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Abstract

Appropriate corrections and generalizations of the Coulson–Jacobs formula are reported.
We also extend the Coulson integral formula to the case when not all the zeros of the
underlying polynomial are real and simple.

INTRODUCTION: THE COULSON AND COULSON–JACOBS

FORMULAS

In quantum chemistry the energies of the electrons in organic molecules are usually

computed by solving a pertinent approximate Schrödinger equation [1, 2]. The sum

of the electron energies, referred to as the total electron energy, is an important
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characteristic of the underlying molecule, from which chemists are able to draw far-

reaching conclusions on its chemical and physical properties. Within the so-called

Hückel molecular orbital approximation, the total electron energy is found to be equal

to two times the sum of the positive zeros of a particular polynomial, the so-called

characteristic polynomial. In the early days of molecular orbital theory, Coulson [3]

discovered a formula that makes it possible to compute the total energy E (i. e., the

sum of the positive zeros of the characteristic polynomial, times two) without actually

knowing these zeros. The expression, that in what follows we refer to as the Coulson

formula, reads [3]:

E =
1

π

∫ +∞

−∞

[
n − ix

P ′(ix)

P (x)

]
dx (1)

where P (x) is the characteristic polynomial, P ′(x) is its first derivative, n the degree

of P (x) , and i =
√
−1 . More details on the Coulson formula and its numerous

applications can be found in [4–10], and in the references cited therein. For some of

its most recent applications see [11–14].

All the zeros of the characteristic polynomial are real–valued numbers, and their

sum is equal to zero. Therefore, the quantity E on the left–hand side of Eq. (1) is

equal to the sum of the absolute values of all zeros of P (x) . This observation led to

the introduction of the concept of the energy of graphs [15].

In another early paper, Coulson and Jacobs [16] reported an elegant expression

for the difference of the E-values, pertaining to characteristic polynomials P1(x) and

P2(x) whose degrees are equal. This expression, that in what follows we refer to as

the Coulson–Jacobs formula, reads:

E1 − E2 =
1

π

∫ +∞

−∞
ln

[
P1(ix)

P2(ix)

]
dx . (2)

Formula (2) found remarkably many applications in theoretical chemistry; for

details see the review [17], the papers [18–24], and the references cited therein.

In the recent work [10], published more than half a century after Coulson’s [3],

we showed that the integral formula (1) holds if and only if the sum of zeros of the

underlying polynomial is equal to zero. We also showed how this formula has to be

modified, so that it be applicable in the case when this sum is not zero. In the present

paper we extend this result to the case when not all zeros of the polynomial are real
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and simple.

In many of the reported applications of (2), the zeros of the polynomials P1 and/or

P2 may be complex–valued, and their sums need not be equal to zero. Therefore it

seems to be of interest to precisely determine the conditions under which (2) is valid,

and to establish the corrections that need to be done when it fails to be valid. The

main purpose of the present paper is to show how the Coulson–Jacobs theorem [16]

has to be modified, so that it can be applicable in the general case.

More precisely, we define the branch of LnR , where R is the corresponding rational

function, and introduce a new term in the original Coulson–Jacobs formula.

In order to achieve our goals we need some preparations.

2. PRELIMINARIES

Let P be a polynomial of degree n , and let a1, a2, . . . , ah be its mutually distinct

zeros. Define:

Φ(z) = ΦP (z) = z
P ′

P
− n ; Π+ = {z : Re z > 0} ; Π− = {z : Re z < 0} .

If all zeros of P are simple (i. e., h = n), then

Φ(z) =
∑ aν

z − aν

=
∑

aν Kaν (z)

where

Ka(z) =
1

z − a
. (3)

Let s , s+ , and s− denote the sum of zeros of P in C , Π+ , and Π− , respectively,

counting multiplicities. If nν is the multiplicity of aν , then s =
∑

nν aν and

Φ(z) =
∑

nν
aν

z − aν

=
∑

nν aνKaν (z) .

By v.p. we denote the principal value of the Cauchy integral (cf. [25–27] and the

Appendix).

Let a ∈ Π+ , and let arg be the branch of the argument of a , whose values belong

to (0, 2π) . Let further ϕ(z) = ϕa(z) = ln(z − a) be the corresponding branch of the

logarithm defined by ln(z − a) = ln |z − a| + i arg(z − a) . Then ϕa is a primitive

function of Ka in the half plane Π− (see e. g. [25–27]).
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Since, ϕ(+∞ i) − ϕ(−∞ i) = iπ/2 − i3π/2 = −iπ , we arrive at:

Claim 1. If a = aν ∈ Π+ , then

v.p.
∫ +∞

−∞
Ka(iy) dy = −π .

In a similar way, using the branch arg of the argument by values in (−π, +π) and

the corresponding branch of the logarithm, we get:

Claim 2. If a = aν ∈ Π− , then

v.p.
∫ +∞

−∞
Ka(iy) dy = π .

Noting that v.p.
+∞∫
−∞

(1/y) dy = 0 , in a similar way we deduce:

Claim 3. If a = aν is purely imaginary, then

v.p.
∫ +∞

−∞
Ka(iy) dy = 0 .

Define K(a) = v.p.
+∞∫
−∞

Ka(iy) i dy , where Ka(z) is as in Eq. (3). Then

K(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−iπ if a ∈ Π+

0 if a is purely imaginary

iπ if a ∈ Π−

.

In what follows we are concerned with the Coulson–type integrals (cf. Eq. (1)):

J = J(P ) = v.p.
∫ +∞

−∞
Φ(iy) dy, ; I = i J ; I0 =

I

2π i
=

J

2π
.

Let Z0 = {bk} be the set of all zeros of the polynomial P , such that Re bk = 0 and

let s0 =
∑

nk bk , where nk is the multiplicity of bk .

Since Φ =
∑

nν aν Kν , from Claims 1–3 it follows that

I = −i π s+ + i π s−

and

J = π s− − π s+ = (s− − s+)π (4)

i. e., J = (s − s0 − 2s+)π and thus I0 = (s − s0)/2 − s+ .
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3. ON THE COULSON–JACOBS FORMULA

Let P1 and P2 be two polynomials and let sk be the sum of zeros of Pk in C ,

k = 1, 2 . By (4),

J∗ = J(P1) − J(P2) = J1 − J2 = π(s−1 − s+
1 + s+

2 − s−2 ) .

Thus we proved:

Theorem 1. In the above specified notation, J = (s− − s+) π and J1 − J2 = π (s−1 −
s+
1 + s+

2 − s−2 ) .

The Coulson–Jacobs formula (2) is a corollary of the Coulson integral formula (1).

It is convenient to state it in the form:

Theorem 2. Let P1 and P2 be two polynomials of the same degree, R = P1/P2 ,

R(∞) = 1 , and J∗ = J(P1)−J(P2) . Suppose in addition that P1 and P2 do not have

purely imaginary zeros. Then

J∗ = −v.p.
∫ +∞

−∞
[ln R(iy)] dy .

First, we observe that we need to define the branch of LnR , where R is the

corresponding rational function, for which the original Coulson–Jacobs formula is

valid. It turns out that we can do this only under very restrictive conditions. In order

to overcome these difficulties we introduce a new term, concerning the variation of

the argument of R along the y-axis, in the original Coulson–Jacobs formula, and we

prove a new version.

Let P1 and P2 be two polynomials, R = P1/P2 and

Ψ(z) = z
P ′

1

P1

− z
P ′

2

P2

.

Suppose that degP1 = degP2 = n , n ≥ 1 , and that P1 and P2 do not have purely

imaginary zeros. Then limR(z) = c �= 0 when z tends to ∞ . It is convenient to

suppose that c = 1 , that is R(∞) = 1 .

Then there is an ε > 0 such that P1 P2 has no zeros in V = Vε = {z : |Re z| < ε} .

Hence, since V is simply connected, there is a branch S = lnR of LnR in V , such
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that

Ψ(z) = z [(ln P1)
′ − (ln P2)

′] = z (ln P1/P2)
′ = z (ln R)′ .

Let for k = 1, 2 , nk and n+
k be the number of zeros of Pk in C and in Π+ , respectively,

counting multiplicities, and let m = n+
1 − n+

2 .

Let sk be the sum of zeros of Pk in C , k = 1, 2 , and let a = s2 − s1 . Then

P1/P2 = 1 + a/z + 0(1/z) and R(iy) = 1− i a/y + 0(1/y) , when y tends to ∞ . We

can choose the branch such that S(iy) = lnR(iy) = −ia/y +0(1/y) , when y tends to

+∞ .

For y ∈ R , let ϕ(iy) = Im ln R(iy) , f(y) = y [ln R(iy) − i π m] , and Υ(y) =

f(y) − f(−y) . It is clear that Υ(y) = −Υ(−y) and

Υ(y) = y [ln R(iy) − i π m] + y [ln R(−iy) − i π m]

= y [ln R(iy) + ln R(−iy) − i 2π m] .

It is also convenient to use the notation arg R(iy) instead of ϕ(iy) .

The proof of Theorem 2 is based on the following:

Lemma 3. There exists a constant c ∈ C , such that for y → ∞ ,

ln R(iy) + ln R(−iy) = 2
c

y2
+ 0

(
1

y2+ε

)
+ i 2π m . (5)

As immediate corollaries of Lemma 3 we have:

1. Υ(y) → 0 when y → ∞ .

2. The integral v.p.
+∞∫
−∞

[ln R(iy) − i π m] dy is finite.

Proof of Lemma 3. We first demonstrate that

ϕ(iy) − ϕ(−iy) → −2π m for y → +∞ . (6)

Let the curve Cr = C+
r be defined by Cr(θ) = C+

r (θ) = r ei θ (−π/2 ≤ θ ≤ π/2).

For r > 0 , let Λ and Λr , be defined by Λ(t) = i t , −∞ < t < +∞ , and Λr(t) = i t ,

−r < t < +r , respectively. Let Γr be the curve consisting of C+
r and −Λr .

Since R(z) → 1 when z tends to ∞ , by the basic formula for V ar arg , we have

lim
r→+∞V ar argC+

r
R = 0 .
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Choose r0 such that all zeros of P1 P2 are in the disk {z : |z| < r0} . For r > r0 ,

by the Argument Principle (see e. g. [25–27]), we conclude

V ar argΓr
R = 2π(n+

1 − n+
2 ) = 2π m

and therefore

V ar argΛr
R → −2π m r → +∞ .

Hence

V ar argΛ R = −2π(n+
1 − n+

2 ) = −2π m .

Since ϕ(iy) − ϕ(−iy) = arg R(iy) − arg R(−iy) = V ar argΛy
R , we find that

ϕ(iy) − ϕ(−iy) → −2π m for y → +∞ .

By this we prove (6).

In order to complete the proof of Lemma 3, note that there exists an ε > 0 and

b ∈ C , such that

R(iy) = 1 − i
a

y
+

b

y2
+ 0

(
1

y2+ε

)
for y → ∞ .

Let ln0 be a branch of Log in a neighborhood of the point 1 , defined by ln0(1) = 0 .

When y → +∞ , we have

ln R(iy) = ln0[R(iy)] = −i
a

y
+

c

y2
+ 0

(
1

y2+ε

)
; c ∈ C .

There exists a y0 > 0 , such that lnR(−iy) and ln0[R(−iy)] are two branches of

LnR(−iy) in Ly0 = {y : y > y0} . Hence there is a k ∈ Z (actually, we are going to

show that m = k) such that

ln R(−iy) = ln0[R(−iy)] + i 2π k = i
a

y
+

c

y2
+ 0

(
1

y2+ε

)
+ i 2π k .

Hence

ln R(iy) + ln R(−iy) = 2
c

y2
+ 0

(
1

y2+ε

)
+ i 2π k (7)

ϕ(iy) = −α

y
+

β

y2
+ 0

(
1

y2+ε

)
; α, β ∈ R

and

ϕ(−iy) =
α

y
+

β

y2
+ 0

(
1

y2+ε

)
+ 2π k
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and therefore,

ϕ(iy) − ϕ(−iy) = −2
α

y
+ 0

(
1

y2+ε

)
− 2π k . (8)

If y → +∞ , then, by (6), ϕ(iy) − ϕ(−iy) → −2π m and, then by (8),

ϕ(iy) − ϕ(−iy) = +ε(y) − 2π k

for ε(y) → 0 . It follows that m = k , and by (7) we obtain (5), i. e., we proved

Lemma 3.

Theorem 4. Let P1 and P2 be two polynomials of the same degree. Let for k = 1, 2 ,

n+
k be the number of zeros of Pk in Π+ , counting multiplicities, and m = n+

1 − n+
2 .

Let R = P1/P2 , R(∞) = 1 , and J∗ = J(P1) − J(P2) . Suppose, in addition, that P1

and P2 do not have purely imaginary zeros. Then

J∗ = −v.p.
∫ +∞

−∞
[ln R(iy) − i π m] dy

and

J∗ = π (s−1 − s+
1 + s+

2 − s−2 ) = −v.p.
∫ +∞

−∞
[ln R(iy) − i π m] dy . (9)

Proof. Recall that

f(y) = y [ln R(iy) − i π m]

and

Υ(y) = f(y) − f(−y) = y [ln R(iy) + lnR(−iy) − i 2π m] .

Since k = m , by (5),

Υ(y) = y

[
2

c

y2
+ 0

(
1

y2+ε

)]
.

Thus Υ(y) → 0 when y → ∞ and y [ln R(iy) − i π m]
∣∣∣+∞
−∞ = 0 .

By partial integration and Lemma 3,

J∗ = v.p.
∫ +∞

−∞
Ψ(iy) dy = y [ln R(iy) − i π m]

∣∣∣+∞
−∞ − v.p.

∫ +∞

−∞
[ln R(iy) − i π m] dy

from which Theorem 4 immediately follows.

Note that it is convenient to use the formula (9) for computations of certain

integrals.
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4. APPENDIX

In this section we re-state some facts from the theory of functions with complex

variables [25–27], that were explicitly or implicitly utilized in our considerations.

The Cauchy theorem. Recall that Ka is defined via Eq. (3).

Let γ be a closed simple piecewise continuously differentiable curve and G =

Int(γ) . If f is a holomorphic function on G , then

f(z) =
1

2 π i

∫
γ

f(ζ)

ζ − z
dζ z ∈ G .

In particular,

C(a) =
∫

γ
Ka dz =

⎧⎨⎩ 2πi if a ∈ Int(γ)

0 if a ∈ Ext(γ)
.

The Jordan lemma. a) Let the curve Cr = C+
r be defined by Cr(θ) = C+

r (θ) = r ei θ

(−π/2 ≤ θ ≤ π/2). If f is a continuous function on Π+ and zf(z) → A when

Π+ 	 z → ∞ , then

lim
r→+∞

∫
Cr

f(z) dz = i π A .

b) In particular, if f is holomorphic in a neighborhood of ∞ and has a zero of

order at least 2 at ∞ , then

lim
r→+∞

∫
Cr

f(z) dz = 0 .

We may use b) to prove the Coulson formula if s = 0 .

Branches of Ln . For z �= 0 , we define Arg z = {ϕ ∈ R : z = |z| eiϕ} and

Ln z = ln |z| + i Arg z .

Let P1 and P2 be two polynomials of the same degree, R = P1/P2 . Suppose,

in addition, that P1 and P2 do not have purely imaginary zeros. For s ∈ R , let

ls = [0, is] be an oriented segment.

Put R(0) = |R(0)| ei ϕ0 (note that R(0) �= 0). Let further, θ(iy) = V ar argly R

and ϕ(iy) = arg R(iy) = θ(iy) + ϕ0 . Then R(iy) = |R(iy)| eϕ(iy) and therefore

ln R(iy) = ln |R(iy)| + i arg R(iy) is a branch of LnR .
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Example 1. Let R(z) = (z − 1)/(z + 1) . Then m = 1 , a = 2 , R(0) = −1 ,

and we can choose ϕ0 = π . For y → +∞ , we have ϕ(iy) → 0 , ϕ(−iy) → 2π ,

ln R(iy) = −i 2/y + c/y2 + 0(1/y2+ε) , and ln R(−iy) = ln R(iy) + i 2π . Hence, since

s−1 − s+
1 = 0 − 1 = −1 and s+

2 − s−2 = 0 − (−1) = 1 , it follows that

J∗ = −v.p.
∫ +∞

−∞
[ln R(iy) − i π] dy = 0 .

It can be shown that for y → ∞ ,

ln |R(iy)| = 1 and ϕ(iy) + ϕ(−iy) = 2π . (10)

From (10) it also follows that J∗ = 0 .

Example 2. If R(z) = R(z̄) and R(0) > 0 , then we can choose ϕ0 = 0 and

therefore ϕ(−iy) = −ϕ(iy) , i. e., ϕ(iy) + ϕ(−iy) = 0 . In this case, ϕ(iy) → −mπ ,

ϕ(−iy) → mπ when y → +∞ . Since, mπ ∈ Arg 1 , then m is even. For instance,

this is the case if all zeros of P1 and P2 are real, and R(0) > 0 , e. g., if R(z) =

[(z − 1)(z − 2)]/[(z + 1)(z + 2)] .
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