be called dipole in the following. The
dynamics of this two-dimensional system, which represents our basic unit, will be
studied in Section 14.3.

It is, in fact, more realistic to consider (14.3), thus modeling (via the inhibitory
kernel Λ) the lateral connections among neurons in the same hierarchical layer.
A possible choice for this kernel is a Gaussian function. This can be interpret-
ed as if the dipoles were mutually interconnected in a ring structure, as sketched
in Figure 14.3. The mathematical properties of this ring architecture will be briefly
discussed in Section 14.5.

2) Please note that f(x(t)) == f(x)(t) holds, since
we have assumed a spatially constant input
distribution within the extent of a spatial
kernel Λ.
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Figure 14.2 The basic unit of our model: the dipole. Two

neurons are coupled via feedforward and feedback connections.

The solid line indicates excitatory connections, the dashed line

indicates inhibitory connections. See text for details.

Figure 14.3 The basic units are coupled recur-

rently to form a ring structure. See Figure 14.2

and text where the basic unit is isolated and

explained.

14.3

The Basic Unit: Analytical Study of the Dipole

The model we consider consists of interconnected rings. Each ring arises as the
coupling of smaller basic units, namely of recurrently connected pairs of neurons,
which we call a dipole. The aim of this section is to investigate the behavior of a sin-
gle dipole. In particular, we neglect the lateral connections and discuss the prob-
lem given by (14.4)–(14.5). Observe that in our model neurons are schematized
as point-like, lumped structures: there is no delay in their interactions and, what
is more important, their spatial structure is neglected. Although not quite realis-
tic, this assumption greatly simplifies the mathematical description of the system;
see [2] for a discussion of the relations between lumped and nonlumped models.
For the case of stationary input, the initial value problem associated with the two-
dimensional system introduced in (14.4)–(14.5) can be written in the more general
form as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = –αx(t) + �
(
1 + γg(y(t))

)
ẏ(t) = –ηy(t) +

(
δ – εh(y(t))

)
f(x(t)

x(0) = x0 ∈ R
y(0) = y0 ∈ R ,

(14.6)

where ẋ(t) and ẏ(t) denote the time derivative of x, y. Here � depends on the in-
put c0, which we have assumed to be stationary. Moreover, the activation parameters
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α, γ, δ, ε, η are constants and f, g, h are real functions. In particular, g and f describe
a feedback and feedforward activation, respectively. Thus, the initial value problem
associated with (14.4)–(14.5) is actually only a special case of (14.6), after appro-
priate choice of parameters. We have preferred to perform qualitative analysis of
this more general problem, instead on focusing of the special case introduced in
Section 14.2.

In particular, the term Bc(t) in (14.2) corresponds to � in the above problem.
This is justified by the standing assumption that the input luminance distribution
is stationary, and hence that c(t) = c0, a constant. Therefore, � = Bc0, and we can
consider it as a parameter (which we are free to choose) depending on the (constant)
input that we are feeding the system. We emphasize that our results do not hold in
the general case when � = �(t), i.e. if c = c(t).

The above system of coupled first-order ODEs can be equivalently represented as
a single Cauchy problem

{
u̇(t) = F(u(t))
u(0) = u0 ∈ R2 ,

(CP)

to which we can apply standard mathematical results. Here u := (x, y) and u0 :=
(x0, y0), while F is the nonlinear function on R2 defined by

F(x, y) :=
(

–αx + �(1 + γg(y))
–ηy + (δ – εh(y))f(x)

)
.

14.3.1

Well-Posedness Results

To begin with, we observe that the problem formulated above admits a solution, i.e.
a pair (x(t), y(t)) satisfying (14.6).

Lemma 14.1 (The following assertions hold.)

(1) Let f, g, h : R → R be continuous. Then for all x0, y0 ∈ R there exists at least one
solution of (14.6), locally in time.

(2) Let moreover f, g, h : R → R be locally Lipschitz continuous. If f(0) = h(0) = 0, then
there exists a unique solution of (14.6), locally in time.

(3) Let finally f, g, h : R→ R be globally Lipschitz continuous. If f or h is bounded, then
the unique solution of (14.6) is defined for all t ∈ R.

Proof

(1) The function F is clearly continuous. Thus, the assertion follows from Peano’s
existence theorem.
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(2) Let R > 0 and x, x̃, y, ỹ ∈ B(0, R) := {z ∈ R : ‖z‖ u R}. Then one has∥∥∥F(x, y) – F(x̃, ỹ)
∥∥∥ u |α|‖x – x̃‖ + |η|‖y – ỹ‖

+ |γ|‖g(y) – g(̃y)‖ + |δ|‖f(x) – f(x̃)‖
+ |ε|‖h(y)f(x) – h(̃y)f(x̃)‖

u (|α| + |δ|Lf)‖x – x̃‖ + (|η| + Lg)‖y – ỹ‖
+ |ε|‖h(y) – h(0)‖Lf‖x – x̃‖
+ |ε|Lh‖y – ỹ‖‖f(x̃) – f(0)‖

u (|α| + |δ|Lf)‖x – x̃‖ + (|η| + Lg)‖y – ỹ‖
+ |ε|LfLhR‖x – x̃‖ + |ε|RLfLh‖y – ỹ‖ ,

where Lf, Lg, Lh denote the Lipschitz constants of f, g, h, respectively. This shows
that F is locally Lipschitz continuous, and the uniqueness of a local solution is as
a consequence of the Picard–Lindelöf theorem.

(3) It suffices to observe that F is globally Lipschitz continuous under the above
assumptions. q

Having proved the well-posedness of the system, we now investigate its stability
properties. Along the nullclines of the system we have

αx(t) = � + �γg(y(t)) and ηy(t) = δf(x(t)) – εh(y(t))f(x(t)) ,

respectively.
As already mentioned in Section 14.2, the activation functions f and h are com-

monly assumed to satisfy f(0) = h(0) = 0. Accordingly, we deduce that (x, y) == 0 is
an equilibrium point provided that �(1 + γg(0)) = 0 (the converse is true if α =/ 0).
As already mentioned, in many models g is a sigmoid function and, in particular,
g(0) = 0. Therefore, we have just observed that in absence of input (i.e. if � = 0)
the only stationary state is the inactive state (i.e. x(t) = y(t) == 0). The aim of the
following section is to prove the existence of stationary solutions to (14.6) also in
the case of nontrivial input.

14.3.2

Linearization

We show that equilibrium points also appear in the case of � =/ 0, corresponding to
constant but nonvanishing inputs. For the sake of simplicity, in the remainder of
this note we impose the realistic assumption that

f(0) = g(0) = h(0) = 0 . (14.7)

We consider (14.6) as a dynamical system dependent on the parameters α, �, γ, ε,
δ, η. We are going to show that the choice of the parameters γ, δ, ε is irrelevant for
the existence of a stationary state, whereas specific conditions have to be imposed
on parameters α and η. We then find a curve of stationary states in a neighborhood
of the origin. This allows us to discuss some basic bifurcation properties of our
system.
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Theorem 14.1 Let γ, δ, ε be fixed real numbers and f, g, h be given continuously differ-
entiable activation function satisfying (14.7). Then the following assertions hold.

1. For all parameters α0, η0 such that α0η0 =/ 0 there exists a neighborhood U of
(α0, 0, η0) and a continuous differentiable function κ = (κ1, κ2) such that (x, y) =
(κ1(α, �, η), κ2(α, �, η)) is a stationary state for all (α, �, η) ∈ U.

2. The system has a bifurcation in (x, y) = (0, 0) for � = 0 and all parameters α0, η0

such that α0η0 = 0.

Proof

(1) Fix γ, δ, ε ∈ R. Define a function Φ : R2 ~ R3 → R2 by

Φ
(

(x, y)
(α, �, η)

)
:=
(

–αx + � + �γg(y)
–ηy + δf(x) – εh(y)f(x)

)
.

In other words, for fixed parameters γ, δ, ε and for given α, �, η one has

Φ
(

(·, ·)
(α, �, η)

)
= F
(
(·, ·)
)

.

Then Φ is a continuously differentiable function, and its partial differential with
respect to the first two variables is given by

DxyΦ
(

(x, y)
(α, �, η)

)
=
(

–α �γg′(y)
(δ – εh(y))f′(x) –εh′(y)f(x) – η

)
(14.8)

For � = 0 and arbitrary coefficients α0, η0 the vector (x, y) = (0, 0) is an equilibrium
point of the system (14.6) since

Φ
(

(0, 0)
(α0, 0, η0)

)
= 0 .

In order to apply the implicit function theorem, compute the determinant of DxyΦ
in the point ((0, 0), (α0, 0, η0)). This is given by

detDxyΦ
(

(0, 0)
(α0, 0, η0)

)
= det

(
–α0 0

δf′(0) –η0

)
= α0η0 , (14.9)

because of the assumptions (14.7). By the implicit function theorem, there exist
neighborhoods U of (α0, 0, η0) ∈ R3 and V of (0, 0) ∈ R2 and a continuously differ-
entiable function κ : U → V such that
– Φ(κ(α0, 0, η0), α0, 0, η0) = 0 and
– for all (x, y, α, �, η) ∈ V ~ U the point (x, y) is a stationary state with respect to

parameters α, �, η if and only if (x, y) = κ(α, �, η).

(2) We have observed that the trivial state (0, 0) is a stationary state if and only if
� = 0. If α0η0 = 0, then det DxyΦ((0, 0), (α0, 0, η0)) = 0 and the implicit function
theorem fails to apply. Thus, the system has a bifurcation. q
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By the above theorem it is possible to investigate the stability of our system by lin-
earizing around the stationary state (x, y) = (0, 0). To this end, we assume through-
out that αη =/ 0. By continuity, the asymptotic behaviour of the infinitely many
stationary points whose existence has been proved in Theorem 14.1.(1) is the same
of that of the stationary point (0, 0). We can therefore restrict ourselves to investi-
gating stability issues of (CP) for the case (x, y) = (0, 0) and � = 0, only: we thus
obtain the linearized Cauchy problem{

v̇(t) = DF(0, 0)v(t)
v(0) = u0 ∈ R2 .

(lCP)

The Fréchet derivative DF(0, 0) of F at (0, 0) has been computed in (14.9): denoting
by T(t) the exponential of the 2 ~ 2 matrix DF(0, 0), i.e.,

T(t) =
(

e–tα 0
δf′(0)e–tη e–tη

)
,

the solution to (lCP) can be written as

v(t) = T(t)(x0, y0) .

This formula and the basic results from linear algebra yield interesting information
about the asymptotic behaviour of the solution to (lCP) and hence, by the theorem
of Hartman–Großman, also about the solution to (CP). Since the parameters have
been assumed to be real, the relevant asymptotic behaviors are only determined by
the sign of α and η.

This leads to the following, which holds for all parameters (α, �, η) inside the
neighborhood U introduced in Theorem 14.1.

Theorem 14.2 The following assertions hold for the linearized system (lCP) and all
initial values u0 ∈ R2, and hence also for the original system (CP) and all initial values
in a neighborhood of the origin.

1. If α v 0 and η v 0, then the solution is stable in the sense of Lyapunov, i.e.

‖v(t)‖ u ‖u0‖ for all t v 0 .

2. If α > 0 and η > 0, then the solution is uniformly exponentially stable, i.e.

‖v(t)‖ u e– max{α,η}t‖u0‖ for all t v 0 .

3. If αη < 0, then the solution with initial data u0 = �unst (resp. u0 = �stab) is
unstable (resp., exponentially stable), where �stab and �unst are the eigenvectors of
DF(0, 0) associated with max{α, η} and min{α, η}, respectively.

4. If α < 0 and η < 0, then the solution is unstable.
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In view of Theorem 14.2.(3), observe that the eigenspaces associated with α and η
are spanned by (1, δf′(0)/(η – α)) and (0, 1), respectively, if α =/ η.

In the above result we have denoted by ‖ · ‖ the Euclidean norm on R2, i.e.
‖(x, y)‖ =

√
x2 + y2 for all x, y ∈ R. While it is true that all norms on R2 are equiv-

alent, and hence the stability properties we have obtained are norm-independent,
it may still be interesting to characterize dissipativity of the system with respect to
more relevant norms: in particular, with respect to the ‖·‖1 and ‖·‖∞ norms defined
by

‖(x, y)‖1 = |x| + |y| and ‖(x, y)‖∞ = max{|x|, |y|} .

These norms have a more intuitive interpretation than ‖ · ‖: at a given time t,
‖(x(t), y(t))‖1 and ‖(x(t), y(t))‖∞ give the total potential of the inhibitory–excitatory
system and the higher of both inhibitory and excitatory potentials, respectively.
By [12, Lemma 6.1] we obtain the following: If |δf′(0)| u min{α, η}, then the so-
lution of (lCP) satisfies

‖v(t)‖1 u ‖u0‖1 as well as ‖v(t)‖∞ u ‖u0‖∞ for all t v 0 .

14.4

The Basic Unit: Numerical Analysis of the Dipole

In this section we present some numerical simulations for the two-dimensional
system introduced in (14.6). The analyis is made for a particular choice of functions
f, g and h and for particular values of parameters. In particular, the constant input
has been chosen in such a way that � = 1. Further, the parameters have been
set to α = η = 1, γ = 10, and ε = 1. The analysis has been made for different
values of the gating parameter δ. The behavior for the cases δ = ±5 has been
plotted in the figures. The initial conditions are x(0) = y(0) = 0. The functions
have been chosen as: f(x) = x, g(y) = 1/(1 + exp(–y)) – 0.5 and h(y) = y. Given these
functions, the nullclines of the system can be expressed analytically. The x-nullcline
is given by

y = – ln
(

10
x + 4

– 1
)

while the y-nullcline has coordinates

y =
δx

1 – x

In Figure 14.4a the activities x and y as a function of t are shown for δ = 5. The neu-
ral activities increase and converge to a stable value for t > 2 ms. In Figure 14.4b the
trajectory of the system from the initial condition to the final state is shown togeth-
er with the nullclines of the system. In this case, the corresponding eigenvalues λ1,2

of the matrix DxyΦ given by (14.8) are both negative (λ1 = –0.98 and λ2 = –6.9), in-
dicating that the solution is stable; in fact, it is a stable node. The same simulations
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Figure 14.4 (a): Neural activities as a function of time. The

parameters have been set as follows: α = η = 1, γ = 10, ε = 1
and δ = 5. (b) Nullclines and trajectory of the system.

have been carried out for δ = –5 (see Figure 14.5). In this case the corresponding
eigenvalues are complex conjugate numbers (λ1 = –1.4 + 1.5i and λ2 = –1.4 – 1.5i)
with negative real part. The activities present an oscillatory behavior for t < 3 ms
and converge to a stable value for t > 3 ms. Therefore, the system evolves to a stable
state and the trajectory corresponds to a stable focus as can be seen in Figure 14.5b.

14.5

Model of a Recurrent Network

In this section we briefly discuss the case of a recurrent neural network. We thus
allow for lateral connections among neurons of the same hierarchical level, see Fig-
ure 14.3. We avoid technicalities and refer the interested reader to a later paper for
mathematical details.

In order to describe the behavior of a ring, we denote a given dipole in the ring by
its angle θ ∈ [0, 2π) with respect to some fixed reference direction: we will therefore
denote by xθ(t) and yθ(t) the potentials of the dipole with angular coordinate θ at
time t.
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Figure 14.5 (a) Neural activities as a function of time. The

parameters have been set as follows: α = η = 1, γ = 10, ε = 1
and δ = –5. (b) Nullclines and trajectory of the system.

As explained in Section 14.2, the correct mathematical setting is that of a system
of integro-differential equations corresponding to (14.4 and 14.3). Formulating it
in greater generality, such that the initial-value problem associated with this system
reads as a Cauchy problem, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = –αx(t) + �
(
1 + γg(y(t))

)
ẏ(t) = –ηy(t) + δf(x(t))

+
(
ε + θh(y(t))

) ∫ 2π
0 f(x(s))Λ(t – s)ds

x(0) = x0

y(0) = y0 ,

(14.10)

where Λ is a suitable integral kernel. In this setting, we are considering the distri-
bution of the neuronal activity on a whole ring. Thus, we have to consider a state
space more involved than R2 (which we have used in Section 14.3), taking account
of the angular distribution of the activity. In fact, there are several possibilities: we
choose to take as the phase space the product space L2

per ~ L2
per. Here L2

per is the
linear space of square integrable 2π-periodic real functions. Observe that the ini-
tial data are not numbers but functions representing the initial distribution of the
neuronal activity, i.e. x0, y0 ∈ L2

per.
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As in Section 14.3 we rewrite (14.10) as the differential equation{
u̇(t) = F(u(t))
u(0) = u0 ∈ R2 ,

(DP2)

in the infinite-dimensional space L2
per ~ L2

per, to which we can apply standard results
on existence, uniqueness, and stability. As in Section 14.3, u := (x, y) and u0 :=
(x0, y0) ∈ L2

per ~ L2
per, while F is now a nonlinear operator on L2

per ~ L2
per defined by

F(x, y) :=
(

–αx + �(1 + γg(y))
–ηy + δf(x) + (ε + θh(y))((f ◦ x) ∗Λ)

)
.

We are still assuming that (14.7) holds. Accordingly, we again deduce that the vector
(0, 0) is an equilibrium point only in the case of � = 0, i.e. only in the case of
zero input. In the case of nonzero input one can extend the trivial nullcline (0, 0)
following the same idea of Section 14.3.2. The somewhat technical proof of the
following theorem is similar to that of Theorem 14.4 and it is based on the Banach
space version of the implicit function theorem.

Theorem 14.3 Let γ, δ, ε be fixed real numbers and f, g, h be given Fréchet differen-
tiable operators on L2

per. Let them satisfy (14.7), where 0 now denotes the costant ze-
ro function. Then for all numbers α0, η0 such that α0η0 =/ 0 there exists a neigh-
borhood U of (α0, 0, η0) and a Fréchet differentiable function κ = (κ1, κ2) such that
(x, y) = (κ1(α, �, η), κ2(α, �, η)) is a stationary state for all (α, �, η) ∈ U.

We compute the Fréchet derivative of F at any vector (r, s) ∈ L2
per ~ L2

per and obtain

DF(r, s) =
(

–α �γg′(s)
δf′(r) + (ε + θh(s))f′(r)((f ◦ r) ∗ Λ) –η + θh′(s)((f ◦ r) ∗Λ)

)
.

Letting � = 0, by (14.7), we thus obtain

DF(0, 0) =
(

–α 0
δf′(0) –η

)
.

Thus, one can linearize around the origin and investigate asymptotics of the system
in the same way as in Section 14.3. Performing bifurcation analysis in infinite-
dimensional Banach spaces is technically more involved, and goes beyond the
scope of this chapter. We refer, e.g., to [3] for details. We will address the com-
plete mathematical analysis of the present case of a ring structure in a later paper
(in preparation).

14.6

Discussion and Conclusions

In the present paper we have investigated stability issues for the neural network
model presented by Neumann and coworkers in [1, 13, 17]. The basic unit of the
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model represents essentially two neurons coupled via feedforward and feedback
connections. The model consists of three computational stages: (1) an input fil-
tering stage; (2) a modulatory feedback stage; and (3) a final competititve center
surround mechanism at the output stage. These stages can be modeled by a cou-
pled system of three differential equations. In this chapter we addressed the case
of input signals that were assumed temporally constant (i.e. they do not vary over
time after onset). Furthermore, we have assumed a spatially homogeneous sur-
round input to the center-surround competition stage. This fact reduces the gener-
al system to a two-dimensional system that can be represented as a single Cauchy
problem. We have discussed the problem of existence of solutions and investigated
their stability properties. In the trivial case of zero input, the only stationary state
is the inactive state. The existence of solutions has also been proved for the case
of nonzero input, where the conditions on the different parameters characterizing
the equations have been derived. Two parameters play a crucial role for the stability
of the system, namely α and η of (14.6). If these two parameters are positive, then
the solution of the system (14.6) is uniformly stable. Let us recall that the ODE sys-
tem (14.6) describes the neural activities x and y of the computational model given
by (14.2 and 14.3). Within this framework, α and η represent the time constant of
the decay terms and therefore the conditions α, η > 0 are satisfied when a concrete
neural model is being considered.

We stress that the mathematical analysis of the stability conditions here present-
ed is valid in the case of nontrivial input but inside a certain neighborhood of zero
input. This means that if the input increases beyond this neighborhood, the con-
clusions stated here may no longer be valid.

Numerical simulations for the neural activities and the trajectory of the system
have been presented for two different sets of parameters (for nonzero input). For
these particular choices, the neural activities converge to stationary solutions and
the corresponding trajectories evolve to a stable node or stable focus, respectively.

Finally, the case where the basic units are recurrently coupled to form a ring
structure has been briefly analyzed. This corresponds to the more realistic case
where the neurons interact via lateral connections. The extension of the stability
analysis to the ring structure has been sketched.
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15

Wave Packet Dynamics and Factorization
Rüdiger Mack1), Wolfgang P. Schleich, Daniel Haase, Helmut Maier

15.1

Introduction

Integer factorization is one of the major problems of algorithmic number theory.
This topic is highly relevant for cryptography since public key cryptosystems [1]
such as RSA draw their security from the supposed difficulty of this problem. In-
deed, there is still no efficient classical algorithm to compute the factors of an inte-
ger.

The discovery of Shor’s algorithm [2, 3] drew the attention of the cryptographic
community to quantum computation [4, 5], which resulted in a boost in research
on the subject. In the present paper we summarize the mathematical as well as the
physical aspects of the Shor algorithm and draw analogies to familiar problems in
scattering of atoms from phase gratings [6].

15.1.1

Central Ideas

Shor’s method of factoring an integer N = p · q into its prime factors p and q
consists of two parts: (i) a mathematical algorithm; and (ii) a quantum mechanical
implementation.

The mathematical part contains [7,8] three essential ideas: (i) the construction of
a periodic function f based on modular exponentiation; (ii) the use of the period of
f to find integers which share a common factor with N; and (iii) the Euclidean al-
gorithm to distill these common factors. For the understanding of the factorization
algorithm rudimentary knowledge of elementary number theory [9] is sufficient.
The method relies on the proper choice of the basis of the exponentiation. As a re-
sult, the algorithm does not always produce all factors. A deeper analysis taking
advantage of elements of number theory such as modular arithmetic, the Chinese
remainder theorem and the primitive root, shows that the approach is successful
in half of the trials.

1) Corresponding author.
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The information about the factors p and q of N is contained in the period r of
the function f based on modular exponentiation. However, in order to obtain r we
need to know the values of f over one period. Since this period gets very large, we
face a computationally extensive problem.

It is at this point that quantum mechanics [10] and, in particular, entangle-
ment [11] of two quantum systems comes in useful. The states | j〉1 of the first
system encode the arguments j of the function f whereas the states | f ( j)〉2 of the
second system yield the values f ( j) of the function f. An appropriate interaction
between the two systems produces an entangled state which is a coherent super-
position of the states | j〉1| f ( j)〉2. A projective measurement on an arbitrary state
| f (k0)〉2 of the second system creates a superposition of states |k0 + mr〉1 of the
first system, where m assumes integer values. In this way we have mapped the
periodicity of f onto the first quantum system. However, the value of k0 is random.
For this reason it is advantageous to consider this periodic state in the variable
conjugate to j. In this representation the value of k0 appears as a phase and the
probability distribution displays clear maxima at multiples of the inverse period.
As a result every measurement can only take on these values leading rapidly to r.

There is a close analogy between the Shor algorithm and the problem of the de-
flection of atoms from a standing light field in the Raman–Nath approximation [6].
Indeed, the distribution of scattered atoms in the far field consists of sharp peaks
separated by the inverse of the period of the mode function. The derivative of the
mode function plays the role of f. Needless to say, this scheme does not involve
entanglement but only interference. In this sense, we could also realize it by scat-
tering light off a phase grating.

The Shor algorithm takes advantage of the enormous size of Hilbert space. In-
deed, when we consider two-level atoms, the dimensionality of Hilbert space grows
exponentially with the number of atoms. It is this exponential growth, which leads
to the exponential speedup of the Shor algorithm.

15.1.2

Outline of the Article

Ski slopes are usually categorized according to the experience of the skier. Experi-
enced skiers can go straight to the most difficult routes usually marked by black
diamonds. However, beginners should first familiarize themselves with the terri-
tory and practise on the easy slopes marked by green dots. Here, we follow the
American notation. In this spirit our article contains two tracks summarized in
Figure 15.1. The black run is the difficult one and assumes that the reader is famil-
iar with quantum mechanics as well as number theory. This slope leads us straight
to the very heart of the Shor algorithm.

We dedicate Section 15.2 to a brief summary of the mathematical aspects of
the Shor algorithm. In Section 15.3 we then turn to the quantum mechanical
implementation. Here we emphasize the mapping of the period of the modular
exponentiation to the register with the help of entanglement and a subsequent
readout in the conjugate variable using a Fourier transform. In Section 15.4
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Algorithm

Entanglement

Mapping of period

Fourier transform

Classical realization

Conclusion

Modular exponentiation

Chinese remainder theorem

Euler’s function

Euclidean algorithm

Primitive root

Probability of success

Atom optics

Gauss sum

Introduction

Hilbert space

Figure 15.1 A guide through the problem of

factorization with the Shor algorithm along

two tracks highlighting the main themes of

our article. The black diamond run (track 1) is

recommended to a reader with a background

in number theory. The run marked by the

dot (track 2) prepares the reader for the

diamond run and introduces the necessary

concepts of number theory. Two appendices

dedicated to specific problems in physics

allow for small detours on the diamond

run.

we elaborate on a classical realization based on the scattering of atoms from
a standing light field. We show that the key step in the Shor algorithm, that is
the projection onto the entangled state and the creation of the periodic struc-
ture in the first quantum system, is analogous to the projection of the quantum
state |ψ〉 corresponding to the center-of-mass motion on the momentum eigen-
state |p〉. This analogy stands out most clearly when we analyze the momentum
probability amplitude ψ(p) =

〈
p|ψ〉 with the method of stationary phase [12].

Our analysis of the Shor algorithm concludes in Section 15.5 with a brief dis-
cussion of the source of the exponential speedup. We summarize our results in
Section 15.6.
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A reader not acquainted with modular arithmetic is advised to first practise on
the easy slopes, that is to follow the second track consisting of various appen-
dices, before going onto the black route. Indeed, the appendices lay the founda-
tions for the main body of the paper by studying various elements of number
theory.

Since the Shor algorithm relies on finding the period of a function, we have
selected several topics of number theory, which address this very point. We start
in Appendix 15.A with an elementary introduction into modular arithmetic. Here
we focus on the periodicity properties of modular exponentiation. Since these cal-
culations quickly involve large numbers, it is useful to develop a tool, which al-
lows us to work only with small numbers. In this context, the Chinese remain-
der theorem, discussed in Appendix 15.B, is a great help. For example, it yields
the period of the modular exponentiation, when the module is the product of two
coprime numbers. Moreover, the period of the modular exponentiation is a divi-
sor of Euler’s φ-function, which is defined by the number of coprime residues.
As shown in Appendix 15.C we can calculate the values of φ with the help of the
Chinese remainder theorem. At various stages of our analysis we need to deter-
mine the greatest common divisor of two positive integers. The Euclidean algo-
rithm discussed in 15.D is an effective method of achieving this goal. Still, we
have no analytic formula to calculate the period of the modular exponentiation.
We have to find it recursively. This gap is filled by the concept of a primitive root
introduced in Appendix 15.E. These elements of number theory are finally put
to use in Appendix 15.F to estimate the probability of success for the Shor algo-
rithm.

The last two appendices are of a completely different nature. They do not pro-
vide introductions into a field but rather contain detailed calculations of a physi-
cal problem. In Appendix 15.G we calculate the momentum distribution of atoms
scattered off an electromagnetic field. In Appendix 15.H we show, that the con-
structive interference of the phase factors of Gauss sums [13] allows us to factor
numbers [14, 15].

15.2

How to Factor Numbers

In this section we elaborate on the essential ideas of Shor’s algorithm. After a brief
introduction to the problem of factorization we outline the three steps of the mathe-
matical algorithm: (i) modular exponentiation; (ii) factorization; and (iii) Euclidean
algorithm. This analysis relies heavily on elements of modular arithmetic. A reader
not familiar with this branch of number theory is well-advised to first work through
Appendices 15.A–15.F before continuing here. Since at the stage of modular expo-
nentiation one has to choose a number at random, the algorithm is probabilistic
and does not work on every trial. We conclude by discussing these problems and
present the probability of success.



15.2 How to Factor Numbers 399

15.2.1

Prime Numbers, a Primality Test and a Naive Approach to Factorization

A prime number p is a natural number that has exactly two factors 1 and p. Two
integers m and n are called coprime if they have only 1 as a common factor. Any
natural number N can be decomposed into a product of prime numbers which is
unique up to ordering. It has been known from antiquity that there are infinitely
many prime numbers. According to the prime number theorem of analytic number
theory [13] the number π(x) of prime numbers smaller than x is

π(x) ~
x

log(x)
(15.1)

in the limit of large values of x.
It is not too difficult to check if a given number N is prime. For this purpose we

consider the operation of modular exponentiation discussed in Appendix 15.A.3.
For most composite numbers the compositeness may be shown by Fermat’s little
theorem [9]: If N is prime, then

aN–1 == 1 mod N (15.2)

for all a coprime to N. For most composite N one can easily find a, such that (15.2)
does not hold and thus prove the compositeness of N.

There are, however, exceptions, the so-called Carmichael numbers. Indeed, N is
called a Carmichael number, if it is composite and if

aN–1 == 1 mod N (15.3)

for each a coprime to N. It has been shown [16] that there are infinitely many
Carmichael numbers. The smallest example is N = 561 = 3 · 11 · 17. One has
a560 == 1 mod 561 for all a that are not divisible by 3, 11 or 17. The idea of consid-
ering Fermat’s congruence may, however, be modified to decide for all numbers
whether they are prime or composite. This method is known as Rabin’s probabilis-
tic primality test [17]. Instead of the single congruence (15.2) with the exponent
N – 1, one also considers congruences with exponents (N – 1)/2 (and (N – 1)/4,
(N – 1)/8, etc. if these quotients are integers).

The problem of finding the integer factors p and q of a number N = p · q is an
even more complicated problem. For small numbers, such as 15, we can rely on
our memory to find the prime factors 3 and 5. However, for large numbers this
task is highly nontrivial. In principle one could try out all prime numbers from 2
to a given number if they divide N. In the worst case, when N consists only of two
factors, we have to go up to

√
N. Since it suffices to try out prime numbers we have

to perform
√

N/ log
√

N divisions.
Computer science expresses the complexity of problems such as factorization

in terms of the number k of digits of N. For example, the naive factorization ap-
proach based on division by all primes smaller than

√
N scales exponentially with

the number of digits of N. Moreover, the number of steps needed by all known clas-
sical algorithms to factor numbers cannot be bound by a polynomial in k. However,
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the Shor algorithm relying on quantum mechanics uses a number of steps polyno-
mial in k, and is therefore efficient.

15.2.2

A More Sophisticated Algorithm

There exist more sophisticated schemes to find the factors of a number. The most
prominent one is based on modular arithmetic. Here we calculate the powers of
a given integer a modulo the number N that we want to factor, that is we evaluate

f ( j) = a j mod N . (15.4)

Table 15.1 displays the function f ( j) = a j mod N for the example of a = 3 and
N = 14 and shows that f ( j) is periodic with the period r = 6. This periodicity
property holds true for all pairs of numbers N and a. For a more detailed discussion
we refer to the Appendices 15.A–15.F.

We can now use this periodicity to find the factors of N. In order to understand
this claim, we note that if r < N is the period we find

a j == a j+r mod N , (15.5)

which is equivalent to

a j(ar – 1) == 0 mod N , (15.6)

or

a j(ar/2 – 1)(ar/2 + 1) = k · N . (15.7)

Equation (15.7) states that ar/2 – 1 or ar/2 + 1 share a common factor with N. As
a consequence we have reduced the problem of factoring a number to the prob-
lem of finding factors common to numbers. The Euclidean algorithm, described
in Section 15.D, is a very effective method to identify these common factors.

In summary, in order to factor a number, we have to first find the period of
a function defined by modular exponentiation. This period leads us to two numbers
which share a factor with the number to be factored. With the help of the Euclidean
algorithm we determine these common factors.

15.2.3

Problems with this Algorithm and Probability of Success

For the example of Table 15.1 we have found the period r = 6 which for a = 3 yields
ar/2 – 1 = 33 – 1 = 26 and ar/2 + 1 = 33 + 1 = 28. The common factors with N = 14
are 2 and 14. Thus we have found only one prime factor of N = 14, namely 2.

Table 15.1 For N = 14 and a = 3 the function f ( j) = a j mod N displays a period of r = 6.

j 0 1 2 3 4 5 6 7 8 9

f ( j ) 1 3 9 13 11 5 1 3 9 13
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This accident demonstrates that not every a is “useful”. But what are the criteria
defining a useful value of a?

First of all a should not share factors with N. Otherwise we would already have
found a factor and do not have to go to the trouble of searching for a period. To
have such luck is very unlikely for a randomly chosen number a and we can always
test if the a and N are coprime by running the Euclidean algorithm.

Moreover, a has to be chosen such that the period r of f ( j) defined in (15.4) is
even. If r is odd, we cannot make the decomposition ar – 1 = (ar/2 – 1)(ar/2 + 1).

Another misfortune occurs, if ar/2 + 1 is a multiple of N. Then, ar/2 – 1 does not
share a factor with N and we have not gained anything. As a consequence we have
to choose another value for a and run the algorithm again.

Mathematically these requirements translate into the question: what is the
chance that r is even and that each of the factors (ar/2 – 1) and (ar/2 + 1) is divisible
by exactly one of the primes p and q? In Section 15.F we show that the probability
for a suitable a is 50%, thus, if the trial – the random choice of a – is repeated
sufficiently often, the factorization works with almost certainty.

15.3

How to Find the Period of a Function: The Magic Role of Entanglement

In the preceding section we have shown that the problem of factoring a number is
closely related to finding the period of a function. In the present section we address
the question of how to obtain the period in an efficient way in more detail. In
particular, we use the entanglement of two quantum systems to map the periodicity
of the function f defined by (15.4) encoded in one quantum system onto a second
one, which we then read out using a Fourier transform.

15.3.1

Encoding in Quantum Systems

We consider a function f, which is defined for integer values j with a period r, that
is,

f ( j + r) = f ( j) . (15.8)

The goal is to determine r. For the sake of simplicity we assume that f can only take
on integer values, and that these values are encoded by sequences of zeros and
ones. To represent such a function by unitary operations we consider the unitary
mapping Uf on product states defined by linear continuation of the rule

|a〉|b〉 �→ |a〉|b ⊕ f (a)〉 (15.9)

where ⊕ is binary addition. This operation is clearly bijective and we have U–1
f = Uf.

It is shown in [4] that it is indeed unitary for arbitrary f (which does not have to be
injective itself).
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We encode the argument j and the value of f ( j) in the quantum states of two
quantum systems. Here j is always connected to the quantum system 1 whereas f
is attached to the quantum system 2. We emphasize that neither the type of quan-
tum system, nor the quantum state that we are considering, are of importance in
this discussion. However, in order to guarantee that there is a one-to-one mapping
between the arguments and the values of f with the corresponding quantum states,
we consider two identical harmonic oscillators of frequency ω. Here the energy
eigenvalues Ej are of the form [10]

Ej = �ω( j + 1/2) , (15.10)

where � denotes the Planck constant and j runs from 0 to infinity. The correspond-
ing energy eigenstates indicated by | j〉 are mutually orthogonal for different values
of j, that is,

〈 j | j′〉 = δj j′ . (15.11)

We define the product state

|Ψj〉 == | j〉1| f ( j )〉2 (15.12)

consisting of the quantum system 1 being in the energy eigenstate | j〉1 and the
quantum system 2 being in the energy eigenstate | f ( j )〉2. The state |Ψj〉 is created
from the state | j〉1|0〉2 by the application of the unitary operation Uf. Since j runs
through all integers the quantum state |Ψ〉 is the superposition

|Ψ〉 =
∑

j

|Ψj〉 =
∑

j

| j〉1| f ( j )〉2 (15.13)

| f ( j)〉2

| f (k0) 2

| j 1

〉

〉

Figure 15.2 Mapping of periodicity using the

entangled state |Ψ〉 =
∑

j | j〉1 | f ( j)〉2 given

by (15.13) and a projective measurement

onto | f (k0)〉2. The horizontal axis indicat-

ed by equally spaced ticks numbers the

energy eigenstates | j〉1 of one harmonic

oscillator. The vertical axis marks the energy

eigenstates | f ( j)〉2 of another harmonic

oscillator. The entangled quantum state

|Ψ〉 =
∑

j |Ψj〉 is the “interference” of the

product states |Ψj〉 = | j〉1 | f ( j)〉2. As a result

we can view |Ψ〉 as the interference of all

dots forming the graph f ( j). In this way we

have obtained a geometrical representation

of the entangled state |Ψ〉. A projection

of | f (k0)〉 onto |Ψ〉 can be depicted as the

overlap between a straight line at | f (k0)〉2
parallel to the j-axis and the graph f ( j). The

points common to both curves determine

the quantum states | j〉1 contributing to the

so-created superposition |ψ〉 =
∑

m |k0 + mr〉1.

Obviously |ψ〉 inherits the periodicity of f.
For this picture we have chosen the modular

exponentiation f ( j) = a j mod N for a = 5 and

N = 51.
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of all product states |Ψj〉. We emphasize that |Ψ〉 is a rather peculiar state. For
specific choices of f, such as a j mod N it cannot be factored into the product of
two quantum states describing the two individual quantum systems. Following
Schrödinger [11] such quantum states are called entangled states.

We have not yet addressed the question of how to prepare |Ψ〉 in a real exper-
iment. This question drives a very active field of research and has to be studied
separately.

In Figure 15.2 we give an elementary representation of |Ψ〉. It is the graph of the
function f. Indeed, we interpret the product state |Ψj〉 as a single point in a plane
spanned by the argument j and the value f ( j ) of the function encoded in the energy
eigenstates of the two oscillators. The superposition of the product states |Ψj〉, that
is, the interference of these dots represents |Ψ〉.

15.3.2

Mapping of Periodicity

The starting point of the method of finding the period of a function f is the en-
tangled state |Ψ〉 given by (15.13). In order to take advantage of the periodicity of
f it is useful to decompose the sum into a sum of periodic terms and a sum over
an elementary cell consisting of one period. Figure 15.3 illustrates this principle
summarized by the familiar summation rule∑

j

aj =
r–1∑
k=0

∑
m

ak+mr . (15.14)

Indeed, this identity takes advantage of the constructive interference of identical
terms and casts the quantum state |Ψ〉 into the form

|Ψ〉 =
∑
k,m

|k + mr〉1| f (k + mr)〉2 . (15.15)

Due to the periodicity of f, given by (15.8), we find f (k + mr) = f (k) and thus

|Ψ〉 =
∑

k

∑
m

|k + mr〉1| f (k)〉2. (15.16)

a1

a2

a3
1 2 3

j

Figure 15.3 The geometrical representation

of the summation formula, (15.14). In order

to bring out the essential features we rep-

resent the individual contributions aj to the

sum by squares, triangles and diamonds.

These symbols stand for state vectors, real

or complex numbers. The sum of aj over j
can be performed by summing consecutive

terms. However, when there is a periodicity

in aj it is more convenient to first sum over

all terms that are equal and then add these

results. Hence, we first sum over all squares,

all triangles and all diamonds. When we add

these three sums we obtain the final result

for the total sum. In our example the period

of aj is 3. However, this method is even

useful when the function aj is not strictly

periodic. For the example of a complex-valued

aj the phases may be periodic but not the

amplitudes.
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In this representation of |Ψ〉 we have two summations: (i) one over the periodic
terms indicated by the summation index m; and (ii) one over the elementary cell
denoted by the summation index k. We note that the second quantum system does
not contain the summation over m. But the first system now involves the period
r of f. In this way we have mapped the period of f from the second onto the first
system.

15.3.3

Projection

Next we have to address the question of how to extract the period r from the first sys-
tem. For this purpose we perform a measurement on the second quantum system,
that is, we project [10] onto any state | f (k0)〉 and we make use of the orthogonality
Equation (15.11) of the energy eigenstates. As a result we now have to deal with the
quantum state

|ψ〉 � |ψ〉1 � 2〈 f (k0)|Ψ〉 , (15.17)

of a single system, which reads

|ψ〉 =
∑

m

|k0 + mr〉1 . (15.18)

Obviously |ψ〉 is very different from |Ψ〉. First of all, it does not involve the second
system; |ψ〉 represents a single harmonic oscillator. Moreover, we now do not have
all integers present. The state |ψ〉 only contains quantum numbers j which are
integer multiples m of the period r and start at some value k0 determined by the
measurement.

15.3.4

Phase State

In order to find the period r which is now stored in the selection of energy eigen-
states given by |ψ〉, (15.18), we have to switch to the variable conjugate to a number,
namely to the phase of the oscillator. By doing this, we can eliminate the depen-
dence on k0. Indeed, the value of k0 is random. In each measurement we find
a different value for k0.

The concept of a Hermitian phase operator in quantum mechanics is a long-
standing problem [18]. Notwithstanding all complications associated with the
nonexistence of this operator, it is still possible to define the London phase
states [19]

|φ〉 �
∑

j

eijφ | j〉 (15.19)

for a harmonic oscillator.
The phase distribution

P(φ) = |〈φ|ψ〉|2 (15.20)
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of the quantum state |ψ〉 is then determined by the phase probability amplitude

〈φ|ψ〉 =
∑

m

e–i(k0+mr)φ = e–ik0φ
∑

m

e–imrφ . (15.21)

In the last step we have recognized that the phase k0φ is independent of the sum-
mation over m, and we can take it outside of the sum. As a result, the value of
k0 determined by the measurement of the second quantum system only enters as
a phase.

When φ is an integer multiple of 2π the consecutive terms of the sum add up
constructively and lead to a large value. When φ is different from an integer multi-
ple of 2π, the phase factors interfere destructively and essentially lead to an almost
vanishing result. Hence, the sum in (15.21) acts very much like a delta function
located at integer multiples of 2π/r, that is

〈φ|ψ〉 = e–ik0φ
∑

l

δ
(
l · 2π

r
– φ
)

. (15.22)

The probability of finding a given phase φ in |ψ〉 is only nonzero at integer multi-
ples l of the ratio 2π/r determined by the period r of the function f. Moreover, each
term has equal weight.

15.3.5

Subtleties

In order to bring out the key ideas of the Shor algorithm, we have suppressed
several subtleties of the calculation. In particular, we have neglected the fact that
the sum over j is only a finite sum. In general it involves N states. Since the
states of the two quantum systems must be normalized and each state contributes
in a democratic way, that is, with equal weight, each state brings in a normal-
ization factor 1/

√
N . This feature is quite important when we address scaling

laws.
Moreover, the sum in (15.21) determining the phase distribution is not a Dirac

δ-function but rather the square-root [6] of a δ-function. Indeed, the finite sum

δ(1/2)
N (φ) �

1
√
N

N–1∑
m=0

exp(–imrφ) (15.23)

is a geometrical sum and can be performed. Since we only observe the probability,
that is, the absolute value squared we find

δN (φ) �
∣∣∣∣δ(1/2)
N (φ)

∣∣∣∣2 =
1
N

sin2(r/2φN)

sin2(r/2φ)
, (15.24)

which, in the limit of large N , approaches a δ-function.
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As a result the phase distribution

P(φ) = δN (φ) (15.25)

of the state ψ defined by (15.18) is a sequence of narrow peaks at integer multiples
of 2π/r. The width of each peak is determined by 1/N . In order to be able to resolve
two neighboring peaks, their separation 2π/r has to be larger than their width 1/N ,
which gives rise to the condition

r < 2πN . (15.26)

We will find a similar condition in the analogy provided by atom optics discussed
in the next section.

15.4

Analogy with Atom Optics

In the preceding section we have focused on the different steps of the quantum
mechanical implementation of the Shor algorithm. The crucial element is the map-
ping of the periodicity of the function f ( j ) encoded in one quantum system onto
another one by entanglement and a subsequent projective measurement. In this
section we analyze an alternative method of obtaining the period of a function.
For this purpose we scatter atoms [6] from a standing light wave. Although this
technique is classical it has many features in common with the Shor algorithm.

15.4.1

Scattering Atoms off a Standing Wave

We investigate the influence of a classical light field on the center-of-mass motion
of an atom. In this treatment the atom is considered as a wave rather than a particle.
This paradigm of atom optics is summarized in Figure 15.4.

A standing electromagnetic wave with a field distribution given by a mode func-
tion u(x) is aligned along the x-direction. Here u(x) is periodic with the wavelength
λ = 2π/k, that is, u(x + λ) = u(x). The gradient of the electric field exerts a force on
the atom and deflects it from its original course. The initial wave function ψ(x) of
the atom along the x-axis is real and covers a large number N of wavelengths. As
a result, the initial momentum p along the x-axis is negligible.

According to Appendix 15.G the distribution of the scattered atoms in the far
field is determined by the momentum distribution

W(p) =
1
�k

δN
( p
�k

)
|Cp/�k(�)|2 (15.27)

at the exit of the field and consists of a comb

δN (℘) =
1
N

sin2(℘Nπ)

sin2(℘π)
(15.28)
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of peaks located at integer multiples ℘ of the elementary momentum �k. Each peak
has a width 1/N and a weight determined by the function

C℘(�) =
1

2π

∫ 2π

0
dθ exp[–i(℘θ + �u(θ/k))] . (15.29)

Here � is the interaction parameter.
The periodicity of the mode function u = u(x) manifests itself in the discreteness

of the momentum distribution. The separation of neighboring peaks is determined
by �k, that is the wave vector 2π/λ of the light.

15.4.2

Method of Stationary Phase

The array of narrow peaks in the momentum distribution (15.27) is analogous to
the comb of quasi-δ-functions in the phase distribution (15.25) of the periodic state
|ψ〉, (15.18), created by the projective measurement. The analogy stands out most
clearly, when we consider the probability amplitude ψ(p) for the momentum p in
the form

ψ(p) =
1

√
2π�L

∫ L

0
dx exp[–iS(x)] (15.30)

with the phase

S(x) =
px
�

+ �u(x) . (15.31)

We derive this expression in appendix 15.G.
According to the stationary phase method, the main contributions to the integral

in (15.30) arise [6] from the points of a stationary phase where the phase S oscillates

Figure 15.4 Determination of the period of

a function with the help of the scattering of

an atom from a classical standing electromag-

netic wave. The function whose period we

want to determine is encoded in the spatial

distribution of the light field, that is in the

mode function. The period emerges from the

distribution of atoms in the far field, that is,

from the momentum distribution of the atoms

as they leave the wave. Due to the periodicity

of the standing wave this distribution consists

of a periodic array of narrow peaks whose

envelope is determined by a Fourier transform

involving the mode function. The separation

of neighboring peaks yields the inverse of the

period.
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slowly. These points are determined by the condition

∂S
∂x

=
p
�

+ �
du(x)

dx
= 0 . (15.32)

This equation can be represented geometrically in phase space spanned by posi-
tion x and momentum p as the crossing point between a straight line parallel to
the position axis and the derivative u′ of the mode function with amplitude �. For
an appropriate choice of p there will be at least one crossing xc(p; �) in every period
of the mode function. This notation expresses the fact that, for a fixed value of the
interaction strength �, the crossing depends on the value of p. In addition the peri-
odicity of the mode function leads to many such crossings xm = xc + mλ separated
by λ, and m is an integer. Hence, a periodic array of positions contributes to the
integral determining the momentum probability amplitude, in complete analogy
to Figure 15.2.

As a result ψ(p) given by the integral (15.30) can be approximated by

ψ(p) W
∑

m

1√
i�LS′′(xm)

e–iS(xm) . (15.33)

Since the mode function u(x) is periodic, the phase S and its second derivative S′′

evaluated at xm reduce to

S(xm) =
p
�

(xc + mλ) + �u(xc + mλ) = S(xc) + 2πm
p
�k

(15.34)

and

S′′(xm) = �u′′(xc + mλ) = �u′′(xc) . (15.35)

Hence, the momentum probability amplitude

ψ(p) = K(p; �)
∑

m

exp
(
–2πim

p
�k

)
(15.36)

with

K(p; �) =
1√

i�L�u′′(xc)
e–iS(xc) (15.37)

consists of an array of equally separated narrow peaks. They originate from the
periodicity in space brought to light by the geometrical construction of the method
of stationary phase.

15.4.3

Interference in Phase Space

Table 15.2 illuminates the analogy between the two methods of determining the
period of a function using either entanglement or atom optics. Here the roles of
the argument j of the function f determined by the modular exponentiation and
its value f ( j ) are played by the position variable x and the derivative of the mode
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Table 15.2 Comparison between two methods determining the

period of a function using either entanglement (left column) or

scattering of atoms from a standing wave (right column).

Argument j x
Function f ( j ) u(x)
Periodicity f ( j + r) = f ( j ) u(x + λ) = u(x)

u′(x + λ) = u′(x)
Encoding |Ψj〉 = | j〉1 | f ( j )〉2 |ψ0〉 = |p = 0〉
Quantum state |Ψ〉 =

∑
j |Ψj〉 |ψ〉 = exp[–i�u(x̂)]|ψ0〉

Projection | f (k0)〉 |p〉
Periodic array

∑
m |k0 + mr〉 ∑

m |xc + mλ〉

function u(x), respectively. The projection onto | f (k0)〉 corresponds to the projection
of the momentum eigenstate |p〉 onto the state |ψ〉 of the center-of-mass motion,
giving rise to the momentum probability amplitude ψ(p) = 〈p|ψ〉.

This analogy stands out most clearly in the semiclassical limit of quantum me-
chanics. Here, we can interpret scalar products of quantum mechanics such as
〈p|ψ〉 as interfering areas in phase space [6]. The momentum eigenstate |p〉 is a line
parallel to the position axis and the quantum state |ψ〉 is the derivative of the mode
function. The crossing points of the two curves interfere in phase space and pro-
vide the periodic array of narrow peaks in the momentum distribution. Hence,
interference in phase space is at the heart of the Shor algorithm.

15.5

Exponential Growth of Hilbert Space as a Resource of Exponential Speedup

The analysis presented in the preceding section shows that scattering atoms from
an electromagnetic wave reveals the period of the mode function u = u(x) in an
efficient way. It is interesting to note that this technique only takes advantage of
interference. We emphasize that in this situation somebody has already created
u(x). For this purpose the preparator has to calculate u(x) at every point x in space.
This task is equivalent to calculating the modular exponentiation and determining
the period of the function from these values.

In contrast, the quantum implementation of the modular exponentiation f ( j )
does not calculate the values of f. It uses entanglement to map the period from one
quantum system onto another. Moreover, there is a dramatic reduction in resources
due to the large dimension of Hilbert space. Indeed, we do not encode the integers
j in the energy eigenstates of a single harmonic oscillator but in an array of two-level
atoms. Since the dimension of the Hilbert space of M two-level atoms grows as
2M we can cover the integers from 1 to

√
N by M ~ log N number of atoms. The

exponential growth of Hilbert space is illustrated in Figure 15.5.
The unitary transformation Uf from Section 15.3.1 on appropriately prepared

states encodes the values f ( j ) for all values of j in the state by applying a single
operation on log N atoms. The period of f is translated into a periodic amplitude
distribution by the Fourier transform. The measurement therefore results in a col-
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M # states 2M

1 2 |0〉
|1〉

2 4 |0, 0〉
|1, 0〉, |0, 1〉
|1, 1〉

3 8 |0, 0, 0〉
|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉
|1, 1, 0〉, |1, 0, 1〉, |0, 1, 1〉
|1, 1, 1〉

Figure 15.5 Power of Hilbert space illustrated by a collection

of M two-level atoms consisting of an excited state |1〉 and

a ground state |0〉. The dimension of the space grows as 2M, that

is, a single two-level atom has two states, whereas two two-level

atoms already cover four states, three such atoms give eight

states and therefore can be used to encode eight integers. As

a result, we find an exponential gain in resources.

lapsed state which always belongs to a periodic point, in contrast to the classical
case, where up to N/2 values f ( j ) must be computed to find such a point. The
probabilities of these periodic points are equidistributed, so an average of log N
repetitions of the creation and measurement process suffice to infer the period.
This concept is explained in detail for the general Fourier transform in the subse-
quent article by Dörn et al.

15.6

Conclusions

In the present paper we have discussed the problem of factoring a number. Here
we have first discussed the mathematical algorithm underlying the celebrated Shor
method and have then focused on its quantum mechanical implementation. Three
essential ideas constitute our take-home message: (i) the translation of integer fac-
torization into a period-finding problem; (ii) the use of entanglement to obtain the
period; and (iii) optical interference as a classical substitute for entanglement. The
last observation has led us to the question: what is the deeper origin of the speedup
of a quantum algorithm compared to a classical one? Here we have identified the
exponential growth of Hilbert space as a possible answer.

In this context it is interesting to compare and contrast the Shor algorithm with
a recent proposal [14, 15] to factor numbers with the help of Gauss sums. Whereas
the Shor algorithm relies on entanglement, the Gauss or exponential sum algo-
rithms only take advantage of interference. For this reason, in the present form,
they scale exponentially in the number of digits. However, it is interesting to note
that both techniques are based on the summation rule (15.14) as shown in Ap-
pendix 15.H.
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We conclude by noting that already two experiments have implemented the Shor
algorithm. They rely either on methods of nuclear magnetic resonance [20] or opti-
cal interferometry using entangled photons [21]. These experiments with an enor-
mous effort could factor the number N = 15. In contrast, the Gauss sum algorithm
has been able to successfully decompose seventeen digit numbers [22, 23]. Howev-
er, this impressive success will eventually be stopped by the exponential complexity.
At that point only entanglement can bring an improvement.

15.A

Modular Arithmetic

It was Carl Friedrich Gauss who started a new branch of mathematics, called mod-
ular arithmetic. The basic ingredient is periodicity. In this appendix we first briefly
motivate the concept of residue classes [9] and then show two examples of modular
arithmetic: modular multiplication and modular exponentiation.

15.A.1

Basic Idea

The principle of residues stands out most clearly for the example of time in our
daily life. Time is measured by a clock with two hands. The large hand tells us the
minutes whereas the small one points to the hours. In the present context we are
only interested in full hours, that is, in the position of the small hand on the clock.
Most old-fashioned clocks with a face display the hours from 1 to 12. Since the
day has 24 hours, every number 1 u r u 12 is visited by the hand twice in a day,
corresponding to the hours r and 1·12+r. When we extend our considerations from
a single to many days, the number r indicated by the hand could represent hours
of any integer multiple of 12 plus r. Hence, the clock only tells us the remainders
with respect to integer multiples of 12.

This example of the clock suggests a generalization of numbers, called residue
classes. Indeed, any integer number n can be represented as an integer multiple k
of 12 plus a remainder r, that is,

n = k · 12 + r . (15.38)

We realize that there is an infinite number of integers n, which eventually lead to
the same remainder r, for example, the numbers 34 = 2 ·12 + 10 and 58 = 4 ·12 + 10
both lead to the remainder r = 10. Hence, 34 and 58 are equivalent in the sense that
they have the same remainder when considered with respect to multiples of 12.
For this reason we call them congruent to each other. Since only the remainder of
a number matters, it is useful to introduce a separate mathematical symbol for it.
The expression

34 == 58 mod 12 (15.39)

is a shorthand notation for the fact that 34 and 58 are equivalent in the sense that
they lead to the same remainder 10 with respect to integer multiples of 12. The
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abbreviation mod 12 indicates the period and carries the name module. Since 34
and 58 are equivalent, they belong to the same class. All numbers with the same
remainder form a so-called residue class. In the example of 12 there are the 12
residue classes 0, 1, . . . , 11.

15.A.2

Modular Multiplication

It is now possible to define arithmetic operations such as the addition and multipli-
cation of two residue classes. Needless to say, due to the periodicity inherent in the
definition of the residue classes, the outcomes of these operations lead to results
that are dramatically different from those suggested by our experience with integer
numbers.

In order to illustrate this point we consider the multiplication of the two residues
23 mod 35 and 29 mod 35. These classes contain the numbers k · 35 + 23, that is,
23, 58, 93, . . . and l · 35 + 29, that is, 29, 64, 99, . . . . We cast the product

(k · 35 + 23)(l · 35 + 29) = k · l · 352 + 23 · l · 35 + 29 · k · 35 + 23 · 29 (15.40)

into multiples of 35, that is

(k · 35 + 23)(l · 35 + 29) = (k · l · 35 + 23 · l + 29 · k) · 35 + 667 . (15.41)

Since 667 = 19 · 35 + 2 we find

(k · 35 + 23)(l · 35 + 29) = (k · l · 35 + 23 · l + 29 · k + 19) · 35 + 2 , (15.42)

that is an integer multiple of 35 with the remainder 2. As a consequence, the prod-
uct of the two residue classes 23 mod 35 and 29 mod 35 is 2 mod 35.

The above calculation clearly shows that the final result 2 mod 35 is only deter-
mined by the remainder of the product of the remainders 23 and 29 taken with
respect to mod 35, that is

23 · 29 = 667 == 2 mod 35 . (15.43)

In summary, we have established the multiplication of residues as the multiplica-
tion of remainders with respect to the module.

15.A.3

Modular Exponentiation

Our second example of modular multiplication is modular exponentiation and
plays a central role in the factorization of numbers. Here we calculate the powers
of a given integer a modulo the number N, that is we consider the function

f ( j ) = a j mod N . (15.44)

We now derive a recurrence relation for f ( j ) and show that this function is periodic.
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15.A.3.1

Recurrence Relation

Table 15.3 displays the values of the function f ( j ) for the example a = 3 and N = 14.
Here we follow a rather naive approach. We first calculate the powers of a and then
find the remainders by dividing with respect to N. Unfortunately in this way we
have to deal with large numbers.

A more efficient method relies on a recurrence relation for f ( j ). For its derivation
we start from the relation

a j = l · N + rj (15.45)

where l is an integer and rj is the residue of a j mod N. As a result we find

a j+1 = a · a j = a · (l ·N + rj ) = a · l ·N + a · rj , (15.46)

which together with the definition f ( j + 1) = a j+1 mod N yields the desired recur-
rence relation

f ( j + 1) = a · rj mod N = a · f ( j ) mod N . (15.47)

As a consequence we obtain f ( j + 1) by multiplying f ( j ) by a and taking the product
modulo N. For example, in order to calculate f (3) we recall from Table 15.3 the value
f (2) = 9 and arrive with the help of a = 3 at f (3) = 3 · 9 mod 14 = 27 mod 14 = 13.

15.A.3.2

Periodicity

Table 15.3 brings out an important feature of the function f ( j ). It is periodic, that
is, f ( j + r) = f ( j ). In this particular example the period is r = 6.

In this context the basic concept is the order. If a and N are relatively prime,
the order of a j mod N abbreviated by ordNa is the smallest positive exponent r for
which ar == 1 mod N. The period of the function f ( j ) is ordNa.

However, it is not always easy to find the period of f ( j ). In Figure 15.6 we illus-
trate this statement for the case of N = 2143 and a = 35, where the values of f ( j )
are quasi-random. This feature results from three facts: (i) ax is a rapidly increas-
ing nonlinear function of x; (ii) the values ax are cut up into equidistant parts by
the modular operation mod N; and (iii) the integer numbers x = j are discrete and
their separation is constant. The combination of these three ingredients leads to
the rather irregular distribution shown in Figure 15.7.

Table 15.3 The function f ( j ) = a j mod N with N = 14 and a = 3
for increasing integer values of j displays a period of r = 6.

j 0 1 2 3 4 5 6 7

a j 1 3 9 27
1 · 14 + 13

81
5 · 14 + 11

243
17 · 14 + 5

729
52 · 14 + 1

2187
156 · 14 + 3

f ( j ) 1 3 9 13 11 5 1 3
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f( j)

2000
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Figure 15.6 The function f ( j ) = a j mod N for N = 2143 and

a = 35 is periodic. In contrast to the example of Table 15.3 now

the period is not obvious since the values of f scatter over all

integer numbers up to N.

2N

ax

4N

5 10 15 x

Figure 15.7 The modular operation cuts up the rapidly

increasing function ax into equidistant parts arranged along the

horizontal axis. The discreteness and the equidistant separation

of the integer numbers j leads to a quasi-random distribution of

the function a j mod N indicated by the full circles.

Therefore, it is not straightforward to recognize the period of f ( j ). In the worst
case we have to evaluate f ( j ) for N/2 arguments before we can tell the period. How-
ever, tools of elementary number theory, such as the Chinese remainder theorem
and Euler’s function will help us to find the period of the function in an efficient
way as discussed in the next sections.

15.B

Chinese Remainder Theorem

In the preceding section we have recognized that modular multiplication or expo-
nentiation can quickly involve large numbers. Obviously, it would be much more
convenient to work with smaller ones. The Chinese remainder theorem [9] is an
elegant way to achieve this goal.

15.B.1

Residues Represented as a Matrix

The Chinese remainder theorem has been known – in principle – from antiquity.
The Chinese mathematician Sun-Tsu treated special cases of it in the first century
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Table 15.4 The chinese remainder theorem illustrated for the

example N = 35 = 5 · 7. The residues 0, 1,. . . , 34 are arranged in

a matrix with the rows and columns determined by the residue

classes mod 5 and mod 7, respectively.

mod 7

0 1 2 3 4 5 6

0 0 15 30 10 25 5 20

1 21 1 16 31 11 26 6

2 7 22 2 17 32 12 27m
od

5

3 28 8 23 3 18 33 13

4 14 29 9 24 4 19 34

A.D. ([24], [25]). These investigations became known in the west only in the 19th
century ([24], [26]). Before their rediscovery, however, Gauss already had systemat-
ically developed the idea in his famous book on number theory – Disquisitiones
Arithmeticae [27].

The Chinese remainder theorem expresses the residues mod N of a number N
consisting of the product of pairwise coprime numbers by an array of residues of
these numbers. In order to bring out the essential ideas we now discuss the Chi-
nese remainder theorem for the special case N = p · q, that is, we represent the
residues mod N by two components, a residue mod p and a residue mod q. We il-
lustrate this representation, using the example N = 35 = 5·7, leading to the residues
mod p = mod 5 and mod q = mod 7.

For N = 35 we have the residue classes 0, 1, 2, . . . , 34. These numbers build
up the matrix shown in Table 15.4 and spanned by the residue classes 0, 1, . . . ,
4 corresponding to mod 5 and the residue classes 0, 1, . . . , 6 corresponding to
mod 7. The location of the number with respect to the row and the column of the
matrix is determined by the residue classes with respect to mod 5 and mod 7, re-
spectively. In order to bring out this matrix arrangement, we consider the example
of 23. Since 23 = 4 · 5 + 3 and 23 = 3 · 7 + 2 the number 23 appears in the row
corresponding to the residue 3 and the column corresponding to the residue 2.
Obviously numbers which are multiples of 5, such as 0, 5, 10, . . . , 30, are in the
first row corresponding to the residue 0. However, their ordering is determined by
the remainder with respect to mod 7. For example 15 = 2 · 7 + 1 leads to the re-
mainder of 1 with respect to mod 7, and is therefore in the column corresponding
to 1. The first column contains the multiples of 7. Along the diagonal and the off-
diagonals of the matrix, the numbers increase by unity, because both remainders
increase by unity. When we come to the last row, the next higher number is located
at the top of the next column. This feature reflects the periodicity of the modular
operation.
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15.B.2

Modular Multiplication

We now return to the problem of evaluating the product of the residues 23 mod
35 and 29 mod 35. In contrast to the treatment performed in 15.A we now take
advantage of the Chinese remainder theorem.

From Table 15.4 we find the correspondences

23 mod 35 ~ (3 mod 5, 2 mod 7) (15.48)

and

29 mod 35 ~ (4 mod 5, 1 mod 7) , (15.49)

which lead to the correspondence

(23 mod 35)(29 mod 35) ~ (3 mod 5, 2 mod 7)(4 mod 5, 1 mod 7) . (15.50)

Hence, in order to obtain the product of the two remainders, we have to multiply
two pairs of numbers, that is

(23 mod 35)(29 mod 35) ~ (12 mod 5, 2 mod 7) = (2 mod 5, 2 mod 7) .

(15.51)

From Table 15.4 we recognize the correspondence (2 mod 5, 2 mod 7) ~ 2 mod 35,
and thus

(23 mod 35)(29 mod 35) = 2 mod 35 , (15.52)

in complete accordance with our earlier result, (15.43).

15.B.3

Period of Function from Chinese Remainder Theorem

We now return to the problem of determining the period of the function f ( j ) de-
fined by (15.44) and show that the Chinese remainder theorem is of great help. In
order to bring out the essential ideas we again consider the example of N = 35 = 5·7
with a = 23, and find the period of

f ( j ) = 23 j mod 35 . (15.53)

According to Table 15.4 the residue 23 mod 35 corresponds to the pair of residues
(3 mod 5, 2 mod 7). As a consequence we can write the powers of 23 as a pair of
powers

23 j == 3 j mod 5 and 23 j == 2 j mod 7 . (15.54)

In Table 15.5 we list the powers 3 j mod 5 and 2 j mod 7, which reveal that 3 j mod 5
has a period of 4 and 2 j mod 7 has a period of 3. From the multiplication rules of
the Chinese remainder theorem we know, that 23 j == 1 mod 35 is only possible if
3 j == 1 mod 5 and 2 j == 1 mod 7. Hence, the period is the least common multiple of
4 and 3, that is 12.
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Table 15.5 Determining the period of the function 23 j mod 35
using the Chinese remainder theorem. The period of 23 j ==
3 j mod 5 is 4 and the period of 23 j == 2 j mod 7 is 3. Therefore,

the period of 23 j mod 35 is the least common multiple of 4 and

3, that is 12.

j 1 2 3 4 5 6 7 8 9 10 11 12

23 j 231 232 233 234 235 236 237 238 239 2310 2311 2312

3 j 31 32 33 34 35 36 37 38 39 310 311 312

3 j mod 5 3 4 2 1 3 4 2 1 3 4 2 1

2 j 21 22 23 24 25 26 27 28 29 210 211 212

2 j mod 7 2 4 1 2 4 1 2 4 1 2 4 1

15.C

Euler’s Function

Euler’s function [9] denoted by φ is an essential ingredient in the evaluation of the
period of a function, such as modular exponentiation. It displays the multiplica-
tive property which follows from the Chinese remainder theorem. In the present
section we briefly review the properties of φ and give a prescription for the way to
calculate it.

15.C.1

Definition

Euler’s function φ(n) is defined as the number of residue classes mod n that are
coprime to n, that is, that have no common divisor with n other than 1. To il-
lustrate this definition we consider the example n = 12. In Table 15.6 we list
the residue classes 0 to 11 together with their greatest common divisor (gcd)
with the module 12. We observe that this greatest common divisor always has
to be a divisor of 12 and thus one of the numbers 1, 2, 3, 4, 6 or 12. Table 15.6
shows that only the residue classes corresponding to 1, 5, 7, 11 have the great-
est common divisor 1 with 12 leading to four coprime residue classes, that is,
φ(12) = 4.

Table 15.6 Determination of the coprime residues and the value

of Euler’s function φ = φ(n) for n = 12. Only the four residue

classes 1, 5, 7, 11 marked by a shaded background have the

greatest common divisor 1 and are therefore coprime, leading

to φ(12) = 4.

r mod 12 0 1 2 3 4 5 6 7 8 9 10 11

gcd with 12 12 1 2 3 4 1 6 1 4 3 2 1
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15.C.2

Multiplicative Property

Euler’s function satisfies the multiplicative property

φ(mn) = φ(m)φ(n) . (15.55)

for coprime integers m and n.
This feature follows directly from the Chinese remainder theorem, which iden-

tifies each residue class modmn with a pair (r mod m, s mod n) of components.
For example, a residue class mod 35 is coprime exactly if its 7-component and its
5-component are both coprime. These are exactly the residue classes mod 35 that
are neither divisible by 7 nor by 5, giving rise to φ(35) = φ(5)φ(7), which is the
multiplicative property.

15.C.3

A Compact Formula for φ

We now discuss a method to compute φ(n). Here we make use of three properties:
(i) it is easy to calculate φ(p) for prime numbers p and powers k of prime num-
bers; (ii) the Euler function is multiplicative; and (iii) every integer number can be
represented in a unique way as a product of powers of prime numbers.

We start with the case when n = p is a prime number. By definition p has only the
two divisors 1 and p. We have a total number p of the residue classes 0, 1, . . . , p – 1.
The only residue class that is divisible by p is 0, all other ones can not be divided
by p and hence are coprime. As a result, we have a total of p – 1 coprime residue
classes and thus

φ(p) = p – 1 . (15.56)

Next we turn to the case of a prime power, n = pk. The greatest common divisor
also has to be a power of p. The only ones of the residue classes 0, 1, . . . , pk – 1 that
are divisible by a power of p are the pk–1 multiples of p: 0, p, 2p, . . . , (pk–1 – 1)p. As
a result we find the expression

φ(pk) = pk – pk–1 = pk(1 – 1/p) . (15.57)

In order to deal with an arbitrary integer n we first recall, that according to the
fundamental theorem of arithmetic we can decompose every integer

n = pk1
1 · . . . · pkm

m , (15.58)

in a unique way into powers k1, k2, . . . , km of prime numbers p1, p2, . . . , pm, leading
to

φ(n) = φ(pk1
1 · . . . · pkm

m ) . (15.59)
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When we apply the multiplicative property of φ, (15.55), we arrive at

φ(n) = φ(pk1
1 ) · . . . · φ(pkm

m ) , (15.60)

which with the help of (15.57) reduces to

φ(n) = pk1
1 (1 – 1/p1) · . . . · pkm

m (1 – 1/pm) . (15.61)

With the help of the definition (15.58) of n we find

φ(n) = n
∏
p|n

(1 – 1/p) . (15.62)

It is interesting to note that the exponents ki of the prime number pi defining n do
not enter into this expression.

We now apply the formula (15.62) for φ to reconfirm the result φ(12) = 4 ob-
tained in Section 15.C.1 by counting the coprime residues of 12. Since the prime
numbers contained in 12 are 2 and 3, we find indeed

φ(12) = 12 ·
(
1 –

1
2

) (
1 –

1
3

)
= 12 · 1

2
· 2

3
= 4 . (15.63)

In Figure 15.8 we display Euler’s function φ for 1 u n u 100.
We conclude our brief introduction into Euler’s function by returning to the ex-

ample of f shown in Figure 15.6. Here we had chosen N = 2143. Since N = 2143 is
a prime number, we find from (15.56) the result φ(2143) = 2143–1 = 2142 = 2·1071.
Indeed, from the pattern of white and black spots in Figure 15.6 we recognize that
the period is about 1000. A closer analysis shows that it is 1071. Hence, the period
of f is a divisor of Euler’s function. We will revisit this property in the context of the
primitive root discussed in Section 15.E.

φ(n)

n

20

20

40

40

60

60

80

80 100
Figure 15.8 Euler’s function φ(n) for 1 u n u 100. The values of

φ at prime numbers p are p–1 and form a straight line, providing

an upper bound for φ. For nonprime values the function is

rapidly varying.
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15.D

Euclidean Algorithm

The greatest common divisor (gcd) of two positive integers a and b may quickly be
determined by the Euclidean algorithm. It is based on division with a remainder. If
b < a are two positive integers, then there are integers q and r with 0 u r < b such
that a = qb + r. The Euclidean algorithm [9] is the iteration of this division, that is

a = q1b + r1

b = q2r1 + r2

r1 = q1r2 + r3
...

rn–2 = qnrn–1 + rn

rn–1 = qn+1rn + 0 .

(15.64)

The algorithm terminates if the remainder in the division is 0. This last step must
occur in a finite number of steps, since the remainders rk are decreasing in size.

One easily sees that

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn–1, rn) = rn . (15.65)

Thus the last nonzero remainder rn is the gcd of a and b.
For the estimate of the running time we observe that, if rk+1 > (1/2)rk, then

rk+2 u (1/2)rk. In any case rk+2 u (1/2)rk. Thus the algorithm terminates in, at most,
const. ~ log b steps.

We conclude by illustrating the Euclidean algorithm for the example of a = 2457
and b = 553. According to the prescription (15.64) we find

2457 = 4 · 553 + 245
553 = 2 · 245 + 63
245 = 3 · 63 + 56
63 = 1 · 56 + 7
56 = 8 · 7 .

(15.66)

Thus the greatest common divisor of 2457 and 553 is 7.

15.E

Primitive Root

The Shor algorithm relies on determining the period of the modular exponentia-
tion. It is known [9] that the period is a divisor of the Euler function φ. Hence, φ
gives us a hint for this period. Another approach to finding the period takes advan-
tage of the concept of the primitive root [9]. In the present section we define and
illustrate primitive roots and illuminate the connection to the period of modular
exponentiation.
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15.E.1

Definition

The concept of the primitive root stands out most clearly when we consider an ex-
ample. In Table 15.7 we calculate the function f ( j ) = a j mod N for a = 3 and N = 7.
We note, that f ( j ) is periodic with the period 6. Obviously the residue classes mod
7 consist of the integers 1, . . . , 6. Hence, all residue classes are coprime residues,
that is they do not have a common divisor with 7. Thus we obtain all the coprime
residues mod 7 as powers of 3. In this sense 3 is a primitive root. Indeed, a prim-
itive root modulo N is an integer r such that the residues that have no common
divisor with N – the coprime residues – are all powers of r.

In general, N does not have a primitive root. However, there always is one, if N
is a prime number, as suggested by our example of N = 7. This fact was stated
without proof by Lambert in 1769 [28]. Euler gave a defective proof in 1773 [29] and
finally Legendre [30] provided a full proof in 1798.

15.E.2

Periods for Prime Numbers

Primitive roots can be used to calculate the period of a j mod N when N is a prime
number. In the example of Table 15.7 the function f ( j ) = 3 j mod 7 has period
6. On the other hand we have exactly six coprime residues and hence, φ(7) = 6.
This example shows the connection between the period of f, the primitive root and
Euler’s function.

However, for other choices of a there exists a more sophisticated technique which
we now illustrate using the example of 2 j mod 7. From Table 15.7 we recognize that
2 == 32 mod 7 and therefore

2 j == 32·j mod 7 . (15.67)

In order to find the period of 2 j mod 7, we arrange the six powers of 3 j mod 7 in
a hexagon, shown in Figure 15.9. Then the powers 2 j == 32j mod 7 form a triangle
consisting of each second vertex. This means that one needs three steps to get from
20 = 1 back to 1, that is, 23 mod 7. Thus the period of the function 2 j mod 7 is 3.

We now turn to the general case of a prime number p with primitive root r and
a = r �. Again we arrange the powers of r j mod p in a polygon with p – 1 vertices,
shown in Figure 15.10. Then we connect the vertices corresponding to the powers
a j == r j� mod p by a path consisting of each �-th vertex.

Table 15.7 The function 3 j mod 7 takes all integer values from 1

to 6, which are all coprime with 7. Therefore, 3 is a primitive root

of 7.

j 1 2 3 4 5 6

3 j mod 7 3 2 6 4 5 1
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Figure 15.9 Determination of the period of 2 j mod 7 using

the primitive root 3 of mod 7. The six powers of 3 j mod 7 are

arranged in the form of a hexagon. Since 2 j == 32·j mod 7 only

every second corner of the hexagon participates leading to

a triangle and the period 3.

Figure 15.10 Determination of the period of the function

a j mod p with the primitive root r. In this case we arrange the

powers r j mod p in a polygon with p – 1 vertices and connect

every �-th vertex. The period is then (p – 1)/ gcd(�, p – 1).

How many vertices does this path contain? If d = gcd(�, p – 1) is the greatest
common divisor of � and p – 1, then this number is (p – 1)/d, see [9]. Thus the period
ordpa of the function f ( j ) = a j mod p reads

ordp a =
p – 1

gcd(�, p – 1)
. (15.68)

We conclude by briefly mentioning the general problem of finding the period for
N which is a product of prime numbers. In this case we can use the Chinese re-
mainder theorem described in Section 15.B.3.
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15.F

Probability for Lucky Choice

In Section 15.2.3 we have seen that not every a leads to a period r that is useful
for finding the factors of N. This fact is closely related to the question: what is the
chance that r is even and that each of the factors (ar/2 – 1) and (ar/2 + 1) is divisible
by exactly one of the primes p and q?

In the preceding sections we have become familiar with the tools needed to cal-
culate the probability that our choice for a is suitable. They are the Chinese re-
mainder theorem and the primitive root. In this section we put these concepts to
use and derive the probability of success. Since these arguments are rather abstract
we illustrate them for the specific example of N = 35 = 5 · 7 in Table 15.8.

15.F.1

Expression for the Period

The number N = p ·q to be factored consists of two prime numbers p and q. Accord-
ing to the Chinese remainder theorem the base a of the modular exponentiation
can be represented by the pair (ap mod p, aq mod q). For ap we now determine the
order mod p. Since p is a prime number there exists a primitive root ρp and an
exponent ep so that ρep

p == ap mod p. According to (15.68) the order is

rp = ordp ap =
p – 1

gcd(ep, p – 1)
. (15.69)

We follow the same procedure with the second prime q and find

rq = ordq aq =
q – 1

gcd(eq, q – 1)
. (15.70)

These calculations are only valid if ap and aq are nonzero, that is, a is coprime to
both primes p and q.

In Section 15.B.3 we have seen that the period of a j mod N is the least common
multiple of the two periods rp and rq, that is,

ordNa = lcm(rp, rq) . (15.71)

Since p and q are prime numbers and we assume p, q =/ 2 they must be odd. As
a result p – 1 and q – 1 are even. We now factor out powers of 2 from p – 1 and q – 1,
that is

p – 1 = 2sp tp (15.72)

and

q – 1 = 2sq tq (15.73)
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with tp and tq odd. Then the pair of exponents is of the form ep = 2up vp and eq = 2uq vq

and the greatest common divisors read

gcd(ep, p – 1) = 2wp gcd(tp, vp) (15.74)

and

gcd(eq, q – 1) = 2wq gcd(tq, vq) (15.75)

with wp = min(up, sp) and wq = min(uq, sq).
When we substitute (15.72)–(15.75) into the expressions (15.69) and (15.70) for

the periods rp and rq we arrive at

rp = 2sp–wp
tp

gcd(tp, vp)
(15.76)

and

rq = 2sq–wq
tq

gcd(tq, vq)
. (15.77)

These two expressions constitute the main result of this appendix. They allow us
now to estimate the probability of success.

15.F.2

Analysis of Different Cases

The factorization fails if: (i) the period r is odd; (ii) p and q both divide ar/2 + 1; or
(iii) p and q both divide ar/2 – 1. We first show that each of these cases occurs only if
sp – wp and sq – wq are equal. We then demonstrate that, with a probability of at least
50%, the exponents sp – wp and sq – wq are not equal, in which case the factorization
works.

Indeed, the situation (i) of an odd value of r only appears when sp–wp = sq–wq = 0.
For (ii) the heighest power of 2 dividing r is 2m with m = max(sp – wp, sq – wq) since,
according to (15.76) and (15.77), r is the least common multiple of rp and rq. When
we now assume that sq – wq < sp – wp, rq divides r/2 and thus ar/2 == 1 mod q, that is,
q does not divide ar/2 + 1. In the same manner it follows from sq – wq < sp – wp that p
does not divide ar/2 + 1. Thus case (ii) can indeed only occur if sq – wq = sp – wp. Case
(iii) cannot occur at all, since if p and q both divide ar/2 – 1, the order of a would be
at most r/2 and not r.

If sp = sq all choices of the exponents ep, eq, in which one of up, uq is equal to
zero and the other one different from 0, give unequal values for sp – wp and sq – wq.
These are 50% of all choices. If sp < sq all choices in which uq = 0, up arbitrary,
give unequal values of sp – wp and sq – wq. These are again 50% of all choices. By
symmetry this also holds for the case sq < sp. If the trial – the random choice of
a – is repeated sufficiently often, the factorization almost certainly works.
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Table 15.8 “Good” and “bad” choices for a in the factorization

of N = 35 = 5 · 7. The shaded rows indicate cases for which

the algorithm does not produce a factor. We also indicate the

numbers used in the argument of Section 15.F providing the

success probability.

a ep eq up uq vp vq wp wq r gcd(N, ar/2 1)

1 4 6 2 1 1 3 2 1 1 35, 1
2 3 4 0 2 3 1 0 1 12 7, 5
3 1 5 0 0 1 5 0 0 12 7, 5
4 2 2 1 1 1 1 1 1 6 7, 5
6 4 3 2 0 1 3 2 0 2 5, 7
8 1 6 0 1 1 3 0 1 4 7, 5
9 2 4 1 2 1 1 1 1 6 7, 5

11 4 2 2 1 1 1 2 1 3 1, 1
12 3 1 0 0 3 1 0 0 12 7, 5
13 1 3 0 0 1 3 0 0 4 7, 5
16 4 4 2 2 1 1 2 1 3 1, 1
17 3 5 0 0 3 5 0 0 12 7, 5
18 1 2 0 1 1 1 0 1 12 7, 5
19 2 1 1 0 1 1 1 0 6 1, 35
22 3 6 0 1 3 3 0 1 4 7, 5
23 1 4 0 2 1 1 0 1 12 7, 5
24 2 5 1 0 1 5 1 0 6 1, 35
26 4 1 2 0 1 1 2 0 6 5, 7
27 3 3 0 0 3 3 0 0 4 7, 5
29 2 6 1 1 1 3 1 1 2 7, 5
31 4 5 2 0 1 5 2 0 6 5, 7
32 3 2 0 1 3 1 0 1 12 7, 5
33 1 1 0 0 1 1 0 0 12 7, 5
34 2 3 1 0 1 3 1 0 2 1, 35

±

We conclude by illustrating this argument for the case N = 35 = 5·7 in Table 15.8.
A choice of primitive roots is ρp = 3 and ρq = 5, and we have sp = 2 and sq = 1. The
case sp – wp = sq – wq occurs for six different values of a out of φ(N) = 24 possible
candidates for a coprime to N.

15.G

Elements of Atom Optics

In this appendix, we analyze the scattering [6] of an atom from a classical electro-
magnetic wave of a periodic mode function. In particular, we derive an expression
for the distribution of atoms in the far field. Our analysis is based on two assump-
tions: (i) the interaction time is short and the atoms do not move substantially while
they are in the light field. This limit allows us to make the Raman–Nath approxima-
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tion and neglect the operator of the kinetic energy in the Hamiltonian compared to
the one of the interaction energy; and (ii) the initial distribution of atoms is broad
compared to the period of the field. As a result, the momentum distribution of the
atoms after the interaction consists of discrete momenta determined by the spa-
tial period of the field. The envelope of this distribution is governed by the mode
function.

15.G.1

Quantum State of Motion in Raman–Nath Approximation

The propagation of the de Broglie wave is governed by the time-dependent
Schrödinger equation

i�
d
dt
|ψ(t)〉 = Ĥ|ψ(t)〉 (15.78)

for the quantum state |ψ〉 = |ψ(t)〉 of the center-of-mass motion. While the atom
traverses the light field, the dynamics is governed by the Hamiltonian

Ĥ =
p̂2

2M
+ �κu(x̂) (15.79)

which contains the momentum operator p̂ of the atom of mass M along the stand-
ing wave. The mode function u(x) is periodic with the wavelength λ = 2π/k, that is
u(x + λ) = u(x) and the parameter κ denotes the interaction strength of the field.

Since the Hamiltonian is time independent a formal solution of the Schrödinger
equation reads

|ψ(t)〉 = exp
(
–

i
�

Ĥt
)
|ψ0〉 (15.80)

where |ψ0〉 denotes the quantum state of the center-of-mass motion before the in-
teraction with the light.

When we assume that initially the atom had no momentum along the light field
we can neglect the kinetic energy in Ĥ compared to the interaction term. In this
so-called Raman–Nath approximation the quantum state of the system after the
interaction time τ reduces to

|ψ〉 W e–i�u(x̂)|ψ0〉 . (15.81)

with the interaction parameter � = κτ. This approximation is justified as long as
the displacement of the atom due to the field is small compared to the wavelength.

15.G.2

Momentum Distribution

We are now interested in the distribution of atoms on a screen which is aligned
parallel to the standing wave and far away from it. Once the atoms have left the
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field, they move freely, that is, in the absence of any force. Their ultimate position
on the screen is only determined by: (i) the momentum they have gained due to
their interaction with the light; and (ii) the duration of the free motion. As a con-
sequence the position distribution on the screen is determined by the momentum
distribution

W(p) = |ψ(p)|2 = |〈p|ψ〉|2 (15.82)

after the interaction with the field. Here

ψ(p) = 〈p|ψ〉 =
∫ ∞

–∞
dx 〈p|x〉〈x|ψ〉 (15.83)

is the probability amplitude in momentum space with |x〉 and |p〉 denoting position
and momentum eigenstates, respectively.

According to the Born interpretation [10] of the wave function, the probability
W(p) of finding the momentum p to be between p and p + dp reads

W(p)dp = |ψ(p)|2 dp . (15.84)

From the scalar product [10]

〈p|x〉 =
1

√
2π�

e–ipx/� (15.85)

between the position and the momentum eigenstates, together with the initial wave
function ψ0(x) = 〈x|ψ0〉 in position space we obtain the expression

ψ(p) =
1

√
2π�

∫ ∞

–∞
dx e–ipx/�e–i�u(x)ψ0(x) (15.86)

for the momentum probability amplitude.

15.G.3

Discreteness of Momentum due to Interference

We now consider a situation when the initial atomic wave ψ0 covers many periods
of the standing wave and only changes very slowly over one period. In this case we
can approximate ψ0(x) by a constant, that is,

ψ0(x) =
1√
L

[Θ(x) – Θ(x – L)] (15.87)

where Θ(x) denotes the Heaviside step function.
As a consequence, (15.86) reduces to

ψ(p) =
1

√
2π�L

∫ L

0
dx exp[–i(px/� + �u(x))] . (15.88)



428 15 Wave Packet Dynamics and Factorization

When we introduce the dimensionless integration variable θ = kx and the dimen-
sionless momentum ℘ = p/�k together with the new probability amplitude

ψ̃(℘) =
√
�kψ(�k℘) (15.89)

we arrive at

ψ̃(℘) =
1
√
N

1
2π

∫ 2πN

0
dθ exp[–i(℘θ + �ũ(θ))] . (15.90)

Here ũ(θ) = u(θ/k) and kL = 2πL/λ = 2πN denotes the number of periods.
Next we decompose the range of integration into intervals of 2π, that is

ψ̃(℘) =
1
√
N

N–1∑
ν=0

1
2π

∫ 2π(ν+1)

2πν
dθ exp[–i(℘θ + �ũ(θ))] . (15.91)

The new integration variable θ̄ = θ – 2πν and the periodicity of the mode function
ũ in the phase of the integral lead to

ψ̃(℘) = δ(1/2)
N (℘)C℘(�) (15.92)

with the abbreviations

δ(1/2)
N (℘) �

1
√
N

N–1∑
ν=0

exp(–2πiν℘) (15.93)

and

C℘(�) �
1

2π

∫ 2π

0
dθ exp[–i(℘θ + �ũ(θ))] . (15.94)

The sum defining δ(1/2)
N is a geometric sum and can thus be performed in closed

form. According to (15.82) the distribution W̃(℘) of the dimensionless momentum
℘ is the absolute value squared of the probability amplitude ψ̃(℘). Hence, it is useful
to establish the relation [6]

δN (℘) �
∣∣∣∣δ(1/2)
N (℘)

∣∣∣∣2 =
1
N

sin2(℘Nπ)

sin2(℘π)
. (15.95)

This expression also explains the notation δ(1/2)
N . Indeed, for large values of N the

function δN consists of narrow peaks at integer values of ℘. The width of each peak
in ℘ is essentially 1/N and its height is proportional to N leading to an effective
area which is independent of N . In the limit N → ∞ the function δN approaches
a comb of Dirac δ-functions. In this sense δ(1/2)

N approximates the square-root of
a delta function.

As a consequence, the momentum distribution

W̃(℘) = |ψ̃(℘)|2 = δN (℘)|C℘(�)|2 (15.96)

consists of narrow peaks at integer values ℘ with a weight given by |C℘(�)|2.
We conclude by noting that the discreteness of the momentum, that is the emer-

gence of the function δN is due to the interference of identical behavior of the
atom in each of the many periods of the standing wave. In order to obtain narrow
structures, the interference of many periods is necessary.
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15.H

Factorization with a Gauss Sum due to its Periodicity

Periodicity is a crucial element in finding factors of a number – this is the cen-
tral lesson of the present paper. The Shor algorithm uses the periodicity of the
modular exponentiation. However, we can also employ other periodic functions.
Indeed, recently several ideas to factor numbers [14] based on Gauss sums have
been proposed. These methods rely solely on interference. There exist many dif-
ferent versions of Gauss sum factorization. In this appendix we address the most
elementary one. In particular, we identify the summation formula (15.14) as the
central ingredient of this factorization technique.

To bring out this feature most clearly, we now consider the Gauss sum [13]

G(�, N) =
N–1∑
j=0

exp(2πij2�/N) , (15.97)

where N = p · q is the product of the two integers p and q.
Such Gauss sums can be calculated analytically and are known since the days of

Gauss. We now show that the periodicity of the phase factors defining the Gauss
sum G, (15.97), allows us to factor numbers. This feature is a consequence of partial
constructive interference.

Indeed, for � = q we can cancel the factor q in N and the Gauss sum reads

G(q, p · q) =
q·p–1∑
j=0

exp(2πij21/p) . (15.98)

Since the phase factors in this sum have the period p, that is

exp[2πi( j + p)21/p] = exp[2πi( j2 + 2jp + p2)1/p] = exp[2πij21/p] , (15.99)

we can apply the summation formula, (15.14), and find

G(q, p · q) =
p–1∑
k=0

q–1∑
m=0

exp[2πi(k + mp)21/p] =
p–1∑
k=0

q–1∑
m=0

exp[2πik21/p] (15.100)

or

G(q, p · q) = q
p–1∑
k=0

exp(2πik21/p) , (15.101)

that is,

G(q, p · q) = qG(1, p) . (15.102)

Hence, for a factor of N the individual phase factors contributing to the Gauss
sum (15.97) interfere constructively and lead to a large significant value.
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16

Isomorphism and Factorization –

Classical and Quantum Algorithms
Sebastian Dörn, Daniel Haase1), Jacobo Torán, Fabian Wagner

16.1

Introduction

The integer factorization problem (IF) consists of, being given an integer n, finding
a prime factor decomposition of n. Graph isomorphism (GI) is the problem of
deciding whether two given graphs are isomorphic, or in other words, whether
there is a bijection between the nodes of both graphs, respecting the adjacency
relation. These are two well known natural problems with many applications and
with a long history in the fields of mathematics and computer science. Moreover,
their decisional versions are the best known examples of problems in the class NP

that are not known to be efficiently solvable (in the class P) or hard for NP. They
have an intermediate complexity and this lack of an exact classification has attracted
much attention to both problems in the past.

(The decisional version of) IF is one of the few examples of problems in
NP ∩ coNP for which efficient algorithms (running in polynomial time over the
length of the representation of n) are not known. It is believed to be a hard
problem. In fact a considerable portion of modern cryptology relies on the suppo-
sition that IF cannot be efficiently solved. The best algorithm for IF runs in time
O(exp(c log(n)1/3 log log(n)2/3) for some constant c.

GI is not known to be in NP ∩ coNP but in a probabilistic generalization of
this complexity class. The best known algorithm, testing the isomorphism of two
unrestricted graphs with n nodes each, runs in time O(exp(c

√
n log(n))). On the

other hand, there are algorithms for the problem that work efficiently for “almost
all graphs” and in fact a straightforward linear time algorithm can decide isomor-
phism for random graphs.

The best classical algorithms for IF and GI therefore run in exponential time in
the input size. The situation is different in the field of quantum computation. In
1994 Shor gave an efficient quantum algorithm for factoring integers. His methods
have been extended to more general algebraic problems and there is a hope that
efficient quantum algorithms for graph isomorphism might also be developed.

1) Corresponding author.
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In this chapter we give an overview of several attempts to obtain efficient clas-
sical and quantum algorithms for IF and GI. In doing this we point out several
similarities between both problems. Finally we review a result showing that IF and
GI are, in fact, particular instances of a more general algebraic problem; the ring
isomorphism problem.

16.2

Factorization of Integers: Classical Algorithms

A natural number p is called a prime number, if it is divided by exactly two natural
numbers (1 and p). The number 1 is not a prime. Any natural number n ∈ N admits
a decomposition

n = pc1
1 · · · p

cr
r

into prime powers. The exponents cj ∈ N are uniquely determined by n. A famous
theorem of analytic number theory, the prime number theorem (see [1]), states that

lim
x→∞

π(x)
x/ log(x)

= 1 , π(x) = #
{
p prime | p u x

}
so the distribution of prime numbers among the natural numbers is asymptotically
x/ log(x). The integer factorization problem (IF) is defined as follows: given n ∈ Z,
find the primes pj and exponents cj of its prime factor decomposition.

No classical algorithm of polynomial complexity is yet known for this problem.
Some important cryptographic systems (like RSA) draw their security from this
fact. Factorization is a search problem. A decisional version of it (given n, k ∈ Z is
there a prime factor of n grater than k?) belongs clearly to the class NP ∩ coNP.
Note that the inverse problem, i.e. the computation of n from its given factors,
is extremely simple and is therefore used in various public key systems and key
exchange protocols which draw their security from mathematical problems which
are difficult to solve, but easy to verify.

The naive approach to the factorization problem (brute force checking of all pos-
sible prime factors) needs at most O(

√
n) operations to compute the prime factor-

ization of n (the smallest prime contained in n is bounded by
√

n if n is composite).
The prime number theorem tells us that we do not gain a substantial speedup by
restricting the search to prime numbers (not taking into account the cost to com-
pute them). We mention the following algorithms which have been proposed in
the last century to compute the prime factorization:

– Factorization using reduced quadratic forms, the ideas going back to C.F. Gauss.
Today it is known that the computation of generators of these forms is actu-
ally as hard as classical factorization, and not practicable for large numbers.
This method gave rise to several number theoretical generalizations of the
factorization problem, all known to be in NP ∩ coNP, but still without an
efficient classical algorithm.
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– Pollard’s ρ-method, using the birthday phenomenon to find pairs (x, y) with
gcd(x – y, n) =/ 1.

– The elliptic curve method, using the fact that noninvertible elements of Z/nZ
share a factor with n, and such elements can be found using the group law
on elliptic curves defined over Z/nZ. This is a typical example of an algorithm
using group structures to factor numbers.

– The various sieve methods, the most sophisticated algorithm for factoring
numbers known today. They make heavy use of the number theoretic back-
ground of the factorization problem, especially the theory of number fields.

The best known algorithm today to solve this problem is the general number field
sieve (see [2, 10.5]) with expected running time

O
(
exp
(
log(n)1/3 · log(log(n))2/3 · (C + o(1))

))
for a constant C W 1, 922. We note that until 2002, there was no efficient determin-
istic algorithm to check if a given number is actually a prime. This is due to the
fact that the prime number theorem gives only an asymptotic distribution of the
prime numbers. If we pick a small interval [a, b] for very large a, the distribution
of primes in it is not structured at all. The fine-grained distribution is not known
even today, it is connected to the famous Riemann Hypothesis which has been the
field of research for many decades without a proof in sight.

16.3

Graph Isomorphism: Classical Algorithms

The graph isomorphism problem (GI) consists of, being given two graphs G1 =
(V1, E1) and G2 = (V2, E2), deciding whether there is a bijection f : V1 → V2 respect-
ing the adjacency relations of the graphs. In symbols, for every u, v ∈ V1, (u, v) ∈
V1 ⇐⇒ (f(u), f(v)) ∈ V2. GI is clearly in NP and its complement is contained in
AM, a probabilistic generalization of NP [3]. GI is not believed to be hard for NP.
However, no polynomial time algorithms for the problem are known either.

The earliest significant algorithms for deciding isomorphism were restricticted
to trees [4,5]. They provided a canonical enumeration of the input graphs that could
be computed in linear time. The same technique was used for the isomorphism of
planar graphs [6]. Several years later this result could be extended to graphs of
bounded genus [7–9].

Babai used for the first time [10] a group-theoretic approach to the graph iso-
morphism problem. He was able to prove that the problem restricted to colored
graphs (isomorphisms have to preserve the colors) for which the color multiplic-
ity is bounded, can be solved in random polynomial time. Based on this work,
Furst, Hopcroft and Luks [11] developed polynomial time algorithms for several
permutation-group problems. They also were able to derandomize Babai’s algo-
rithm, making it deterministic.

Using associated results on the structure of permutation groups, a breakthrough
was obtained by Luks in [12] when he gave a polynomial time algorithm for testing
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isomorphism of graphs of bounded degree. By providing a new degree-reduction
procedure and using Luks result, Zemlyachenco [13] managed to give a moderately
exponential procedure of exp(n(2/3+o(1))) for deciding isomorphism for unrestrict-
ed graph classes. Subsequent improvements in the bounded degree algorithm has
brought this bound down to exp(c

√
n log n), (announced in [14]), which is still the

algorithm for unrestricted graph isomorphism with the lowest worst-case complex-
ity.

There are several algorithms based on vertex-classification schemes that work
well in practice. This is not surprising since it is known that trivial algorithms
perform well on randomly generated graphs. Babai, Erdős and Selkow in [15] gave
a straightforward linear time canonical labeling algorithm for GI, proving that it
works well for almost all graphs.

The existing algorithms for graph isomorphism could roughly be divided into
two main groups: those based on vertex classification methods and those construct-
ing canonical labelings of the graphs.

– Vertex classification methods. A natural technique to restrict the search space
when looking for an isomorphism is to divide the vertices of the input graphs
in certain classes so that the vertices in one class in the first graph can only
be mapped to vertices of the corresponding class in the second graph. Some
ways of doing this are, to divide the vertices acording to their degree, the
degree of their neighbors or the number of vertices reachable by paths of
a certain length, etc. This method can be used iteratively, refining the classi-
fications of the vertices according to previous classifications.

– Canonical labeling methods. The idea here is to find canonical representatives
for the different isomorphic graph classes. This problem is, in principle,
harder than deciding isomorphism but in some known examples of restrict-
ed graph classes (like trees or planar graphs) the algorithms for isomorphism
do in fact provide canonical representatives. For unrestricted graphs the best
known labeling algorithm works in exp(n1/2+o(1)) steps [14].

For more facts about the graph-isomorphism problem and its structural complexi-
ty, we refer the reader to the textbook by Köbler, Schöning and Torán [16].

16.4

Quantum Algorithms for Integer Factorization

The first efficient algorithm used to factor integers on quantum computers was
given by Peter W. Shor in [17]. His idea was to view the factorization problem as
a period-finding problem. Such problems can be solved on quantum computers
using the quantum Fourier transformation as we clearly explain in the next section.
Here we briefly show how to encode the factorization problem into a period-finding
problem.

Let N be the number to be factored and a ∈ {2, . . . , N} be chosen randomly. We
first compute gcd(a, N) using Euclids Algorithm. If gcd(a, N) =/ 1 the gcd is already
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a factor of N, otherwise we define the function f(n) = an mod N, a mapping from Z
to Z/NZ. Its smallest period is called the order of a mod N (because it is the order of
the multiplicative group generated by a if multiplication is defined mod N). First,
since (Z/NZ)~ = {a mod N : gcd(a, N) = 1} has at most N – 1 elements (0 mod N
is never included in this set), the order of a is strictly less than N. We can compute
the order as shown in the next section using O(log(N)) measurements (it should be
noted that already the computation of the gcd takes up to log(N)3 steps).

By definition of the order an == 1 mod N, which means N is a multiple of an – 1.
Suppose the order is even, then N is a multiple of (an/2 – 1)(an/2 + 1), so we get
a nontrivial factor of N by computing gcd(N, an/2 + 1). Some elementary number
theory shows that the probability of hitting a such that the order is odd is bounded
by φ(N)2–m, where φ(N) = #{a mod N : gcd(a, N) = 1} < N is Eulers Totient
function, and m is the number of prime powers in the prime factor decomposition
of N. The total number of measurements needed to find a proper factor of N with
given error probability ε is polynomial in log(N) and log(ε–1), as was proved first by
Shor.

16.4.1

The Quantum Fourier Transform and Period Finding

The concept of Fourier transformation is a fundamental tool in many areas of re-
search. The quantum Fourier transform used in the field of quantum computation
is, viewed mathematically, the Fourier transform on the finite abelian group Z/nZ.
In general, the Fourier transform of a finite abelian group G is given by

f̂(�) =
∑
g∈G

f(g)�̄(g)

where f : G → C is any function and � : G → C~ is a homomorphism of groups
from G to the multiplicative group C~ = C\{0}, and z̄ is the complex conjugate of
z ∈ C. For finite cyclic groups, �(g)n = �(gn) = 1 for the order n = #G, so �(g)
is actually a root of unity, necessarily of the form �a(g) = exp(2πi(ag/n)) for some
a ∈ Z. We may identify G with Z/nZ and each a ∈ G with the homomorphism �a(g),
and let∑

g∈G

f(g)�̄a(g) =
∑
g∈G

f(g)e–2πiag/n

be the Fourier transform of f at the value a ∈ G. The quantum Fourier transform
(QFT) is the normalized Fourier transform

f̂(a) =
1
√

n

n–1∑
j=0

f(j)e–2πiaj/n

on Z/nZ. The Fourier operator ˆ is actually an automorphism of the C-space of
functions f : G → C, the inverse transformation is given by

f(j) =
1
√

n

n–1∑
a=0

f̂(a)e2πiaj/n .
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The most interesting property of this transformation is the translation law. Let f(a+
k) be the function a �→ f(a+k), the function f shifted by k, then its Fourier transform
is

̂f(a + k) = f̂(a) · e2πiak/n

for any k ∈ Z, that is shifts are mapped to complex prefactors by the Fourier trans-
form. Suppose f is periodic: f(a + p) = f(a) for some p ∈ Z and all a ∈ Z, then we
get

f̂(a) = ̂f(a + p) = f̂(a) · e2πiap/n ⇒ f̂(a) ·
(
e2πiap/n – 1

)
= 0 ∀a ∈ Z

which forces f̂(a) to be zero if a is not a multiple of n/p. The converse is also true,
so the QFT defines an isomorphism{

f : Z/nZ→ C of period p
}
↔
{

f : Z/nZ → C supported on
n
p
Z

}
.

So if we want to compute the period of a function f : Z/nZ → C which can be ac-
cessed only by evaluation, we compute f̂(a) for sufficiently many a ∈ Z/nZ and cal-
culate the greatest common divisor of those a for which f̂(a) does not vanish. Clas-
sically there is no speedup in finding the period this way, but computing a point in
the support of a function is an easy task for a quantum computer, since this is what
measurement actually does. Let us briefly note that the ket-notation |k〉 = |k〉(t) de-
notes the (column) vector whose k-th amplitude component is one. In the following
we regard this

|k〉 : {0, . . . , n – 1} → C , t �→
{

1 if t = k
0 otherwise

as a function. The basic period-finding algorithm is as follows. Let f : Z/nZ → C
be a function of period p. We assume the period is primitive, that is f has no period
which is smaller then p. First, initialize two registers in the state

ψ1 = ψ1(t) =
1
√

n

n–1∑
k=0

|k〉|f(k)〉 .

Measurement of the second register to a value y collapses the state to

ψ2 =
1√

#{k ∈ Z/nZ : f(k) = y}
·
∑
f(k)=y

|k〉|y〉 =
1
√

p
·

p–1∑
j=0

|x + jp〉|y〉

since f is injective on the set {0, 1, . . . , p –1} and f(k) = y is equivalent to k = x+ jp for
x ∈ {0, . . . , p – 1} uniquely defined by y. Now we apply the QFT to this state, which
transforms the p-periodic state to an n/p-periodic supported state

ψ3(t) =
1
√

p

p–1∑
j=0

̂|x + jp〉|y〉 =
1
√

p

p–1∑
j=0

e2πi(x+jp)t/n |̂0〉|y〉 .
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Since the equidistribution on all values is a function of period one, the Fourier
transform of it is the singleton at 0. By the inversion formula the Fourier transform
of |0〉 = |0〉(t) is the equidistribution

∑ |k〉(t). So actually we have the state

ψ3(t) =
1
√

p

p–1∑
j=0

e2πi(x+jp)t/n 1
√

n

n–1∑
k=0

|k〉|y〉 .

Now, if t is a multiple of n/p, we have

1
√

p

p–1∑
j=0

e2πi(x+jp)t/n = e2πixt/n · √p

while for other t the sum over the roots of unity exp(2πi(x + jp)t/n) cancels to zero.
So this state has support on the set

p⊥ = {0,
n
p

, 2
n
p

, . . . , (p – 1)
n
p
} ,

and is (up to complex phases) equidistributed. The equidistribution allows us to
bound the number of measurements needed to infer the period p. The probability
of measuring two adjacent points in the set p⊥ depends on the length p of the
period but not on the original length n of the register.

16.4.2

Generalization of the Period-Finding Algorithm

There are several generalizations of the period-finding problem. The two most im-
portant are real periods, almost-periods, and hidden subgroups, of which we will
explain the latter only. We briefly sketch the other generalizations. Periods of func-
tions f : R→ S can be computed by approximation, that is using the period-finding
algorithm on the values of f at 1/N, 2/N, 3/N, . . . for sufficiently large N. The algo-
rithm used is a modification of the integer period-finding algorithm, which em-
ploys the same method. The complexity of this algorithm depends on the choice
of N and the smallest period of f. An application of this technique can be found
in [18], which gives an efficient algorithm to compute the regulator and the class
number of the quadratic number field (the complexity of this task is known to be at
least as hard as integer factorization). Such algorithms can be generalized to func-
tions f : Rn → S having a period lattice, that is a discrete subgroup L ⊂ Rn such that
f(x + λ) = f(x) for any x ∈ Rn and λ ∈ L, which are approximated on a lattice of the
form (1/N)Zn for sufficiently large N. Applications occur again in algebraic num-
ber theory, see [19], for example. We will not consider real functions here, since the
effort to prove the probability bounds is rather lengthy. However, the lattice-finding
problem is closely related to the natural generalization of the period problem for
finite groups, which is in general called the hidden subgroup problem (HSP).

Definition 16.1 Given a group G and a function f : G → S into an arbitrary set S, find
the subgroup H u G such that f factorizes on H: f(g + h) = f(g) for all g ∈ G and h ∈ H,
and f(g) =/ f(g′) whenever g + H =/ g′ + H.
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This problem has been studied for many types of groups G. Again the property of
the Fourier transform of mapping functions with periods to functions with periodic
supports can be used to find H in the case of abelian groups G. This is done by
extending the concept of Fourier transform to arbitrary finite abelian Groups. We
need the concept of characters to introduce the Fourier transform.

Definition 16.2 A character of a finite abelian group G is a homomorphism � : G →
C~.

As in the cyclic case, the Fourier transform of a function f : G → C
� �→

∑
g∈G

f(g)�̄(g)

is defined on characters. By identifying the elements of G with these characters
we retrieve the usual notation of Fourier transforms defined on G itself. We briefly
show how this identification is established: By the fundamental theorem for abelian
groups, any finite abelian group is of the form

G �
k⊕

j=1

Z/njZ

so any character of G is of the form

�(g) =
k∏

j=1

�j(gj)

where �j is a character on Z/njZ. The set of homomorphisms � : G → C~ is itself
a group by multiplication, denoted by Ĝ, and the above product representation
shows G � Ĝ, that is there is a bijection between elements of G and characters of G.
Characters of the cyclic factors of G are always of the form �(j)(a) = exp(2πi(ab/nj)),
the bijection is then

Z/njZ * b ↔ �(j) =
[
a �→ e2πiab/nj

]
∈ Ẑ/nZ .

Characters of arbitrary abelian groups are (multiplicative) linear combinations of
these cyclic characters. Since each Z/nZ also carries a multiplicative structure, we
can define a multiplication in the additive group G artificially, by setting

g ∗ h = (g1, . . . , gk) ∗ (h1, . . . , hk) := (g1h1, . . . , gkhk) ,

obtaining the identification of a ∈ G with the character �a : g �→ �(a ∗ g) for any
character � which is the product of generating characters of the cyclic factors. Thus
we can define the Fourier transform taken on elements of G instead of characters:

Definition 16.3 The (normalized) Fourier transform on G by � is defined as the trans-
formation

f̂(a) =
1

√
#G

∑
g∈G

f(g)�̄(a ∗ g)

for any function f : G → C.
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Now we have to show that the Fourier transform on G provides the needed proper-
ties. They follow from the known orthogonality relation for �:

∑
g∈G

�(g) =
{

#G if � = 1 is the trivial character
0 if � =/ 1 .

The inversion formula for the general Fourier transform is

f(g) =
1

√
#G

∑
a∈G

f̂(a)�(a ∗ g)

which is proven by

1
√

#G

∑
a∈G

f̂(a)�(a ∗ g) =
1

#G

∑
a∈G

∑
b∈G

f(b)�̄(b ∗ a)�(a ∗ g)

=
1

#G

∑
b∈G

f(b)
∑
a∈G

�(a ∗ (g – b)) .

By the orthogonality relation the last sum selects the value b = g and removes
the normalization factor, and the value of the expression is f(g) as asserted. So the
Fourier transformation on G is still an automorphism of functions from G to C and
by the normalization factor it is also a unitary transformation. It maps functions
with period subgroup H u G to functions having support in some group H⊥, which
is now more complex than the set n/pZ/nZ in the cyclic case. We use the equation

f̂(a) =
1

√
#G

∑
g∈G

f(g)�̄(g ∗ a) =
1

√
#G

∑
g∈G

f(g + h)�̄(g ∗ a)

=
1

√
#G

∑
g∈G

f(h)�̄((g – h) ∗ a) = f̂(a) · �(h ∗ a)

which is true for all a ∈ G if and only if f̂(a) = 0 or �(h ∗ a) = 1 for all h ∈ H, that is,
if f̂ vanishes outside the dual group

H⊥ =
{
a ∈ G : ∀h ∈ H : �(h ∗ a) = 1

}
of H. We have proved:

Theorem 16.1 The Fourier operator ˆ gives an isomorphism between these C-spaces:
– The set of functions f with f(g + h) = f(g) for all g ∈ G, h ∈ H.
– The set of functions f which vanish outside H⊥.

Finding the subgroup H therefore amounts to two tasks:
– Computation of H⊥ by the period-finding algorithm (generalized to k + 1 reg-

isters). This is again done by measuring the (k+1)-th register and applying the
Fourier transform on G to the first k registers, and measurement of enough
elements from H⊥ to infer generators or coefficients for H⊥.
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– Computation of H from H⊥. Note that we actually do not want to compute
the set H, but its generators, or equivalently, coefficients dj such that

H =
k⊕

j=1

Z/djZ .

This is not difficult if the corresponding coefficients for H⊥ are known. Im-
portant applications of the hidden subgroup problem, for example the class
number problem, content themselves with the determinant of H, which is
the product of the coefficients. There is an efficient quantum algorithm for
group decomposition, that is an algorithm to compute the coefficients dj giv-
en generators of H.

We note that both group decomposition and hidden subgroup computation still
admit no efficient classical algorithms. We conclude by stating the complexity of
the abelian hidden subgroup problem. Assume the following preconditions.

– Elements of G can be represented uniquely as a binary string, and it is possi-
ble to recognize a representation classically in a number of steps polynomial
in the representation length.

– It is possible to compute (classically) the representation of the sum and the
inverse of elements using a number of steps polynomial in the length of their
representation.

– Both group operations and the evaluation of f can be implemented in a quan-
tum circuit.

Then we have:

Theorem 16.2 There is a quantum algorithm with the following properties. Given a fi-
nite abelian group G (represented by generators of cyclic factors of prime power) and
f : G → S satisfying Definition 16.1, and some error probability ε, it computes a set
of elements of G along with coefficients (or equivalently generator relations) for the sub-
group H′ generated by those elements, such that
– the probability that H′ = H is the period subgroup of f is v 1 – ε;
– the number of measurements performed is bounded by a polynomial in log(ε–1) and

the input length for the group G.

The proof uses the crucial fact that the Fourier transform of a H-period func-
tion is not only supported by H⊥, but that function values are equidistributed
among this set (up to complex phases). The Fourier theory of nonabelian groups
is far more complicated, and we do not have the correspondence of group ele-
ments to characters implicitly used in the definition of the operation ∗. Currently
there is no general quantum algorithm known to compute H in the case of non-
abelian groups. There is some work on special group types, like dihedral groups
or solvable groups, but these still cover a very small portion of all nonabelian
groups.
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16.5

Quantum Approach to Graph Isomorphism

16.5.1

The Hidden-Subgroup Problem and Graph Isomorphism

We observe that the graph-isomorphism problem can be solved with the help of the
hidden-subgroup problem. Let G = (V, E) be a graph with vertex set V = {1, . . . n}
and consider the symmetric group Sn of permutations over n elements. For a per-
mutation π ∈ Sn, π(G) is the graph resulting from permuting the labels of the ver-
tices in G according to π. The set of automorphisms of G, Aut(G) = {π ∈ Sn|π(G) =
G} is clearly a subgroup of Sn. Consider the function fG acting on Sn defined as
fG(π) = π(G). Observe that for every σ ∈ Sn and π ∈ Aut(G),

fG(σ · π) = σ · π(G) = σ(G) = fG(σ) .

Moreover, fG has different values for the different cosets of Aut(G) in Sn:

σ1Aut(G) =/ σ2Aut(G) ⇒ σ1(G) =/ σ2(G) ⇒ fG(σ1) =/ fG(σ2) .

In other words, Aut(G) is the hidden subgroup in Sn defined by fG. With a gener-
ating set for Aut(G) it is possible to efficiently compute the order of the subgroup,
|Aut(G)|. With this, one can decide the graph isomorphism problem in the follow-
ing way. Let G1 and G2 be the input graphs and consider the graph G1∪G2 defined
by the vertices and edges of both G1 and G2. It is not hard to see that if G1 and
G2 are not isomorphic then |Aut(G1 ∪ G2)| = |Aut(G1)| · |Aut(G2)|. On the other
hand, if the graphs are isomorphic then |Aut(G1 ∪ G2)| = 2|Aut(G1)| · |Aut(G2)| (in
this case we have to count the automorphisms interchanging the vertices of G1

and G2).
Because of this observation, efficient algorithms for HSP would imply the exis-

tence of efficient algorithms for GI. But the symmetric group Sn needed here is
nonabelian and therefore the methods explained in the previous section cannot be
applied. There have been several attempts to extend the algorithms for HSP from
abelian to nonabelian groups [20,21] but the solved cases are not sufficient for solv-
ing GI. Hallgren, Russel and Ta-Shma show in [22] how to solve the HSP efficient-
ly in the cases where the hidden subgroup is normal. Observe that this extends
the results presented in the previous section since every subgroup of an abelian
group is normal. Bacon, Childs and van Dam [23] have proposed a new approach
giving efficient quantum algorithms for various semi-direct product groups. Ku-
perberg [24] developed a sieve algorithm for the hidden-subgroup problem in the
dihedral group Dn with running time 2O(

√
n). Based on this result a subexponential

time algorithm for solving HSP on direct product groups was presented in [25].
Recently, some negative results pointing to the impossibility of obtaining effi-

cient quantum algorithms for the HSP have been published. In [26] it is shown
that strong Fourier sampling is insufficient to efficiently resolve the HSP on certain
nonabelian groups and that multiregister Fourier sampling over Ω(log |G|) regis-
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ters is required to distinguish subgroups of certain groups, including the symmet-
ric group. A good overview of these results can be seen in [27].

16.5.2

The Quantum Query Model and Graph Isomorphism

The difficulty of obtaining nontrivial upper or lower bounds for the graph isomor-
phism problem on classical or quantum computers motivates the study of more
restricted models, in which it is possible to establish differences between both com-
puting paradigms.

We consider here the quantum query model, a basic restricted model of quantum
computation. In the query model, the input x1, . . . , xN is contained in a black box or
oracle and can be accessed by queries. In a query we give a position i as input to the
black box and it outputs xi. The goal is to compute a boolean function f : {0, 1}N →
{0, 1} on the input bits x = (x1, . . . , xN) minimizing the number of queries. The
classical version of this model is known as a decision tree. We can consider the
query complexity of a concrete boolean function in trying to show that the quantum
model presents advantages over the classical model.

The quantum query model was explicitly introduced by Beals et al. [28]. Un-
like the classical case, the power of quantum parallelism can be used in order
to perform queries in superposition. The state of the computation is represent-
ed by

∣∣∣i, b, z
〉
, where i is the query register, b is the answer register, and z is the

working register. A quantum computation with T queries is a sequence of unitary
transformations

U0 → Ox → U1 → Ox → . . .→ UT–1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the input x,
and Ox are query (oracle) transformations. The oracle transformation Ox can be
defined as Ox :

∣∣∣i, b, z
〉 → ∣∣∣i, b ⊕ xi, z

〉
. The computation consists of the following

three steps.

1. Go into the initial state |0〉.

2. Apply the transformation UTOx · · ·OxU0.

3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by the
measurement. The quantum computation determines f with bounded error, if for
every x, the probability that the result of the computation equals f(x1, . . . , xN) is at
least 1 – ε, for some fixed ε < 1/2. In the query model of computation each query
counts as one computation step but all other computation steps are free.

We consider upper and lower bounds for the number of queries needed to com-
pute a boolean function stored in the black-box. If the black-box contains N po-
sitions, then trivially N queries are sufficient. But in some cases less quantum
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queries are needed. Grover [29] showed that in order to compute the OR func-
tion of N inputs (x1, . . . , xN), O(

√
N) quantum queries are sufficient. This supposes

a quadratic speed-up over the number of classical queries for the same problem.
The idea that with quantum queries we could search more efficiently in an un-

ordered search space than with classical procedures initially gave some hope for
efficient quantum solution of NP problems. For example, we can consider that
in a problem like graph isomorphism, each oracle position xi encodes a 0 or a 1
depending on whether the i-th bijection is an isomorphism between two given
graphs. Computing the OR of these bits is equivalent to solve the isomorphism
problem. Since for graphs with n nodes there are n! possible bijections, a naive
application of Grover’s method would compute the problem with O(

√
n!) queries,

which is still a very large number of steps. Some other methods have been pro-
posed in trying to improve the efficiency of the search. One of these methods is the
quantum walk.

16.5.3

Quantum Walks and the Fix-Automorphism Problem

Quantum walks are the quantum counterpart of Markov chains and random walks.
We present here some facts on quantum walks and their connection to isomor-
phism problems. A discrete quantum walk is a way of formulating local quantum
dynamics on a graph. The walk takes discrete steps between neighboring vertices
and is a sequence of unitary transformations. We present a recent scheme for quan-
tum search, based on any ergodic Markov chain, given by Magniez et al. [30]. We
then use this tool for the development of a quantum algorithm for a special iso-
morphism problem.

Aharonov et al. [31] introduced quantum walks on graphs. They showed how
fast quantum walks spread and proved lower bounds on the possible speedup
by quantum walks for general graphs. Ambainis [32] constructed a fundamental
quantum walk algorithm for the element distinctness problem. This was the first
quantum walk algorithm that went beyond the capability of Grover search. Mag-
niez et al. [33] have used Ambainis algorithm for finding a triangle in a graph.
Szegedy [34] generalized the element distinctness algorithm of Ambainis to an
arbitrary graph by using Markov chains. He showed that, for a class of Markov
chains, quantum walk algorithms are quadratically faster than the corresponding
classical algorithms. Buhrman and Špalek [35] constructed a quantum algorithm
for matrix multiplication and its verification. Recently, Magniez et al. [30] devel-
oped a new scheme for quantum search based on any ergodic Markov chain.
Their work generalizes previous results by Ambainis [32] and Szegedy [34]. They
extend the class of possible Markov chains and improve the quantum com-
plexity. Dörn and Thierauf [36, 37] presented the first application of this new
quantum random walk technique for testing the associativity of a multiplication
table.

Let P = (pxy) be the transition matrix of an ergodic symmetric Markov chain on
the state space X. Let M ⊆ X be a set of marked states. Assume that the search
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algorithms use a data structure D that associates some data D(x) with every state
x ∈ X. From D(x), we would like to determine if x ∈ M. When operating on D, we
consider the following three types of costs:

– Setup cost s. The worst-case cost to compute D(x), for x ∈ X.
– Update cost u. The worst-case cost for transition from x to y, and update D(x)

to D(y).
– Checking cost c. The worst-case cost for checking if x ∈ M by using D(x).

Theorem 16.3 ([30]) Let δ > 0 be the eigenvalue gap of an ergodic Markov chain P and
let |M|/|X| v ε. Then there is a quantum algorithm that determines if M is empty or finds
an element of M with cost

s +
1
√

ε

(
1
√

δ
u + c

)
.

In the most practical applications (see [32, 33]) the quantum walk takes place on
the Johnson graph J(n, r), which is defined as follows: the vertices are subsets of
{1, . . . , n} of size r and two vertices are connected iff they differ in exactly one num-
ber. It is well known that the spectral gap δ of J(n, r) is Θ(1/r) for 1 u r u n/2.

Now we consider the fix-automorphism problem as an application of the quantum
walk search procedure. We have given a graph G = (V, E) with n vertices represent-
ed as adjacency matrix and an integer k < n. One has to decide whether G has an
automorphism which moves, at most, k vertices of G.

Theorem 16.4 The quantum query complexity of the fix-automorphism problem is
O(n2k/(k+1)).

Proof We apply the quantum walk search scheme of Theorem 16.3. To do so, we
construct a Markov chain and a database for checking if a vertex of the chain is
marked.

Let G = (V, E) be the input graph with n vertices represented as adjacency matrix.
Let U be a subset of vertices of G of size r. We will determine r later. Our quantum
walk takes place on the Johnson graphs J(n, r). The database of the quantum walk is
the induced subgraph on the set of vertices U, denoted by G[U], has U as its vertex-
set, and it contains every edge of G whose endpoints are in U. The marked vertices
of J(n, r) correspond to subsets U ⊂ V, such that G[U] contains an automorphism
which moves, at most, k vertices of G. In every step of our walk we exchange one
vertex of U.

Now we determine the quantum query setup, update and checking cost. The set-
up cost to determine G[U] is O(r2) and the update cost is O(r). Checking if G[U]
contains such a fixed automorphism needs no queries, since we require only the
database for checking if the vertex U is marked.
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If there is at least one automorphism which moves at most k vertices, then there
are at least

(
n–k
r–k

)
marked vertices of the Johnson graph. Therefore, we have

ε v
|M|
|X| v

(
n–k
r–k

)(
n
r

) v Ω
(( r

n

)k)
.

Then the quantum query complexity of the fix-automorphism problem is

O
(
r2 +
(n

r

)k/2
r1.5
)

,

which is minimized for r = nk/(k+1). q

16.6

Reductions of Integer Factorization and Graph Isomorphism to Ring Isomorphism

We review in this section a result from Kayal and Saxena [38] showing that GI and
IF are instances of a more general question: the ring isomorphism problem. Ring
isomorphism has received attention in recent years in connection with the efficient
primality test algorithm from [39]. Other applications of this problem can be seen
in [40] and [41].

Definition 16.4 A finite ring with identity element 1 is a triple (R, +, ·), where R is
a finite set such that (R, +) is a commutative group with identity element 0 and (R, ·) is
a semigroup with identity element 1, such that multiplication distributes over addition.
The characteristic of a ring R is defined to be the smallest number of times one must add
the ring’s multiplicative identity element 1 to itself to get the additive identity element 0.
Let I be an ideal of R, the factor ring is the ring R/I = {a + I : a ∈ R} together with the
operations (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I.

The polynomial ring R[X] is the ring of all polynomials in a variable X with coefficients
in the ring R.

Let n be the characteristic of the ring. The complexity of the problems involving
finite rings depends on the representation used to specify the ring. We will use the
following representation models of a ring.

– Table representation. A ring R is given as a list of all the elements of the ring
and their addition and multiplication tables.

– Basis representation. A ring R is given by m basis elements b1, . . . , bm and the
additive group can be expressed as

(R, +) =
m⊕

i+1

Zni bi ,

with ni |n for each i. The multiplication in R is given by specifying the product
of each pair of basis elements as an integer linear combination of the basis
elements: bi · bj =

∑m
k=1 aij,kbk for 1 u i, j u m with aij,k ∈ Zn.
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– Polynomial representation. A ring R is given by

R = Zn[Y1, . . . , Ym]/(f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym)) ,

where Y1, . . . , Ym are basis elements and (f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym)) is
an ideal generated by the polynomials f1, . . . , fk.

The table representation has size O(|R|2), which is a highly redundant represen-
tation. The size of the basis representation is O(m3), where m is the number of
basis elements. This is in general exponentially smaller than the size of the Ring
|R| = Πm

i=1ni. Often the polynomial representation is exponentially more succinct
than the basis representation. For example Z2[Y1, . . . , Ym]/(Y2

1, . . . , Y2
m) has 2m basis

elements and so the basis representation would require Ω(23m) space.
Since the polynomial representation is of smaller size, for clarity of exposition,

we will use it here to express the rings. However, for complexity issues, this rep-
resentation is too succinct and we will consider the rings given as input to the
problems given in basis representation. For a polynomial representation, say R =
Zn[Y1, . . . , Yt]/I an automorphism or isomorphism φ will be specified by a set of t
polynomials p1, . . . , pt with φ(Yi) = pi(Y1, . . . , Yt).

Definition 16.5 An automorphism of ring R is a bijective map φ : R �→ R such that
for all x, y ∈ R, φ(x + y) = φ(x) + φ(y) and φ(x · y) = φ(x) · φ(y). An isomorphism
between two rings R1, R2 is a bijective map φ : R1 �→ R2 such that for all x, y ∈ R1,
φ(x + y) = φ(x) + φ(y) and φ(x · y) = φ(x) · φ(y).

We define some ring automorphism and isomorphism problems. All rings are giv-
en in basis representation.

– The ring automorphism problem (RA) consists of being in given a ring R,
deciding whether there is a non-trivial automorphism for R.

– The finding ring automorphism problem (FRA) consists in given a ring R, find
a non-trivial automorphism of R.

– The ring isomorphism problem (RI) consists in given two rings R1, R2, decide
whether there is an isomorphism between both rings.

16.6.1

Factoring Integers and Finding Ring Automorphisms

We discuss the complexity of finding automorphisms in a ring and present a result
from Kayal and Saxena [38] showing that this problem is at least as hard as factoring
integers. Let uP

m denote a polynomial time many~one reduction between problems.

Theorem 16.5 ([40]) IF uP
m FRA.

The quadratic and number field sieve methods can be easily viewed as trying to find
a nonobvious automorphism in a ring. Both methods aim to find two numbers u and v
in Zn such that u2 = v2 and u =/ ±v in Zn, where n is an odd square-free composite
number to be factored. We will encode this in a ring such that finding its ring automor-
phisms gives us u and v. We consider the ring R = Zn[Y]/(Y2 – 1), which has an obvious
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nontrivial automorphism mapping Y onto –Y. The problem is to find another nontrivial
automorphism φ(R) =/ ±Y. Agrawal and Saxena give the following proof.

Proof Let φ(Y) = aY + b, by definition of the factor ring R we have φ(Y2 – 1) = 0.
Observe that φ(a + b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), and that Y2 – 1 == 0. Thus we
have

φ(Y2 – 1) = (aY + b)2 – 1 = a2Y2 + 2abY + b2 – 1

= a2(Y2 – 1 + 1) + 2abY + b2 – 1 = a2 + b2 – 1 + 2abY = 0 .

This gives ab = 0 and a2 + b2 = 1 ∈ Zn. Notice that a and n are relatively prime, that
is (a, n) = 1, since otherwise

φ
(

n
(a, n)

Y
)

=
n

(a, n)
(aY + b) =

a
(a, n)

nY +
n

(a, n)
b = φ

(
n

(a, n)
b
)

,

because (a/(a, n))nY == 0 mod n. Therefore, b = 0 and a2 = 1. By assumption,
a =/ ±1 and so u = a and v = 1. Conversely, given u and v with u2 = v2, u =/ ±v in Zn

we get φ(Y) = (u/v)Y as an automorphism of R. q

As shown in [38], factoring integers can be reduced to a number of questions
about automorphisms and isomorphisms of rings, that is, counting the number
of automorphisms of ring Zn[Y]/(Y2) or finding the isomorphisms between rings
Zn[Y]/(Y2 – a2) and Zn[Y]/(Y2 – 1) for a randomly chosen a ∈ Zn. But for RA a poly-
nomial time algorithm is known [38]. That means, some automorphisms are easy
to compute while others are not.

16.6.2

Graph Isomorphism and Ring Isomorphism

An interesting fact is that there is also a connection between the graph isomor-
phism and the ring isomorphism problems.

Theorem 16.6 ([38]) GI uP
m RI.

Proof We present the reduction from Agrawal and Saxena [40]. Let G = (V, E) be
a simple graph on n vertices. Then define polynomial pG as

pG(x1, . . . , xn) =
∑

(i,j)∈E

xi · xj ,

and define ideal IG as

IG(x1, . . . , xn) = (pG(x1, . . . , xn), {x2
i }, {xixjxk}1ui,j,kun) .
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Observe that for a polynomial ring with ideal IG in basis representation the num-
ber of basis elements is bounded by O(n2) since any combination of three variables
are zero. In detail, Agrawal and Saxena proved the following. Let G1 = (V, E1) and
G2 = (V, E2) be simple graphs over n vertices and let Fq be a field of odd character-
istic. Then G1 is isomorphic to G2 iff
– either both graphs contain a clique of size m (Km) and n – m isolated vertices

(Dn–m), each (in this case isomorphism testing is trivial),
– or the rings R1 = Fq[Y1, . . . , Yn]/IG1 (Y1, . . . , Yn) and

R2 = Fq[Z1, . . . , Zn]/IG2 (Z1, . . . , Zn) are isomorphic.

R1 and R2 are polynomial rings with polynomials of degree at most two. If π is
an isomorphism mapping G1 onto G2 then an isomorphism between both rings
can be found as φ : R1 �→ R2 with φ(Yi) = Zφ(i), since φ(pG1 (Y1, . . . , Yn)) =
pG2 (Z1, . . . , Zn).

We show now, that there is no further isomorphism. Suppose that G1 � G2 and
that G2 is not of the form Km ∪Dn–m. Let φ : R1 �→ R2 be an isomorphism with

φ(Yi) = αi +
∑
1ujun

�i,jZj +
∑

1uj<kun

γi,j,kZjZk .

We will show now, which values for αi, �i,j and γi,j,k in φ(Yi), may occur. For any
isomorphism φ on rings it must hold that φ(0) = 0. In R1, Y2

i = 0 and in R2, Z2
i = 0

for any value of i it follows that

φ(Y2
i ) = (φ(Yi))2 = α2

i + (higher degree terms) = 0 .

Thus αi = 0. Again looking at the same equation:

φ(Y2
i ) = (φ(Yi))2 = 2

∑
1uj<kun

�i,j�j,kZjZk = 0 .

The other terms disappeared since αi = 0 or they become two degrees higher.

If more than one �i,j is nonzero, then we must have
∑

j,k∈J,j<k �i,j�i,kZjZk divisible by
pG2 (Z1, . . . , Zn) with J the set of nonzero indices. Since pG2 is also a homogeneous
polynomial of degree two, it must be a constant multiple of the above expression
implying that G2 = K|J| ∪ Dn–|J|. This is not possible by assumption. Therefore, at
most, one �i,j is nonzero.

If all �i,j are zero, then φ(Yi, Yl) = 0 for all i, l which is not possible. Hence, ex-
actly one �i,j is nonzero. Define π(i) = j where j is the index with �i,j nonze-
ro. We prove now, that π is not surjective. Suppose π(i) = π(l) for i =/ l. Then
φ(YiYl) = Zπ(i)Zπ(l) = 0. This is not possible. Hence π is a permutation on [1, n].
Now consider φ(pG1 (Y1, . . . , Yn)), then it follows that

0 = φ(pG1 (Y1, . . . , Yn)) =
∑

(i,j)∈E1

φ(Yi)φ(Yj) =
∑

(i,j)∈E1

�i,π(i)�j,π(j)Zπ(i)Zπ(j)

The last expression must be divisible by pG2 . This gives �i,π(i) = �j,π(j) for all i, j and
implies that the expression is a constant multiple of pG2 or equivalently, that G1 is
isomorphic to G2. q
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Notice that the rings R1 and R2 constructed above have lots of automorphisms. For
example, Yi �→ Yi +Y1Y2 is a nontrivial automorphism of R1. Thus, automorphisms
of G1 do not directly correspond to automorphisms of R1.
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17

QuickSort from an Information Theoretic View
Beatrice List, Markus Maucher1), Uwe Schöning, Rainer Schuler

17.1

Introduction

The QuickSort algorithm was invented by C.A.R. Hoare in the sixties [4]. Knuth [6,
page 115] cites this paper as one of the most comprehensive accounts of a sorting
method that has ever been published. Later, Hoare received the ACM Turing Award
in 1980, and he was knighted for his achievements in Computer Science by Queen
Elizabeth II in 2000.

QuickSort is a classical divide and conquer method: the input sequence is divided
into two subsequences which are both sorted by applying the QuickSort algorithm
recursively. Then these sorted sequences are concatenated together to form the
desired sorted sequence. Unlike other divide and conquer algorithms, the input
sequence is not necessarily split into two parts of equal sizes. Actually the sizes
depend on the input itself. In each recursive step, a splitting element (the “pivot”)
is selected, which, in many implementations, is the first element of the sequence to
be sorted. The sizes of the subsequences depend on the rank of the pivot element
within the sequence to be sorted (which is not known beforehand).

Every sorting algorithm which is based on pairwise comparisons of elements
(like QuickSort does) has to identify, from an information theoretic point of view,
which of the n! many input permutations is actually present (and using this infor-
mation, the algorithm has to rearrange the elements physically to form a sorted
sequence). Each comparison of two elements gives the algorithm one bit of infor-
mation. Therefore, for the entire sorting process the algorithm needs, in the worst
case, at least log2(n!) = n log2 n – Θ(n) many bits of information, or comparisons.2)

It is known that QuickSort’s average number of pairwise element comparisons
(averaging over all potential input permutations) is (2 ln 2) · n log2 n – Θ(n), so it is
quite close to the ideal case, the lower bound. On the other hand, there are worst-

1) Corresponding author.
2) Here, Θ(g(n)) denotes some function f which,

for some constants c < d and almost every n,
satisfies cg(n) u f(n) u dg(n) .
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case inputs where QuickSort does up to n(n – 1)/2 comparisons (ironically, the
already sorted sequence has this property.) Realizing this bad worst-case behavior,
Hoare had suggested the variant called Random QuickSort. In Random QuickSort
(see Figure 17.1) the pivot element is selected uniformly at random among the
elements of the sequence to be sorted. A very similar analysis to the one mentioned
above shows that the expected number of comparisons, for each input sequence, is
(2 ln 2) · n log2 n – Θ(n). Here the expectation is taken over all random choices done
in the course of the algorithm.

input: finite sequence A = (a[1], a[2], . . . a[n]) of distinct elements
output: finite sequence B that contains all elements from A in

increasing order
method: if A contains at most 1 element

return A
else

Choose a random element x from A
Split A into two subsequences A1 and A2 such that

a) A1 contains all elements from A smaller than x
b) A2 contains all elements from A greater than x

B1 ← QuickSort(A1)
B2 ← QuickSort(A2)
return B1 ◦ (x) ◦ B2 (◦ denotes concatenation)

Figure 17.1 Pseudo code of the randomized QuickSort algorithm.

As previously mentioned, this analysis uses ideal random numbers, i.e. those
which are independent and uniformly distributed. Technically, such random num-
bers are difficult to produce, and in practice, one uses pseudorandom number gen-
erators instead, which start with some given “seed” x0, and iteratively (and deter-
ministically) compute successive values xi+1 = f(xi) according to some function f
such that the obtained sequence of values x1, x2, . . . “looks random” (i.e. it pass-
es some statistical tests). If the seed is fixed in advance, then the entire algorithm
becomes a deterministic algorithm, and actually the above assertion about the ex-
istence of worst-case inputs, with n(n – 1)/2 many comparisons, is still valid.

From a theoretical point of view, one might consider the seed of the pseudo-
random generator as truly random. But still, under this theoretical model, when
using a linear congruential generator, like xi+1 = (axi + b) mod c as suggested by
D.H. Lehmer [7], Karloff and Raghavan [5] (see also [12]) have shown (under mild
assumptions about the choice of the parameters a, b, c) that the expected number
of comparisons can be, in the worst case, up to dn2, for some constant d. Here the
expectation is taken over the random choice of the seed, and the worst case refers
to the choice of the input.

In this paper we follow this line of research and consider a random number
generator for Random QuickSort, which is not ideal. We measure the deficien-
cy of the random number generator in terms of C.E. Shannon’s entropy function
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H(p1, . . . , pn) = –
∑n

i=1 pi log pi (see [11]). Depending on the Shannon entropy of the
random number generator we show a continous transition between the “ideal” case
of an (n log n)-behavior and the “bad” case of (n2)-behavior.

17.1.1

Recursion for the Expected Number of Comparisons

Let Tπ(n) be the expected number of comparisons done by randomized QuickSort
when operating on an input array (a[1], . . . , a[n]) whose elements are distinct and
permuted according to π ∈ Sn, that is,

a[π(1)] < a[π(2)] < · · · < a[π(n)]

where Sn is the set of all permutations on {1, . . . , n}.
Let X be a random variable taking values between 1 and n (not necessarily under

uniform distribution) which models the random number generator that is used to
pick out a pivot element a[X]. We say an element has rank i within the ordering
of the array if there are exactly i – 1 smaller elements in the array. Let pi be the
probability that the pivot element has rank i within the ordering of the array, that
is, pi = Pr(π(X) = i).

We obtain the following recursion for the expected worst-case complexity (i.e.
number of comparisons) T(n) = maxπ∈Sn Tπ(n). We have T(n) = 0 for n u 1; and for
n > 1 we get

T(n) = max
π∈Sn

Tπ(n)

= (n – 1) + max
π∈Sn

n∑
i=1

pi(Tπ(i – 1) + Tπ(n – i))

u (n – 1) +
n∑

i=1

pi

(
max
φ∈Si–1

Tφ(i – 1) + max
ψ∈Sn–i

Tψ(n – i)
)

= (n – 1) +
n∑

i=1

pi(T(i – 1) + T(n – i)) .

That is, there are n–1 comparisons with the selected pivot element and, depending
on the rank i of the pivot element within the array, there are at most Tπ(i – 1) and
Tπ(n – i) additional comparisons. If the rank of the pivot element is not uniform-
ly distributed among the numbers 1 to n, a worst-case input permutation can be
constructed such that the middle ranks receive relatively low probability and the
extreme ranks (close to 1 or close to n) have relatively high probability, resulting in
a large expected number of comparisons.

We give upper and lower bounds on the expected number T(n) of comparisons.
Lower bounds are given with respect to a fixed worst-case input sequence (e.g. the
already sorted list of elements). These bounds are tight up to a logarithmic factor.

We can show (see Theorem 17.1) that T(n) u g(n)n log2 n for any function g(n)
greater than 1/

(
minπ

∑n
i=1 piH (i/n)

)
, where H is Shannon’s binary entropy func-

tion. Note that minπ
∑n

i=1 piH (i/n) is independent of the permutation of the ele-
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ments, i.e. is identical for all distributions p and q such that pi = qπ(i) for all i and
some permutation π.

The lower bound (see Theorem 17.2) is derived for distributions on the ranks
of the input elements. Therefore, the lower bound T(n) v cng(n) (Theorem 17.5)
is with respect to any function g(n) less than 1/

∑n
i=1 piH

(
i/(n + 1)

)
, where pi is the

probability of selecting the element of rank i within the input a as a pivot element.

17.2

An Upper Bound

Let (P1, P2, . . .) denote a sequence of probability distributions where Pn = (pn1, . . . ,
pnn) is a distribution on {1, . . . , n}.

Theorem 17.1 Let (P1, P2, . . .) be a sequence of probability distributions on the indexes
of the pivot elements used by Randomized QuickSort. Then T(n) u g(n)n log2 n for any
monotone increasing function g with the property

g(n) v

⎛⎜⎜⎜⎜⎜⎝min
π∈Sn

n∑
i=1

pnπ–1(i) · H
(

i
n

)⎞⎟⎟⎟⎟⎟⎠–1

where H(x) = –x log2 x – (1 – x) log2(1 – x) is Shannon’s binary entropy function.

Proof By induction on n. Using the above recursion for T(n) we obtain

T(n) = (n – 1) + max
π∈Sn

n∑
i=1

pnπ–1(i)(Tπ(i – 1) + Tπ(n – i))

u n + max
π∈Sn

n∑
i=1

pnπ–1(i)(g(i – 1)(i – 1) log2(i – 1) + g(n – i)(n – i) log2(n – i))

u n + g(n)n max
π∈Sn

n∑
i=1

pnπ–1(i)

(
i
n

log2 i +
(
1 –

i
n

)
log2(n – i)

)

= n + g(n)n max
π∈Sn

n∑
i=1

pnπ–1(i)

(
i
n

log2
i
n

+
(
1 –

i
n

)
log2

(
1 –

i
n

)
+ log2 n

)

= n + g(n)n log2 n – g(n)n min
π∈Sn

n∑
i=1

pnπ–1(i)H
(

i
n

)
.

To finish the induction proof, this last expression should be at most g(n)n log2 n.

This holds if and only if g(n) v

⎛⎜⎜⎜⎜⎜⎝min
π∈Sn

n∑
i=1

pnπ–1(i)H
(

i
n

)⎞⎟⎟⎟⎟⎟⎠–1

as claimed. q

Example 17.1 In the standard case of a uniform distribution pni = 1/n we obtain

g(n) v
(
1/n
∑n

i=1 H (i/n)
)–1

. Asymptotically, this is
(∫ 1

0 H(x)dx
)–1

= 2 ln 2 W 1.38, which

is the known constant factor of QuickSort’s average running time.
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Example 17.2 In the median-of-three version of QuickSort (see [6, 9]), three different
elements are picked uniformly at random and the median of the three is used as the pivot
element. In this case

pni =
6(i – 1)(n – i)

n(n – 1)(n – 2)
.

Here the constant factor of the n log n-term can be asymptotically estimated by(
6
∫ 1

0
x(1 – x)H(x)dx

)–1

=
12 ln 2

7
W 1.18 .

This matches the average running time given in [9].

17.3

A Lower Bound

In a similar fashion, we can derive a lower bound for the number of comparisons.
For the proof of Theorem 17.2, we need the following technical lemma:

Lemma 17.1 For integers n v 1 and i with 0 u i u n,

(i – 1)2

n2 +
(n – i)2

n2 + H
(

i
n + 1

)
v 1 .

Proof We use the known inequalities

– ln(1 – x) v x resp. – log2(1 – x) v
x

ln 2
,

that hold for 0 u x u 1. So we get

(i – 1)2

n2 +
(n – i)2

n2 + H
(

i
n + 1

)
=

i2 – 2i + 1 + n2 – 2in + i2

n2

–
i

n + 1
log2

i
n + 1

–
(
1 –

i
n + 1

)
log2

(
1 –

i
n + 1

)
=

2i2 – 2i + 1 + n2 – 2in
n2

–
i

n + 1
log2

(
1 –

n – i + 1
n + 1

)
–

n – i + 1
n + 1

log2

(
1 –

i
n + 1

)
v

2i2 – 2i + 1 + n2 – 2in
n2 +

(
i

n + 1
n – i + 1

n + 1
+

n – i + 1
n + 1

i
n + 1

)
1

ln 2

v
2i2 – 2i + 1 + n2 – 2in + 2in – 2i2 + 2i

n2 =
n2 + 1

n2 v 1 .

For the second last inequality, we use that (n + 1)2 ln 2 u n2 for n v 1. q
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The running time derived in the upper bound theorem was independent of the ac-
tual input permutation and depended only on the distributions on the indices that
are used to pick a pivot element from the input. Our lower bound however cannot
be that flexible. For every distribution on the indices of the input, there exists an in-
put that will be divided into two subarrays of approximately equal sizes, with high
probability. Therefore, the theorem for the lower bound is formulated with respect
to distributions on the ranks of the input numbers. Similar to Theorem 17.1 we
get:

Theorem 17.2 Let (P1, P2, . . .) be a sequence of probability distributions on the ranks
of the chosen pivot elements, where Pn = (pn1, . . . , pnn) is used to choose a pivot element
from sequences of length n and the element of rank i is chosen with probability pni.

(i) T(n) v cg(n)n – n for some constants c > 0 and n0, if for all n > n0, g satisfies the
two conditions

g(n) u

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

pni

(
1 –

(i – 1)2

n2 –
(n – i)2

n2

)⎞⎟⎟⎟⎟⎟⎠–1

and

g(i)
g(n)

v
i
n

for all 0 u i u n .

(ii) Part (i) still holds if we replace the two conditions by

g(n) u

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

pniH
(

i
n + 1

)⎞⎟⎟⎟⎟⎟⎠–1

and

g(i)
g(n)

v
i
n

for all 0 u i u n.

Proof We prove (i) first, by induction. For n u n0, just set the constant c u 1 small
enough.

Now we look at the case n > n0. Let Pn = (pn1, . . . , pnn) be a distribution where pni

is the probability that we choose as a pivot element the element with rank i. Using
the induction hypothesis, it holds that

T(i – 1) + T(n – i)

v c(i – 1)g(i – 1) + c(n – i)g(n – i) – (n – 1)

= cng(n)
(

(i – 1)g(i – 1)
ng(n)

+
(n – i)g(n – i)

ng(n)

)
– (n – 1)

v cng(n)
(

(i – 1)2

n2 +
(n – i)2

n2

)
– (n – 1)

= cng(n) – cng(n)
(
1 –

(i – 1)2

n2 –
(n – i)2

n2

)
– (n – 1) .
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Therefore,

T(n) = n – 1 +
n∑

i=1

pni(T(i – 1) + T(n – i))

v cng(n) – cng(n)
n∑

i=1

pni

(
1 –

(i – 1)2

n2 –
(n – i)2

n2

)
.

As c u 1, we can finish the induction if

g(n) u

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

pni

(
1 –

(i – 1)2

n2 –
(n – i)2

n2

)⎞⎟⎟⎟⎟⎟⎠–1

.

The proof of part (ii) is quite similar. For n v n0,

T(i – 1) + T(n – i)

v cng(n)
(

(i – 1)2

n2 +
(n – i)2

n2

)
– (n – 1)

= cng(n)
(

(i – 1)2

n2 +
(n – i)2

n2 + H
(

i
n + 1

))
– ng(n)H

(
i

n + 1

)
– (n – 1)

v cng(n) – cng(n)H
(

i
n + 1

)
– (n – 1) .

The last inequality uses Lemma 17.1. Now

T(n) = n – 1 + c
n∑

i=1

pni(T(i – 1) + T(n – i))

v cng(n) – cng(n)
n∑

i=1

pniH
(

i
n + 1

)
.

Again using c u 1, we can finish the induction if

g(n) u

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

pniH
(

i
n + 1

)⎞⎟⎟⎟⎟⎟⎠–1

.

q

Remark 17.1 In the second part of Theorem 17.2 the lower bound is given using the
entropy function, similar to the upper bound in Theorem 17.1. This shows that, up to
a logarithmic factor, we yield matching upper and lower bounds.

Note that the condition g(i)/g(n) v i/n is not actually a limitation. We already know
that QuickSort’s running time ranges from n log2 n to n2, so our function g will meet the
condition anyway.
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17.4

The δ-Random Source

A general model of a random bit source is the δ-random-source, which is some-
times also referred to as the slightly random source. Since the bias of each bit is
a function of the previous output, it can be applied as an adversary argument and
is particularly suited for worst-case analysis. See also [1, 8, 10].

Definition 17.1 (See [1]) A δ-random-source is a random bit generator. Its bias may
depend on the bits it has previously output, but the probability to output “1” must be in
the range [δ, 1 – δ]. Therefore, it has an internal state ω ∈ {0, 1}∗, denoting its previously
output bits.

To obtain a random number X in the range 1, . . . , n from the δ-random-source, we output
%log n& bits and interpret them as a number Y. Then, we set X := (Y mod n) + 1.

Lemma 17.2 (See [2]) For each p with 0 < p < 1/2, there exists a constant c, such that

for all n ∈ IN: c
2H(p)n

√
n

u
'np(∑
j=0

(
n
j

)
u 2H(p)n.

Theorem 17.3 For each δ-random-source, 0 < δ < 1/2, there exists n0 ∈ IN, such that
for each n > n0, and each permutation π, Theorem 17.1 can be applied with

g(n) = cδ
1√

log n
n1–H(δ) ,

where the random bits are produced by a δ-random-source and cδ is a constant that
depends on δ.

Proof From the symmetry and monotony of the entropy function it follows that,
for each s,

n∑
i=1

pniH
(

i
n

)
v

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 – sup
π,ω̃

s–1∑
j=1

pnπ–1(j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠H
( s
2n

)
(17.1)

where pnπ–1(j) depends on the internal state ω̃ of the random source.

Now we examine the two factors on the right-hand side of (17.1) separately. We set
k := %log n& and s := 1/2

∑'δk(
j=0

(
k
j

)
. Since

pj =
{

Pr[Y = π(j)], if n + π(j) v 2k

Pr[Y = π(j)] + Pr[Y = π(j) + n] otherwise
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we get for the first factor of (17.1)

sup
π,ω̃

s–1∑
j=1

pnπ–1(j) u sup
ω̃

max
M⊆{0,1}k ,|M|=2s

Pr[Y ∈ M] u
'δk(∑
j=0

(
k
j

)
δj(1 – δ)k–j .

Here we use the result from [1], that the maximum probability of hitting a set of
a certain size can be achieved by an “extreme” δ-random-source that always outputs
“0” with probability δ.

Since

lim
k→∞

'δk(∑
j=0

(
k
j

)
δj(1 – δ)k–j =

1
2

(which follows from the DeMoivre–Laplace Limit Theorem, see [3]) there exists
a constant c′δ, such that

sup
π,ω̃

s–1∑
j=1

pnπ–1(j) u c′δ .

Now we consider the second factor of (17.1). We use the monotony of H(x) on the
interval [0, 1/2] and Lemma 17.2:

H
( s
2n

)
v H
( s

2k+1

)
v H
(̃
cδ

2(H(δ)–1)k

4
√

k

)
.

We consider δ < 1/2 (so that H(δ) < 1) and use that H(x) v –x log x to get

H
( s
2n

)
v c̃δ

2(H(δ)–1)k

4
√

k

(
(1 – H(δ))k – log

c̃δ

4
√

k

)
.

For k big enough (k > k0 corresponds to n > n0), there is a constant c′′δ so that

H
( s
2n

)
v c′′δ

√
k2(H(δ)–1)k .

Combining the results, there is a n0 ∈ IN and a c∗δ, such that for all n v n0, and
all permutations π on {0, . . . , n – i} and all states ω̃ ∈ {0, 1}∗ of the generator, the
following holds:

n∑
i=1

pnπ–1 (i)H
(

i
n

)
v c∗(δ)

√
%log n&2(H(δ)–1)%log n&

v
1
cδ

√
log nnH(δ)–1

which leads to the expected running time of T(n) u cδn2–H(δ)
√

log n. q
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17.5

Conclusion

A new measure for sequences of probability distributions was given that can be
used to bound the running time of the randomized QuickSort algorithm. For the
upper bound, it can be applied to the distributions on array positions used to divide
the input array. For the lower bound, however, we can only apply it to the distribu-
tions on the ranks of the elements that we use to divide the input.

There is still a gap of log n between the lower and upper bound. A more sophis-
ticated analysis of the problem might close that gap, probably by raising the lower
bound to something like ng(n) log n – n.
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a
A-posteriori Probability 206
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AdaBoost 316, 317, 328
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Associated operator 189
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Atom optics 406–409, 425–428
Attractor 163
Automated troubleshooting agents
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Axon 138

b
Bag of words 225–228, 230, 232, 235
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Bayes’ Rule 206
Bayesian network 161
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BBM 315, 327
Bifurcation 386
Black body 1, 8–10, 12–14, 18
Boltzmann 16
Boltzmann constant 12
Boltzmann–Maxwell law 11
Boolean classifier 172
Boolean network 157

– probabilistic 164
– random NK 165

Boosting 311
– by filtering 316
– by majority 315
– by resampling 316
– by reweighting 316

Bose–Einstein statistics 15
Boundary regularity 55, 63
Boundary value problem 57
BrownBoost 320, 329
Brownian motion 321

c
C0-semigroup 188
Canonical labeling 436
Capacity 62
Carleman’s function 41
Carleman’s law 8, 38, 40, 42
Carmichael numbers 399
Cascade 323
Cell 159
Cellular automata 165
Channel

– additive white Gaussian noise,
AWGN 358

– binary symmetric, BSC 358
Chaotic systems 36
Character 440
Characteristic 447
Chi-square test 175
Chinese remainder theorem 398,

414–418, 423
Classical limit 12
Classification 311
Cluster analysis 245

– biclustering 255
– gene-based clustering 246
– hierarchical clustering 246, 248
– – agglomerative hierarchical

clustering 248
– – divisive hierarchical clustering

248
– – UPGMA 247
– model-based clustering 253
– partitional clustering 245, 250
– – fuzzy-c-means 251
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– – k-means 247, 250
– – self organizing feature maps

247
– – self-organizing feature maps

252
– sample-based clustering 246
– semi-supervised clustering 259
– spectral clustering 254
– – graph clustering 254
– – mincut 254
– – Ncut 254
– – non-negative matrix

factorization 255
– – random-walk 255
– – RatioCut 254
– – spectral bisection 254

Co-occurance 284
Code

– algebraic–geometric 360
– Gilbert–Varshamov bound 357
– Hamming bound 357
– Hermite 363, 367
– linear 355
– Reed–Solomon 362, 367
– Singelton bound 356

Complete reducibility 184
Computational neural models 142
Computer Vision 273, 274

– background from Computer
Vision 275

Concept 311
– class 312

Confinement and asymptotic freedom
104, 109

Confluent hypergeometric system 74
Congruent domains 60
Connes, Alain 50
Consistency problem 170
Contingency table 257
Convolution 348
Cosmic Microwave Background

Radiation (CMB) 112, 276, 286,
287, 303, 305
– CMB anisotropy 112
– fluctuations of the CMB 276

Counting function 3, 19, 40
Covariance and correlation 282
Covariance matrix 253
Covariant derivative, parallel transport

and gauge principle 104
Cramér 31, 32
Critical line 47
Cryptography 395

Curse of dimensionality 245
Curvature

– centroids 306
– gaussian 300
– mean 300
– principal radii 300, 302
– tensors 306

d
δ-function 405, 407, 428

– square root of 428
Decoding

– bounded minimum distance
365

– Dorsch 376
– Feng-Rao 365
– hard-decision 360, 368
– interpolation-based 368
– maximum a posteriori, MAP

359
– maximum likelihood, ML 359
– of Reed–Solomon codes 368,

372
– power 372
– soft-decision 360, 373, 376
– Sudan 368

δ-random source 462
Dendrite 138
Dendritic tree 138
Density of states 10, 13
Deoxyribonucleic acid 159
Detection rate 323
Deterministic chaos 38
Differential equation 161

– partial 162
Diffusion equation see Heat equation
Dipole of neurons 382
Dirac distribution 346
Dirichlet L-series 29
Dirichlet boundary condition 3
Dirichlet regular domain 54, 57
Dirichlet’s theorem 342
Dissipativity of a system 388
Distance 249

– inter-cluster distance 249
– – centroid 250
– – complete linkage 250
– – group average 250
– – median 250
– – single linkage 250
– – unweighted average 250
– – Ward’s method 250

Divide and Conquer 455
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DM-profile 127
DNA see Deoxyribonucleic acid
Domain approximation 59
Dual group 441
Dynamic-Threshold model 146
Dynamical system 382

e
Eigenfunction 55, 60, 338
Eigenvalue 55, 60, 338
Einstein 7, 10, 15, 17, 18
Elliptic curve method 435
EM algorithm 254
Energy conservation 112
Entangled photons 411
Entanglement 396, 401, 408–411
Entanglement and quantum

teleportation 102
Entropy 174, 458
Equilibrium point 385
Error

– empirical margin 318
– generalization 318
– training sample 317

ETSI DSR front-end 202
Euclidean algorithm 395, 398, 400,

401, 420
Euler Characteristic (EC) 299
Euler constant 47
Euler’s φ-function 398, 414, 417–421
Euler-Lagrange equations 111, 118
Example oracle 312
Excursion set 299
Exponential ansatz of Magnus 76
Exponential speedup 396, 397, 409,

410

f
Faber–Krahn inequality 62
Factor ring 447
False positive rate 323
Feature

– compression 203
– enhancement 380
– extraction 202, 222–238

Feedforward and feedback neural
processing 380

Fermat’s little theorem 399
Fermi constant GF 113
Feynman-Dyson series 78
Filtering Process 290
FiltEx 316
Finding ring automorphism 448

Firing-rate model 146
Fix-automorphism 446
Fixed-Point, arithmetic 204
Flavor 105
Floquet exponents 93
Floquet theory 92
Fluctuating part of the counting

function 30
Fourier coefficients 341
Fourier descriptors 297
Fourier series 341
Fourier transform 22, 284, 285, 437,

440
– distribution 346
– function 345

Fourier-Bessel transform 23
Friedmann–Lemaître universes 115,

276
– Robertson–Walker (RW) metric

124, 128
– – Friedmann–Lemaître equations

128–130
Functional determinant 29
Functional genomics 244
Fundamental matrix 75

g
Gabor filter 292
Gabor filter bank 293
Gating mechanism 381
Gauge bosons 104, 113
Gauss circle problem 20, 30, 32
Gauss sum 398, 410, 429
Gauss–Bonnet theorem 300
Gaussian 290
Gene regulatory network 157
General number field sieve 435
General Relativity (GR) 111, 276

– Einstein field equations 101,
118, 122–124, 276

– – Poisson equation 126
– Hilbert–Einstein action 101,

116
– horizon singularity 125
– Schwarzschild metric 125

Generalised Logical networks 161
Gevrey asymptotics 85
Grand Unified Theory (GUT) 118
Graph isomorphism 433, 435
Graph Laplacian 254
Gravitational coupling G 111–113,

119, 121, 122, 126
Gravitational mass 110
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Gravitational strength 115, 116, 120,
122

Green function 5
Gutzwiller trace formula 54

h
Hadamard-Gutzwiller model 37, 38
Hamilton principle 101, 118
Hardy conjecture 21
Harmonic oscillator 402, 404, 409
Heat equation 57, 63
Heat maps 247
Hebbian learning rule 208
Heisenberg’s uncertainty relation

102
Hidden Markov models 206
Hidden subgroup problem 439
Higgs field equation 118, 120, 121,

125, 126, 128
Higgs gravitation 110, 114
Higgs potential 109, 116, 119, 121
Higgs-like fields 114

– Compton length scale l 121,
125, 126

– ground state value 113, 119, 122
– scalar field excitation 120, 123

Hilbert 2, 8
Hilbert space 396, 409, 410

– dimensionality of 396, 409
Hilbert–Polya conjecture 50, 51, 53
Hilbert–Schmidt operator 56
Hilbert-Polya conjecture 49
Hill equation 93
Histogram 282
Hoare, C.A.R. 455
Hodkin–Huxley model 140
Hubble parameter H 129
Huber’s law 51
Hyperbola billiard 53
Hypergeometric system 73
Hypothesis 311
Hypothesis boosting problem 312

i
Image analysis 273
Image Registration 287
Inertial mass 110
Infinite matrix 191
Inflation 115, 131
Inhibitory kernel 381
Input filtering 381
Integer factorization 433, 434
integrable billiards 36

Integral geometry 302
Integrate-and-Fire model 146
Interference 396–410, 427–429
Invariant subspace 189
Inverse spectral problem 59
Isospectral domains 59, 61

j
Jeans 7, 14–17
Joint histogram 283

k
k-summability 86
Kac 2, 18, 26
Kaluza-Klein’s theory 111
Kernel 55, 56, 58
Kirchhoff 1, 8, 9

l
Language

– Model 207
Laplace–Beltrami operator 28, 29,

38, 42
Laplacian of Gaussian 292
Laplacian on the torus 19
Lateral connections 380
Lattice point problem 20
Leaky integrate and fire model 143
Learn 313, 326
Learnable

– strongly 312
– weakly 312

Learner 311
Learning 211

– supervised 311
Length spectrum 24, 25, 44
Likelihood 253
Linearization 387
Lorentz 1–15
Low-pass filter 335, 336

m
Maass waveform 43
Mach’s principle 110, 112
Machine learning 172
Majority vote 314
Majority vote game 315
Margin 318
Mathieu equation 93
Maximum principle

– parabolic 57
Maxwell 9, 11, 16, 17
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Measurement problem of QM 101,
102

Median-of-three QuickSort 459
Memory

– autoassociative 208
– heteroassociative 207

Method of stationary phase 397, 407,
408

Microarray 170, 244
Minkowski Functionals (MFs) 301,

305
Minkowski Valuations (MVs) 301,

303, 307
Mixture model 253
Mode function 396, 406–409,

425–428
Modular exponentiation 395, 398–

400, 408, 409, 412, 417, 420,
429

Morphological Filtering 294
Morse theorem 300
Multi-summability 89
Multi-Threading 204
Multiple channel model 143, 144,

146
Multiplexing 337
Mutual information 174

n
Naïve Bayes classifier 223, 233–239
Nearest neighbor classifier 227, 236,

237
Nearest-neighbor classifier 232, 235,

239
NEM see Nested effect models
Nerve Cell, Soma 138
Nested effect models 161
Neumann boundary condition 4
Neuron 379
Nobel prize 103, 104, 106, 112
Noise 319
Number theory 395, 396, 398, 414

o
Objective function 246, 250
Observable 101
ODE 73

– confluent hypergeometric 74
– Hill 93
– hypergeometric 73
– Mathieu 93
– periodic 92
– system 73

One-step retrieval strategy 208
Order 437
Order isomorphism 64
Orthogonality relation 441
Overfitting 318

p
PAC 312
q̂ parameter of the fermionic coupling

118
Partition function 25
Pattern recognition 222–224
PDE 90

– heat equation 74
– Schrödinger equation 79, 95

Penrose-Hawking energy condition
131

Periodic boundary conditions 19
Periodic ODE 92
Periodic orbits 24
Periodicity 398–429

– mapping of 396, 401, 403
Perturbation

– linear 91
– regular 79
– singular 79

Phase distribution 404, 405, 407
Phase factor 429
Phase grating 395, 396
Phase space 408, 409

– interference in 408, 409
Phase state 404
Physical Cosmology 273, 274

– background from Physical
Cosmology 275

Plancherel’s theorem 345
Planck 2, 7, 8, 12, 14, 15, 17
Planck’s constant 3, 12
Planck’s law 9, 12–16
Poincaré

– -disk model 37
– rank 91
– recurrence map 50
– upper half plane 42

Point neuron 142
Poisson summation formula 21, 348
Polar set 62
Pollard’s ρ-method 435
Polynomial representation 448
Polynomial ring 447
Power series 80
Power spectrum 285
Pre-trace formula 23, 38, 39
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Prime geodesic theorem 51
Prime number 399, 418, 421–423,

434
Prime number theorem 51, 399, 434
Primitive root 395, 398, 419–423
Principle of equivalence 110
Probability amplitude 397, 405,

407–409, 427, 428
Problem of definite outcomes 102
Problem of the preferred basis 102
Projection

– Mollweide 279
– perspective 278
– stereographic 279

Projective measurement 396, 406,
407

Pseudorandom number generator
456

Pure tones 60

q
Quadratic forms 434
Quantization 336
Quantization condition 47
Quantum

– chaos 38, 80
– computation 395
– Fourier transform 437
– graph 186
– information theory 102
– mechanical implementation

395, 396, 406, 410
– mechanics 396, 400, 404, 409
– query model 444
– state 397, 402–405, 409, 426
– system 396, 397, 401, 404–406,

409
– walk 445, 446

Quarks and hadrons 103, 104
QuickSort 455

r
Rabin’s probabilistic primality test

399
Rall model 139
Rall’s linear cable model 140
Raman–Nath approximation 396,

426
Random QuickSort 456
Rayleigh 1, 2, 14–18
Rayleigh’s law 10–12, 15
Rayleigh–Einstein–Jeans law 11–16,

18

Regular perturbation 79
Regular point 80
Residue 398, 411, 413, 414, 416, 421
Residue classes 411, 415, 417, 418
Resolvent 46
Resolvent kernel 5, 39
REVEAL 174
Reverse engineering 170
Ricci curvature scalar R 119, 123
Riemann hypothesis 47, 49
Riemann surface 25, 29, 37, 38, 44,

45, 52
Riemann zeta function 29, 37, 47,

49, 51
– zeros 49–51, 53

Riemann–Roch space 363
Riemann–von Mangoldt formula 49
Ring 447
Ring automorphism 448
Ring isomorphism 447, 448
Robin boundary conditions 5, 52
Ruelle zeta function 50

s
Sampling theorem 333, 340
Scalar-tensor theory (STT) 111

– action with Higgs potential 116
– Bergmann–Wagoner (BW) class

112, 115
– Bergmann–Wagoner action 115
– Brans-Dicke’s theory 110, 112
– Einstein and Jordan conformal

frame 112, 116
– Jordan’s theory 111
– Jordan-Brans-Dicke action 112
– massive fields in STTs 113
– Zee’s broken-symmetric

gravitation 113
Scattering of atoms 395, 397, 407,

409
Schwartz function 344
Scientific maxims 100
Selberg trace formula 19, 25, 37,

42–52
Selberg zeta function 37, 45–50, 54

– zeros 47
Self-organization 165
Semantic analysis 219, 220
Semantic term classes 227–231, 239
Semigroup 55, 58
Series

– asymptotic 84
– Feynman-Dyson 78
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Shah-Function 347
Shannon, C.E. 457
Shapefinders 304, 306, 307
Shor’s algorithm 395, 398–405, 409,

410, 429
Sieve methods 435
Signal 334

– analog 333, 335
– band-limited 333, 335
– digital 335, 336
– discrete-time 335
– elementary 336
– processing 336
– transmission 336

Simple Dynamic-Threshold model
146

Simple firing-rate model 146
Simulation 161
Sine cardinal 334, 340, 347
Singular perturbation 79
Singular point

– first kind 81, 82
Slightly random source 462
Sommerfeld–Lorentz conjecture 1,

2, 5–7
Sommerfeld-Lorentz conjecture 7,

10, 11
Sorting 455
Special Relativity 101, 103
Spectral

– function 22, 40
– geometry 25
– zeta function 28

Spectrum of the Laplacian 25
Speech recognition, automatic 200
Spherical symmetry 115, 124
Spike Counter model 149
Spike-Response model 146
Spike-Timing dependent plasticity

152
Spiking Neurons 143
Spoken language dialog systems

219, 220
Spontaneous Symmetry Breaking

(SSB) 109, 113, 119
– Higgs–Kibble mechanism 103
– Higgs-Kibble mechanism 110,

118
– Nambu-Goldstone mechanism

109, 120
– Wigner-Weyl mode 109

Standard Model (SM) 103, 109–122,
276, 286

Star (graph theoretical) 192
State space 162
Statistical joint central moments 297
STDP 152
Stefan–Boltzmann law 9, 12
Stereography 298
Stochastic geometry 301
Structure tensor 295
Summation rule 403, 410
Superconductivity 109
Supersymmetry 106
Surface area 60
Symbol alphabet 337
Symbol interval 337, 338

t
Table representation 447
Tauberian theorem 26, 53, 57
Tempered distributions 344
Term weighting 222, 233, 236, 237,

239
Theorem of Hartman–Großman 387
Thermodynamical limit 13
Tonic input 382
Topological entropy 51
Topology 299
Trace

– formula 19, 54
– – on the torus 22, 23
– of the heat kernel 25, 44
– of the resolvent 45

Two-point correlation function 285

u
Unbounded quantum billiards 53
Unitary group 188
Unitary operation 401, 402, 409
Universe composition

– dark energy
– – cosmic acceleration 131
– – cosmological constant 107,

116
– – cosmological function 108,

112, 113, 115, 116, 119, 123, 130
– – quintessence 107, 125
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108, 130
– dark matter 106, 107
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– non-hadronic matter 105
Utterance classification 220–239

v
Validation 257

– Fowlkes and Mallows index 258
– Jaccard index 258
– MCA index 258
– Rand index 258

Vector space model 233, 237, 239
Vertex classification 436
Voltage-based neural models 138

w
Wave equation 60
Wave function 183

WeakLearn 313
Weil’s explicit formula 49
Weyl 2–5, 7, 8
Weyl’s law

– bounded domain 55, 59
– for the torus 26

Whittaker–Hill formula 94
Wien’s displacement law 9, 17
Wien’s law 8, 10, 12, 14, 17
Willshaw model 148, 208
WMAP 108, 277, 286
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Yang-Mills theory 103
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