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Abstract It is proved that every quasiconfomal harmonic mapping of the unit disk
onto a surface with rectifiable boundary has absolutely continuous extension to the
boundary as well as its inverse mapping has this property. In addition it is proved an
isoperimetric type inequality for the class of these surfaces. These results extend some
classical results for conformal mappings, minimal surfaces and surfaces with constant
mean curvature treated by Kellogg, Courant, Nitsche, Tsuji, F. Riesz and M. Riesz,
etc.
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1 Introduction and Background

A mapping u = (u1, . . . , un) : D → Rn is called harmonic in a region D ⊂ C
if for k = 1, . . . , n, uk is real-valued harmonic functions in D; that is uk is twice
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differentiable and satisfies the Laplace equation

�uk := uk xx + uk yy = 0.

Let

P(r, x) = 1 − r2

2π(1 − 2r cos x + r2)

denote the Poisson kernel. Then every bounded harmonic mapping u : U → Rn ,
n ≥ 1, defined on the unit disc U := {z : |z| < 1} has the following representation

u(z) = P[ f ](z) =
2π∫

0

P(r, x − ϕ) f (eix )dx, (1.1)

where z = reiϕ and f is a bounded integrable function defined on the unit circle S1.
The Hardy space H p (h p) for 0 < p < ∞ is the class of holomorphic functions

f : U → C (harmonic mappings u : U → Rn) on the open unit disk satisfying

sup
0<r<1

⎛
⎝ 1

2π

2π∫

0

∣∣∣ f (reiθ )

∣∣∣p
dθ

⎞
⎠

1
p

< ∞.

⎛
⎜⎜⎝ sup

0<r<1

⎛
⎝ 1

2π

2π∫

0

∥∥∥u(reiθ )

∥∥∥p
dθ

⎞
⎠

1
p

< ∞

⎞
⎟⎟⎠ .

By ‖ · ‖ is denoted the Euclidean norm in Rn .
A diffeomorphism ϕ : � → �′, where �,�′ ⊂ C is called K (K ≥ 1) quasicon-

formal if

|ϕz̄ |
|ϕz | ≤ K − 1

K + 1
,

or what is the same if

|ϕz |2 + |ϕz̄ |2 ≤ 1

2

(
K + 1

K

)
(|ϕz|2 − |ϕz̄|2).

Note that, in our context is enough to assume that ϕ is diffeomorphism, however,
the classical definition of quasiconformality assumes weaker conditions (cf. [1, pp. 3,
23–24] ). See also [27].

Let X be a conformal mapping of the unit disk onto a smooth two-dimensional
surface M2 ⊂ Rn . A diffeomorphism u : U → M2 ⊂ Rn is called K quasiconformal
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(K ≥ 1) if the mapping ϕ := X−1 ◦ u is K quasiconformal. It can be easily shown
that a mapping u is K quasiconformal if and only if

‖ux‖2 + ‖uy‖2 ≤
(

K + 1

K

)(
‖ux‖2 · ‖uy‖2 − 〈

ux , uy
〉2)1/2

, z = x + iy ∈ U,

(1.2)

where by 〈·, ·〉 is denoted the standard inner product in the space R
n . If K = 1 then

(1.2) is equivalent to the system of the equations

‖ux‖2 = ‖uy‖2 and
〈
ux , uy

〉 = 0, (1.3)

which represent isothermal (conformal) coordinates of the surface M2. If u is har-
monic and satisfies the system (1.3) then M2 is a minimal surface. We will consider
harmonic quasiconformal mappings between surfaces and investigate their charac-
ter at the boundary. In some recent results, see [8–15,17,18,21–23] is established the
Lipschitz and bi-Lipschitz character of these mappings, providing that the boundary is
smooth enough (for example if it is C2). In this paper we study differentiable character
of quasiconformal harmonic mappings, assuming that the boundary of the surface is
less regular, more precisely we assume that it is rectifiable. If w is a conformal map-
ping of the unit disk onto a domain with rectifiable Jordan boundary, then w as well as
its inverse, has an absolutely continuous extension to the boundary and its boundary
function maps the null sets onto null sets (a result of Riesz [25]). This result has been
extended to the minimal surface by Tsuji [29]. Concerning quasiconformal mapping in
the plane Ahlfors and Beurling showed that the boundary function of a quasiconformal
mapping of the unit disk onto itself need not be absolutely continuous [2]. The similar
answer has been given by Heinonen for quasiconformal mappings in the space [5,6].
For boundary properties of minimal surfaces we refer to papers of Nitsche [19,20].
Since quasiconformal harmonic mappings are generalizations of conformal mappings
and quasiconformal harmonic surfaces are generalization of minimal surfaces, it was
intrigue to establish this problem for these class of mappings. For the first class (quas-
iconformal harmonic mappings between plane domains) the answer is positive and
this is a result of Mateljevic, Pavlović, Kalaj, for its proof see for example [7]. See
also [21] for the reproduction of this result. In this paper we show that, a harmonic
quasiconformal surface u : U = int S1 → M2 = intγ ⊂ Rn is absolutely continuous
on the boundary, as well as its inverse function has this property (Theorem 3.1 and
Remark 3.8). Using the previous fact we show that every quasiconformal harmonic
mapping is a “real part” of a conformal mapping, representing a minimal surface in
Cn with rectifiable boundary. This fact yields an isoperimetric inequality for quas-
iconformal harmonic surfaces (Theorem 3.5). Next we show that, the null sets in S1

corresponds to the null sets in γ and the null sets in γ corresponds to the null sets in
S1 (Theorem 3.7).
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2 Preliminary Results

Lemma 2.1 If u is K quasiconformal then for almost every z ∈ U

max{‖∇u(z)h‖ : |h| = 1} ≤ K min{‖∇u(z)h‖ : |h| = 1}, (2.1)

and

∥∥∥∥ ∂u

∂ϕ

∥∥∥∥
2

≥ r2

1 + K 2 (‖ux‖2 + ‖uy‖2). (2.2)

The condition (2.1) is also sufficient for u being K quasiconformal.

Proof Let h = (α, β) ∈ S1. Then

‖∇u(z)h‖2 = ‖ux‖2α2 + 2
〈
ux , uy

〉
αβ + ‖uy‖2β2.

This yield

max{‖∇u(z)h‖ : |h| = 1} =
√

(‖ux‖2 + ‖uy‖2)(1 + √
1 − 4η2)

2
(2.3)

and

min{‖∇u(z)h‖ : |h| = 1} =
√

(‖ux‖2 + ‖uy‖2)(1 − √
1 − 4η2)

2
, (2.4)

where

η = (‖ux‖2 · ‖uy‖2 − 〈
ux , uy

〉2
)1/2

‖ux‖2 + ‖uy‖2 .

According to (1.2)

η ≥ K

1 + K 2 . (2.5)

On the other hand

∂u

∂ϕ
= ruy cos ϕ − rux sin ϕ, z = reiϕ. (2.6)

Therefore
∥∥∥∥ ∂u

∂ϕ

∥∥∥∥ ≥ r min{‖∇u(z)h‖ : |h| = 1}. (2.7)
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Dividing (2.3) and (2.4), and using (2.5) we obtain (2.1). By (2.5), (2.4) and (2.7) we
obtain (2.2). ��
Assume that u : U → Rn is a harmonic mapping defined in the unit disk U. Consider
auxiliary family of mappings ωr (z) = u(r z). Then ωr is harmonic and there holds
ωr (z) = P[gr ](z) where gr (eiϕ) = u(reiϕ). Let

lr =
2π∫

0

||u(reiθ )||dθ

and choose ρ, r < 1. Take h ∈ Rn : ||h|| = 1. Then

∣∣∣∣∣∣
〈 2π∫

0

P(ρ, θ − ϕ)u(reiθ )dθ, h

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣

2π∫

0

P(ρ, θ − ϕ)
〈
u(reiθ ), h

〉
dθ

∣∣∣∣∣∣

≤
2π∫

0

P(ρ, θ − ϕ)|
〈
u(reiθ ), h

〉
|dθ

≤
2π∫

0

P(ρ, θ − ϕ)||u(reiθ )||dθ.

Therefore

∥∥∥∥∥∥
2π∫

0

P(ρ, θ − ϕ)u(reiθ )dθ

∥∥∥∥∥∥ ≤
2π∫

0

P(ρ, θ − ϕ)‖u(reiθ )‖dθ. (2.8)

By using (2.8) we obtain

2π∫

0

||u(rρeiϕ)||dϕ =
2π∫

0

‖ωr (ρeiϕ)‖dϕ =
2π∫

0

∥∥∥∥∥∥
2π∫

0

P(ρ, θ − ϕ)u(reiθ )dθ

∥∥∥∥∥∥ dϕ

≤
2π∫

0

2π∫

0

P(ρ, θ − ϕ)‖u(reiθ )‖dθdϕ =
2π∫

0

‖u(reiϕ)‖dϕ. (2.9)

Thus we proved the following lemma of Rado [24].

Lemma 2.2 The function r �→ lr considered before is increasing.

Lemma 2.3 Assume that u1, u2, . . . , um : U → R
n are harmonic mappings in the

unit disk U and continuous in U. Then the function f (z) = ∑m
i=1 ‖ui‖ satisfies the
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maximum principle

f (z) ≤ max|z|=1
f (z).

Proof Similarly as in (2.8) it can be proved that

‖ui (z)‖ ≤
2π∫

0

P(r, θ − ϕ)‖ui (e
iθ )‖dθ, z = reiϕ, i = 1, . . . m.

From the previous inequalities it follows that

m∑
i=1

‖ui (z)‖ ≤
m∑

i=1

2π∫

0

P(r, θ − ϕ)‖ui (e
iθ )‖dθ,

and therefore

f (z) ≤ max
θ∈[0,2π ]

m∑
i=1

‖ui (e
iθ )‖,

as desired. ��

3 The Main Results

Theorem 3.1 If u(z) = P[F](z) is a quasiconformal harmonic mapping of the unit
disk U onto a surface M2 ⊂ Rn bounded by a rectifiable Jordan contour γ , then F is
an absolutely continuous function.

We need the following two propositions.

Proposition 3.2 [26] For an analytic function f in the unit disk U to be continuous
in U and absolutely continuous in S1 it is necessarily and sufficient that f ′ ∈ H1.
If f ′ ∈ H1, then for a.e. θ ∈ [0, 2π) we have

d f (eiθ )

dθ
= ieiθ f ′(eiθ ),

where

f ′(eiθ ) := lim
r→1

f ′(reiθ )

and d f (eiθ )
dθ

is the derivative of the function θ → f (eiθ ).
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Proposition 3.3 [4] For an analytic function f in the unit disk U to have the
representation in U be means of Poisson integral

f (reiϕ) =
2π∫

0

g(eiθ )P(r, ϕ − θ)dθ,

where g ∈ L1(S1) it is necessarily and sufficient that f ∈ H1(U).

Proof of Theorem 3.1 Consider the function

lr =
2π∫

0

∥∥∥∥∂u(reiϕ)

∂ϕ

∥∥∥∥ dϕ, 0 ≤ r < 1.

Then r �→ lr is increasing and is equal to the length of the smooth curve u(S(r)),
where S(r) = r S1. On the other hand side the length of the curve u(S(r)) is equal to
the limit of the following sequence when n → ∞

sn
r (z) =

∥∥∥u(z) − u(ze2π i/n)

∥∥∥ +
∥∥∥u(ze2π i/n) − u(ze4π i/n)

∥∥∥
+ · · · +

∥∥∥u(ze2(n−1)π i/n) − u(z)
∥∥∥ ,

for every z ∈ S(r). By using Lemma 2.3, because the mapping u is continuous up to
the boundary, we obtain

sn
r (z) ≤ max

ϕ∈[0,2π ]

[
‖u(eiϕ) − u(eiϕe2π i/n)‖ + ‖u(eiϕe2π i/n) − u(eiϕe4π i/n)‖

+ . . . +‖u(eiϕe2(n−1)π i/n) − u(eiϕ)‖
]
.

Letting n → ∞ (because u(S1) is a rectifiable curve) we infer that lr < l(u(S1)) < ∞,
where l(u(S1)) denotes the length of l(u(S1)).

Next we have

u(z) = (Re(a1(z)), Re(a2(z)), . . . , Re(an(z))),

where ai are analytic functions.
Therefore

ux = (Re(a′
1(z)), Re(a′

2(z)), . . . , Re(a′
n(z))),

and

uy = −(Im(a′
1(z)), Im(a′

2(z)), . . . , Im(a′
n(z))).
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According to (2.2)

∥∥∥∥ ∂u

∂ϕ

∥∥∥∥
2

≥ 1

1 + K 2

n∑
k=1

|za′
k(z)|2. (3.1)

It yields that

|za′
i (z)| ≤

√
1 + K 2

∥∥∥∥ ∂u

∂ϕ

∥∥∥∥ .

Since

2π∫

0

∥∥∥∥ ∂u

∂ϕ

∥∥∥∥ dϕ ≤ μ (γ ) < ∞

we infer that

∂u

∂ϕ
∈ h1(U).

Therefore for i = 1, . . . , n we have

za′
i (z) ∈ H1(U)

and consequently

a′
i (z) ∈ H1(U).

By using Propositions 3.2 and 3.3 we obtain that for every i = 1, . . . , n there exists
an absolutely continuous function gi such that

ai (z) = P[gi (e
iθ )](z), i = 1, . . . , n.

Therefore

u = P[F](z),

where

F(eiθ ) = (Re g1(e
iθ ), . . . , Re gn(e

iθ ))

is an absolutely continuous function. ��
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Corollary 3.4 It follows from the previous considerations, together with the Fatou’s
lemma the relation

lim
r→1

lr =
2π∫

0

∥∥∥∥∂ F

∂ϕ

∥∥∥∥ dϕ = l(γ ).

We next prove an isoperimetric type inequality for quasiconformal harmonic surfaces.

Theorem 3.5 If M2 is a K quasiconformal harmonic surface spanning a rectifiable
curve γ ⊂ Rn then there hold the following isoperimetric type inequality

μ(M2) ≤ 1 + K 2

2

1

4π
(l(γ ))2, (3.2)

where μ denotes area and length respectively. This inequality is asymptotically sharp
as K → 1.

Remark 3.6 Courant ([3, Theorem 3.7, page 129]) proved the following inequality for
a harmonic surface M2 = u(U) spanning a rectifiable curve γ

μ (M2) ≤ 1

4
(l(γ ))2.

Proof Since every quasiconformal harmonic surface has the representation

u(z) = (Re(a1(z)), Re(a2(z)), . . . , Re(an(z))) : U → int(γ ) = M2 ⊂ Rn,

it defines a minimal surface with rectifiable boundary

w(z) = (a1(z), a2(z), . . . , an(z)) : U → int(�) = �2 ⊂ Cn .

Namely

||wx ||2 =
n∑

k=1

|a′
k(z)|2 =

n∑
k=1

|ia′
k(z)|2 = ||wy ||2

and

〈
wx , wy

〉 =
n∑

k=1

Re(ia′
k(z)a

′
k(z)) = 0.

According to (3.1), the minimal surface w is a surface with rectifiable boundary, and
thus it has an absolutely continuous extension to the boundary. It is well-known the
following isoperimetric inequality for minimal surfaces

A(w) ≤ 1

4π
L2(w), (3.3)
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where

A(w) = 1

2

∫

U

(‖wx‖2 + ‖wy‖2)dxdy = μ(�2)

and

L(w) =
∫

S1

|dw| = l(�).

Since

A(u) =
∫

U

√
‖ux‖2|uy |2 − 〈

ux , uy
〉2

dxdy = μ(M2)

it follows that

A(u) ≤ 1

2

∫

U

(‖ux‖2 + ‖uy‖2)dxdy

= 1

4

∫

U

(‖wx‖2 + ‖wy‖2)dxdy

= 1

2
A(w).

Therefore

A(u) ≤ 1

2
A(w). (3.4)

Next,

L(u) =
∫

S1

∥∥∥∥ ∂u

∂ϕ

∥∥∥∥ dϕ = l(γ ).

Since

∥∥∥∥∂w

∂ϕ

∥∥∥∥
2

=
n∑

k=1

|za′
k(z)|2,

from (3.1) we obtain

1√
1 + K 2

∥∥∥∥∂w

∂ϕ

∥∥∥∥ ≤
∥∥∥∥ ∂u

∂ϕ

∥∥∥∥ .
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Hence

1√
1 + K 2

L(w) ≤ L(u). (3.5)

From (3.3), (3.4) and (3.5) we infer

A(u)

L2(u)
≤ (1 + K 2)

2

A(w)

L2(w)
≤ 1 + K 2

8π
,

i.e.

μ(M2) ≤ (1 + K 2)

8π
(l(γ ))2.

��
The next theorem is an extension of the corresponding theorem for minimal surfaces

[29].

Theorem 3.7 If u = P[F] is a quasiconformal harmonic mapping of the unit disk U
onto a surface M2 with rectifiable boundary γ , then for every Lebesgue measured set
E ⊂ S1, F(E) ⊂ γ is measured and

μ(E) = 0 ⇔ μ(F(E)) = 0.

Proof Assume that μ(E) = 0. Prove that μ(F(E)) = 0. Since F is an absolutely
continuous function it follows that

l(γ ) =
2π∫

0

∥∥∥∥∂ F

∂ϕ

∥∥∥∥ dϕ,

i.e.
∥∥∥∥∂ F

∂ϕ

∥∥∥∥ ∈ L1.

Thus
∥∥∥∥∂ F

∂ϕ

∥∥∥∥ · χE ∈ L1

and

μ(F(E)) =
∫

E

∥∥∥∥∂ F

∂ϕ

∥∥∥∥ dϕ =
2π∫

0

∥∥∥∥∂ F

∂ϕ

∥∥∥∥ · χE dϕ = 0.
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Next we will prove that a null set on γ corresponds to a null set on S1. Let G be
a null set on γ which corresponds to E on S1 and G ′ be a null set which contains G
and is Gδ (Gδ set is a countable intersection of open sets), which corresponds to E ′
on S1. Then E ′ contains E and being the homeomorphic image of Gδ is Gδ and hence
is measurable. Since μ(G ′) = 0, we can cover G ′ by a sequence of open intervals
�sn such that

∑∞
k=1 |�sk | < ε where |�sn| denotes the arc length of �sn . Let �θn

correspondents to �sn on S1, then

|�sn| =
∫

�θn

∥∥∥∥∂ F

∂ϕ
(eiϕ)

∥∥∥∥ dϕ,

and therefore

ε >

∞∑
k=1

|�sk | =
∞∑

k=1

∫

�θn

∥∥∥∥∂ F

∂ϕ
(eiϕ)

∥∥∥∥ dϕ ≥
∫

E ′

∥∥∥∥∂ F

∂ϕ
(eiϕ)

∥∥∥∥ dϕ.

Since ε is arbitrary, we have

∫

E ′

∥∥∥∥∂ F

∂ϕ
(eiϕ)

∥∥∥∥ dϕ = 0. (3.6)

To continue we make use of (3.1). We have

∥∥∥∥∂ F

∂ϕ
(eiϕ)

∥∥∥∥
2

= lim
z→eiϕ

∥∥∥∥ ∂u

∂ϕ
(reiϕ)

∥∥∥∥
2

≥ 1

1 + K 2

n∑
i=1

|a′
i (e

iϕ)|2.

By Luzin–Privalov uniqueness theorem

n∑
i=1

|a′
i (e

iϕ)|2 > 0, for a.e. ϕ ∈ [0, 2π ]

if at least one of the analytic functions ai is nonconstant.
Therefore

∥∥∥∥∂ F

∂ϕ
(eiϕ)

∥∥∥∥ > 0, for a.e. ϕ ∈ [0, 2π ]. (3.7)

From (3.7) and (3.6) we infer μ(E ′) = 0. Since E ⊂ E ′, it follows that μ(E) = 0 as
desired. ��
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Remark 3.8 The previous theorem implies that u−1 : M2 → U is absolutely
continuous on γ ; that is for every ε > 0 there exists δ > 0 such that

m∑
k=1

|�sk | < δ ⇒
m∑

k=1

|�θk | < ε.

In general, the inverse of an absolutely continuous function need not be absolutely
continuous (see e.g. [28]).

If X : U → �2 is a conformal mapping of the unit disk onto a surface �2 ⊂ R
n

and f : �2 → M2 is a quasiconformal mapping, then f is harmonic if and only if
f ◦ X : U → �2 is harmonic. Using the fact that if ∂�2 is rectifiable and f ◦ X is
harmonic q.c. then it is absolutely continuous on the boundary as well as its inverse,
we obtain.

Corollary 3.9 Every harmonic quasiconformal mapping between two Euclidean sur-
faces �2 and M2 with rectifiable Jordan boundaries has absolutely continuous exten-
sion to the boundary as well as its inverse has this property.

Acknowledgments We thank the anonymous referee for providing constructive comments and help in
improving the contents of this paper.
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17. Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. (to
appear) arXiv:0709.4546
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