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Abstract We prove that a harmonic diffeomorphism between two Jordan domains
with C2 boundaries is a (K, K′) quasiconformal mapping for some constants K ≥ 1
and K′ ≥ 0 if and only if it is Lipschitz continuous. In this setting, if the domain is the
unit disk and the mapping is normalized by three boundary points condition we give
an explicit Lipschitz constant in terms of simple geometric quantities of the Jordan
curve which surrounds the codomain and (K, K′). The results in this paper generalize
and extend several recently obtained results.

Keywords Harmonic mappings · Quasiconformal mappings · Distance function ·
Curvature
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1 Introduction

A function w is called harmonic in a region D if it has form w = u + iv where u and
v are real-valued harmonic functions in D. If D is simply-connected, then there are
two analytic functions g and h defined on D such that w has the representation

w = g + h.

If w is a harmonic univalent function, then by Lewy’s theorem (see [24]), w

has a non-vanishing Jacobian and consequently, according to the inverse mapping
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theorem, w is a diffeomorphism. If k is an analytic function and w is a harmonic
function then w ◦ k is harmonic. However k ◦ w, in general is not harmonic.

By R we denote the set of real numbers. Throughout this paper, we will use
notation z = reiϕ , where r = |z| and ϕ ∈ R are polar coordinates and by wϕ and wr

we denote partial derivatives of w with respect to ϕ and r, respectively. Let

P(r, x) = 1 − r2

2π(1 − 2r cos x + r2)

denote the Poisson kernel. Note that every bounded harmonic function w defined on
the unit disk U := {z : |z| < 1} has the following representation

w(z) = P[ f ](z) =
∫ 2π

0
P(r, x − ϕ) f (eix)dx, (1.1)

where z = reiϕ and f is a bounded integrable function defined on the unit circle T :=
{z : |z| = 1}.

Here and in the remainder of this paper it is convenient to use the convention:
if f is complex-valued function defined on T a.e. we consider also f as a periodic
function defined on R by f (t) = f (eit) and vise versa if the meaning of it is clear
from the context; we also write f ′(t) = ∂ f (eit)

∂t .
If f is of bounded variation on [0, 2π ], it follows from Eq. 1.1 that wϕ equals the

Poisson-Stieltjes integral of f :

wϕ(reiϕ) = 1
2π

∫ 2π

0
P(r, ϕ − t)df (t).

Hence, by Fatou’s theorem, the radial limits of wϕ exist almost everywhere and
limr→1− wϕ(reiϕ) = f ′

0(ϕ) a.e., where f0 is the absolutely continuous part of f . In
particular if f is absolutely continuous on [0, 2π ], then

w′
ϕ = P[ f ′]. (1.2)

Let

A =
(

a11 a12

a21 a22

)
∈ R2×2.

We will consider the matrix norm:

|A| = max{|Az| : z ∈ R2, |z| = 1}
and the matrix function

l(A) = min{|Az| : |z| = 1}.
Let D and G be subdomains of the complex plane C, and w = u + iv : D → G be a
function that has both partial derivatives at a point z ∈ D. By ∇w(z) we denote the

matrix
(

ux uy

vx vy

)
. For the matrix ∇w we have

|∇w| = |wz| + |wz̄| (1.3)
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and

l(∇w) = ||wz| − |wz̄||, (1.4)

where

wz := 1
2

(
wx + 1

i
wy

)
and wz̄ := 1

2

(
wx − 1

i
wy

)
.

We say that a function u : D → R is ACL (absolutely continuous on lines) in the
region D, if for every closed rectangle R ⊂ D with sides parallel to the x and y-axes, u
is absolutely continuous on a.e. horizontal and a.e. vertical line in R. Such a function
has of course, partial derivatives ux, uy a.e. in D.

A sense-preserving homeomorphism w : D → G, where D and G are subdomains
of the complex plane C, is said to be (K, K′)-quasiconformal (or shortly (K, K′)-q.c.
or q.c.) (K ≥ 1, K′ ≥ 0) if w ∈ACL and

|∇w|2 ≤ KJw + K′ (z = reiϕ), (1.5)

where Jw is the Jacobian of w given by

Jw = |wz|2 − |wz|2 = |∇w|l(∇w). (1.6)

Mappings which satisfy Eq. 1.5 arise naturally in elliptic equations, where w =
u + iv, and u and v are partial derivatives of solutions, cf [5, Chapter XII].

Let � be a Jordan domain with rectifiable boundary. We will say that a map-
ping f : U → � is normalized if f (ti) = ωi, i = 0, 1, 2, where {t0t1, t1t2, t2t0} and
{ω0ω1, ω1ω2, ω2ω0} are arcs of T and of γ = ∂� respectively, having the same length
2π/3 and |γ |/3 respectively.

We will say that a mapping f : U → V is Hölder (Lipschitz) continuous, if there
exists a constant L such that

| f (z) − f (w)| ≤ L|z − w|α, z, w ∈ U,

where 0 < α < 1 (α = 1).

1.1 Background

Let γ be a Jordan curve. By the Riemann mapping theorem there exists a
Riemann conformal mapping of the unit disk onto a Jordan domain � = int γ . By
Caratheodory’s theorem it has a continuous extension to the boundary. Moreover if
γ ∈ Cn,α , n ∈ N, 0 ≤ α < 1, then the Riemann conformal mapping has Cn,α extension
to the boundary (this result is known as Kellogg’s theorem), see [40]. Confor-
mal mappings are quasiconformal and harmonic. Hence quasiconformal harmonic
(shortly HQC) mappings are natural generalization of conformal mappings. The class
of HQC automorphisms of the unit disk has been first considered by Martio in [29].
Hengartner and Schober have shown that, for a given second dilatation (a = fz̄/ fz,
with ||a|| < 1) there exist a q.c. harmonic mapping f between two Jordan domains
with analytic boundary [9, Theorem 4.1].

Recently there has been a number of authors who are working on the topic. The
situation in which the image domain is different from the unit disk firstly has been
considered by the first author in [12]. There it is observed that if f is harmonic
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K-quasiconformal mapping of the upper half-plane onto itself normlized such that
f (∞) = ∞, then Im f (z) = cy, where c > 0; hence f is bi-Lipschitz. In [12] (see also
[14]) also characterization of HQC automorphisms of the upper half-plane by means
of integral representation of analytic functions is given.

Using the result of Heinz [8]: If w is a harmonic diffeomorphism of the unit
disk onto itself with w(0) = 0, then |wz|2 + |wz̄|2 ≥ 1

π2 , it can be shown that, every
quasiconformal harmonic mapping of the unit disk onto itself is co-Lipschitz. Fur-
ther, Pavlović [35], by using the Mori’s theorem on the theory of quasiconformal
mappings, proved the following intrigue result: every quasiconformal selfmapping of
the unit disk is Lipschitz continuous. Partyka and Sakan [34] yield explicit Lipschitz
and co-Lipschitz constants depending on a constant of quasiconformality. Using the
Hilbert transforms of the derivative of boundary function, the first characterizations
of HQC automorphisms of the upper half-plane and of the unit disk have been given
in [14, 35]; for further result cf. [30]. Among the other things Knežević and the second
author in [22] showed that a q.c. harmonic mapping of the unit disk onto itself is a
(1/K, K) quasi-isometry with respect to Poincaré and Euclidean distance. See also
the paper of Chen and Fang [2] for a generalization of the previous result to convex
domains.

Since the composition of a harmonic mapping and of a conformal mapping is itself
harmonic, using the case of the unit disk and Kellogg’s theorem, these theorems
can be generalized to the class of mappings from arbitrary Jordan domain with
C1,α boundary onto the unit disk. However the composition of a conformal and a
harmonic mapping is not, in general, a harmonic mapping. This means in particular
that the results of this kind for arbitrary image domain do not follow from the case
of the unit disk or the upper half-plane and Kellogg’s theorem.

Using some new methods the results concerning the unit disk and the half-plane
have been extended properly in the papers [13–21, 27, 30] and [31]. In particular,
in [15] we show how to apply Kellogg’s theorem and that simple proof in the case
of the upper half-plane has an analogy for C2 domain; namely, we prove a version
of “inner estimate” for quasi-conformal diffeomorphisms, which satisfies a certain
estimate concerning their laplacian. As an application of this estimate, we show that
quasi-conformal harmonic mappings between smooth domains (with respect to the
approximately analytic metric), have bounded partial derivatives; in particular, these
mappings are Lipschitz.

For related results about quasiconformal harmonic mappings with respect to the
hyperbolic metric we refer to the paper of Wan [38] and of Marković [28].

Very recently, Iwaniec, Kovalev and Onninen in [10] have shown that, the class
of quasiconformal harmonic mappings is also interesting concerning the modulus of
annuli in complex plane.

In this paper we study Hölder and Lipschitz continuity of the class of (K, K′)-
q.c. harmonic mappings between smooth domains. This class contains conformal
mappings and quasiconformal harmonic mappings.

In [32] C. B. Morrey proved a local Hölder estimate for quasiconformal mappings
in the plane. Such a Hölder estimate was a fundamental development in the theory of
quasiconformal mappings, and had very important applications to partial differential
equations. Nirenberg in [33] made significant simplifications and improvements to
Morrey’s work (in particular, the restriction that the mappings involved be 1 − 1 was
removed), and he was consequently able to develop a rather complete theory for
second order elliptic equation with 2 independent variables. Simon [37, Theorem 2.2]
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(see also Finn-Serrin [3]) obtain a Hölder estimate for (K, K′) quasiconformal
mappings, which is analogous to that obtained by Nirenberg in [33], but which is
applicable to quasiconformal mappings between surfaces in Euclidean space.

Global Hölder continuity of (K, 0)-quasiconformal mapping between domains
satisfying certain boundary conditions has been extensively studied by many authors
and the results of this kind can be considered as generalizations of Mori’s theorem
(see for example the papers of Gehring and Martio [4] and Koskela et al. [23]).

1.2 Statement of the Main Result

The main result of this paper is the following theorem which can be considered as
an extension of Kellogg theorem and results of Martio, Pavlović, Partyka, Sakan and
the authors.

Theorem 1.1 (The main theorem) Suppose that

(a1) � is a Jordan domain with C2 boundary and
(a2) w is (K, K′) -q.c. harmonic mapping between the unit disk and �.

Then

(c1) w has a continuous extension to U, whose restriction to T we denote by f .
(c2) Furthermore, w is Lipschitz continuous on U.
(c3) If f is normalized, there exists a constant L = L(K, K′, ∂�) (which satisf ies the

inequality (Eq. 4.14) below) such that

| f ′(t)| ≤ L for almost every t ∈ [0, 2π ], (1.7)

and

|w(z1) − w(z2)| ≤ (KL + √
K′)|z1 − z2| for z1, z2 ∈ U. (1.8)

Remark 1.2 Note that a C2 curve satisfies b−chord-arc condition for some b and has
bounded curvature and that the constant L in the previous theorem depends only on
K, K′, κ0 and b , where κ0 is its maximal curvature.

The Hilbert transformation of a function χ is defined by the formula

H[χ ](ϕ) = − 1
π

∫ π

0+
χ(ϕ + t) − χ(ϕ − t)

2 tan(t/2)
dt

for a.e. ϕ and χ ∈ L1(T). The facts concerning the Hilbert transformation can be
found in [42, Chapter VII]. By using Theorem 1.1 we deduce

Corollary 1.3 Let h be a harmonic orientation preserving dif feomorphism between
two plane Jordan domains � and D with C2 boundaries. Let in addition φ : U → � be
a conformal transformation and take w = h ◦ φ = P[ f ]. Then the following conditions
are equivalent

(1) h is a (K, K′)-qc mapping.
(2) h is Lipschitz w.r. to the Euclidean metric.
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(3) f is absolutely continuous on T, f ′ ∈ L∞(T) and H[ f ′] ∈ L∞(T).

Proof (1) ⇒ (2): Note that, by Kellogg’s theorem, w is Lipschitz if and only if h =
w ◦ φ−1 is Lipschitz. Then

|∇w|2 = |∇h|2|φ′|2

≤ K(Jh|φ′|2) + K′|φ′|2 = KJw + K′|φ′|2.
Thus w is (K, K′

1) quasiconformal with K′
1 = K‖φ′‖2, where ‖φ′‖ = sup{|φ′(z)| : z ∈

U} is finite by Kellogg’s theorem. By Theorem 1.1, w is Lipschitz. By using again the
Kellogg’s theorem, we obtain φ−1 is Lipschitz and therefore h = w ◦ φ−1 is Lipschitz.
Thus we established (1) ⇒ (2).

To prove (2) ⇒ (1), observe first that the condition (2) implies that |∇h| is
bounded by a constant M. Thus h is (1, M2) quasiconformal.

Show now that (3) ⇒ (2). Since f is absolutely continuous on T, f ′ ∈ L∞(T) by
Eq. 1.2,

wϕ(z) = P[ f ′](z) z = reiϕ. (1.9)

As rwr is harmonic conjugate of wϕ , we have

rwr(z) = P[H[ f ′]](z) . (1.10)

Hence, since f ′, H[ f ′] ∈ L∞(T), by Eqs. 1.9 and 1.10, we find that rwr and wϕ are
bounded on U and (2) follows by Kellogg’s theorem.

We leave to the reader to prove (2) ⇒ (3). ��

The following proposition makes clear difference between (K, K′)-q.c. harmonic
mappings and K-q.c. ((K, 0)-q.c.) harmonic mappings.

Proposition 1.4 [11, 18] Under conditions of Corollary 1.3, the following conditions
are equivalent:

(1) h is a K-qc mapping.
(2) h is bi-Lipschitz w.r. to the Euclidean metric.
(3) f is absolutely continuous on T and f ′, 1/ l(∇h), H[ f ′] ∈ L∞(T).

By using Corollary 1.3 and Proposition 1.4, we obtain that the function given in
the following example is a (K, K′)-quasiconformal harmonic mapping which is not
(K, 0) quasiconformal.

Example 1.5 Let f (eix) = ei(x+sin x). Then the mapping w = P[ f ] is a Lipschitz map-
ping of the unit disk U onto itself, because f ∈ C∞(T) and therefore w is (K, K′)-
quasiconformal for some K and K′ (Corollary 1.3) but it is not (K, 0)-quasiconformal
for any K, because f is not bi-Lipschitz.

The proof of Theorem 1.1 is presented in Section 4. Previously we prove
Proposition 2.2 which can be considered as a Caratheodory theorem for (K, K′)−
quasiconformal mappings and by using this proposition we extend Smirnov theorem
for the class of (K, K′)-quasiconformal harmonic mappings. By using Proposition 2.2,
Heinz-Berenstein theorem (Lemma 4.5), and distance function with respect to image



(K, K′)-quasiconformal Harmonic Mappings 123

domain we first show that, (K, K′) quasiconformal harmonic mappings are Lipschitz
continuous, providing that the boundaryes are twice differentiable Jordan curves.
The method developed in [20], and Lemma 2.4 (which is a Mori’s type theorem
for the class of (K, K′) quasiconformal mappings) has an important role on finding
the quantitative Lipschitz constant, depending only on (K, K′), the domain and
image domain, for normalized (K, K′) quasiconformal harmonic mappings. By using
Theorem 1.1, we prove Corollary 1.3, and this in turn implies that a harmonic
diffeomorphism w between smooth Jordan domains is Lipschitz, if and only if w is
(K, K′) quasiconformal.

2 Global and Hölder Continuity of (K, K′)-q.c. Mappings

For a ∈ C and r > 0, put D(a, r) := {z : |z − a| < r} and define �r = �r(z0) = U ∩
D(z0, r). Denote by kρ the circular arc whose trace is {ζ ∈ U : |ζ − ζ0| = ρ}.

Lemma 2.1 (The length-area principle) Assume that f is a (K, K′)− q.c. on �r, 0 <

r < 1, z0 ∈ T . Then

F(r) :=
∫ r

0

l2
ρ

ρ
dρ ≤ π K A(r) + π

2
K′r2 , (2.1)

where lρ = | f (kρ)| denote the length of f (kρ) and A(r) is the area of f (�r).

Proof Let Iρ = {t ∈ [0, 2π ] : z0 + ρeit ∈ kρ}. Let lρ = | f (kρ)| denote the length of
f (kρ). Since, by Eq. 1.3, |∇ f (z)| = | fz| + | fz̄|, using polar coordinates and the
Cauchy-Schwarz inequality, we have for almost every ρ

l2
ρ = | f (kρ)|2 =

(∫
kρ

| fzdz + fz̄dz̄|
)2

≤
(∫

Iρ

|∇ f
(
z0 + ρeiϕ) |ρdϕ

)2

≤
∫

Iρ

|∇ f
(
z0 + ρeiϕ) |2ρdϕ ·

∫
Iρ

ρdϕ.

Hence, we have
∫ r

0

l2
ρ

ρ
dρ ≤ π

∫ r

0

∫
Iρ

|∇ f
(
z0 + ρeiϕ) |2ρdϕdρ

≤ π K
∫ r

0

∫
Iρ

Jf
(
z0 + ρeiϕ)

ρdϕdρ + K′|�r|

= π A(r)K + K′|�r|,

(2.2)

where A(r) is the area of f (�r), and

|�r| = −1
2

r
√

4 − r2 + r2 arcsin

√
4 − r2

2
+ arcsin

(
1
2

r
√

4 − r2

)
, 0 < r <

√
2
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is the area of �r satisfying

|�r| ≤ π

2
r2. (2.3)

Eqs. 2.2 and 2.3 implies Eq. 2.1. ��

A topological space X is said to be locally connected at a point x if every
neighborhood of x contains a connected open neighborhood. It is easy to verify
that the set A is locally connected in z0 ∈ A if for every sequence {zn} ⊂ A, which
converges to z0 there exists, for big enough n, connected set Ln ⊂ A which contains
z0 and zn such that diam (Ln) → 0. The set is locally connected if it is locally
connected at every point.

Proposition 2.2 (Caratheodory theorem for (K, K′) mappings) Let D be a simply
connected domain in C whose boundary has at least two boundary points such that
∞ /∈ ∂ D. Let f : U → D be a continuous mapping of the unit disk U onto D and
(K, K′) quasiconformal near the boundary T.

Then f has a continuous extension to the boundary if and only if ∂ D is locally
connected.

Proof Suppose first that f is continuous on U . In fact, we prove that if f is
continuous on T then f (T) is locally connected. Let {zn} be a sequence in ∂ D
which converges to z and ζn ∈ f −1(zn). Passing to subsequence, we can suppose that
ζn → ζ . Since f is continuous at ζ , it follows that f (ζ ) = z. The arc γn = f ([ζn, ζ ])
is connected subset of ∂ D which contains z0 and zn. Since f is continuous at ζ ,
diam (Ln) → 0. Hence ∂ D is locally connected.

Note that we can assume without loss of generality that ∞ = f (0). Namely,
if f (0) = c0, we can consider J ◦ f instead of f , where J(z) = 1

z−c0
; J ◦ f also a

(K1, K′
1) quasiconformal mapping near the boundary T.

Fix ζ0 ∈ T. By kρ denote the circular arc whose trace is {ζ ∈ U : |ζ − ζ0| = ρ} and let
lρ = | f (kρ)|.

Let

A(r) =
∫

�r

J f (z)dxdy .

Since f (�σ ) is bounded domain, then

A(σ ) < +∞.

From this inequality and Eq. 2.1 it follows

∫ σ

0

l2
ρ

ρ
dρ < ∞ . (2.4)

Hence there is a sequence ρn → 0 with lρn → 0. Let An be an end point of γ ρn and
assume that zk, z′

k tend to An along γ ρn . Let in addition lk be the arc of γ ρn joining
zk and z′

k, wk = f (zk), w′
k = f (z′

k) and �k = f (lk). Then |wk − w′
k| ≤ |�k|. Since

lρn < ∞ it follows that |�k| tends to 0. Therefore limk→∞ wk = limk→∞ w′
k = an. Thus
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the curves �n = f ◦ kρn have end points an, b n ∈ ∂ D and |an − b n| → 0 (because
limn→∞ lρn = 0).

Passing to a subsequence, we can assume that an,b n tend to w0 ∈ ∂ D.
Since ∂ D is locally connected, there exist connected subsets Ln ⊂ ∂ D such that
w0, an, b n ∈ Ln and the diameter diam (Ln) tends to 0.

Now �n separates D into two connected components, one containing f (0) = ∞.
Let Dn be bounded component of D \ �n. By following the topological argument of
Carleson and Gamelin [1, Theorem 2.1, pp. 6–7] we claim that Dn is contained in a
bounded component of C \ (�n ∪ Ln).

Indeed, otherwise there is a simple closed Jordan arc from a fixed point z0 to ∞ in
C \ (�n ∪ Ln), followed by another arc from ∞ to z0 in D crossing �n exactly at one
point; thus we obtain a simple closed Jordan curve in C \ Ln which separates points
an and b n, contradicting the connectedness of Ln.

Therefore diam (Dn) ≤ diam (�n ∪ Ln), and thus diam (Dn) → 0. This implies that
f is continuous at point ζ0. ��

Remark 2.3 If we replace the hypothesis that f is (K, K′) in Proposition 2.2 with
f ∈ W1,2(U), for some 0 < r < 1, then f has also continuous extension to U. After we
wrote a version of this paper, Vuorinen informed us that results of this type related
to Proposition 2.2 has been announced in [26].

Let γ ∈ C1,μ, 0 < μ ≤ 1, be a Jordan curve and let g be the arc length parameteri-
zation of γ and let l = |γ | be the length of γ . Let dγ be the distance between g(s) and
g(t) along the curve γ , i.e.

dγ (g(s), g(t)) = min{|s − t|, (l − |s − t|)}. (2.5)

A closed rectifiable Jordan curve γ enjoys a b− chord-arc condition for some
constant b > 1 if for all z1, z2 ∈ γ there holds the inequality

dγ (z1, z2) ≤ b |z1 − z2|. (2.6)

It is clear that if γ ∈ C1,α then γ enjoys a chord-arc condition for some b γ > 1.
The following lemma is a (K, K′)-quasiconformal version of [39, Lemma 1].

Moreover, here we give an explicit Hölder constant Lγ (K, K′).

Lemma 2.4 Assume that γ enjoys a chord-arc condition for some b > 1. Then for
every (K, K′)− q.c. normalized mapping f between the unit disk U and the Jordan
domain � = intγ there holds

| f (z1) − f (z2)| ≤ Lγ (K, K′)|z1 − z2|α

for z1, z2 ∈ T, α = 1
K(1+2b)2 and

Lγ (K, K′) = 4(1 + 2b)2α

√
max

{
2π K|�|

log 2
,

2π K′

K(1 + 2b)2 + 4

}
. (2.7)

Proof For a ∈ C and r > 0, put D(a, r) := {z : |z − a| < r}. It is clear that if z0 ∈ T =
∂U, then, because of normalization, f (T ∩ D(z0, 1)) has common points with at most
two of three arcs ω0ω1, ω1ω2 and ω2ω0. (Here ω0, ω1, ω2 ∈ γ divide γ into three
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arcs with the same length such that f (1) = ω0, f (e2π i/3) = ω1, f (e4π i/3) = ω2, and T ∩
D(z0, 1) do not intersect at least one of three arcs defined by 1, e2π i/3 and e4π i/3).

Let lρ = | f (kρ)| denotes the length of f (kρ). Let Iρ = {t ∈ [0, 2π ] : z0 + ρeit ∈
kρ}. Let γρ := f (T ∩ D(z0, ρ)) and let |γρ | be its length. Assume w and w′ are
the endpoints of γρ , i.e. of f (kρ). Then |γρ | = dγ (w,w′) or |γρ | = |γ | − dγ (w,w′).
If the first case holds, then since γ enjoys the b−chord-arc condition, it follows
|γρ | ≤ b |w − w′| ≤ blρ . Consider now the last case. Let γ ′

ρ = γ \ γρ . Then γ ′
ρ contains

one of the arcs w0w1, w1w2, w2w0. Thus |γρ | ≤ 2|γ ′
ρ |, and therefore

|γρ | ≤ 2blρ.

Using the first part of the proof, it follows that the length of boundary arc γr of
f (�r) does not exceed 2blr which, according to the fact that ∂ f (�r) = γr ∪ f (kr),
implies

|∂ f (�r)| ≤ lr + 2blr. (2.8)

Therefore, by the isoperimetric inequality

A(r) ≤ |∂ f (�r)|2
4π

≤ (lr + 2blr)
2

4π
= l2

r
(1 + 2b)2

4π
.

Employing now Eqs. 2.2 and 2.3 we obtain

F(r) :=
∫ r

0

l2
ρ

ρ
dρ ≤ Kl2

r
(1 + 2b)2

4
+ π K′

2
r2.

Observe that for 0 < r ≤ 1 there holds rF ′(r) = l2
r . Thus

F(r) ≤ KrF ′(r)
(1 + 2b)2

4
+ π K′

2
r2.

Let G be the solution of the equation

F(r) = KrF ′(r)
(1 + 2b)2

4
+ π K′

2
r2

defined by

G(r) =
π K′

2

K (1+2b)2

4 + 1
r2 = 2π K′

K(1 + 2b)2 + 4
r2.

It follows that for

α = 2
K(1 + 2b)2

there holds

d
dr

log([F(r) − G(r)] · r−2α) ≥ 0,

i.e. the function [F(r) − G(r)] · r−2α is increasing. This yields

[F(r) − G(r)] ≤ [F(1) − G(1)]r2α ≤ [π K|�| − G(1)]r2α.
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Now for every r ≤ 1 there exists an r1 ∈ [r/√2, r] such that

F(r) =
∫ r

0

l2
ρ

ρ
dρ ≥

∫ r

r/
√

2

l2
ρ

ρ
dρ = l2

r1
log

√
2.

Hence

l2
r1

≤ 2π K|�| + G(1)
(
r2−2α − 1

)
log 2

r2α.

If z is a point with |z| ≤ 1 and |z − z0| = r/
√

2, then by Eq. 2.8

| f (z) − f (z0)| ≤ (1 + 2b)lr1 .

Therefore

| f (z) − f (z0)| ≤ H|z − z0|α,

where

H = (1 + 2b)2α/2

√
max

{
2π K|�|

log 2
,

2π K′

K(1 + 2b)2 + 4

}
.

Thus we have for z1, z2 ∈ T the inequality

| f (z1) − f (z2)| ≤ 4H|z1 − z2|α. (2.9)

��

Remark 2.5 By applying Lemma 2.4, and by using the Möbius transforms, it follows
that, if f is an arbitrary (K, K′)−q.c. mapping between the unit disk U and �, where
� satisfies the conditions of Lemma 2.4, then | f (z1) − f (z2)| ≤ C( f, γ, K, K′)|z1 −
z2|α on T.

2.1 A Question

Lemma 2.4 states that, every (K, K′) quasiconformal mapping of the unit disk onto
a Jordan domain with rectifiable boundary satisfying chord-arc condition is Hölder
on the boundary. This can be extended a little bit, for example the lemma remains
true if we put z1 ∈ T and z2 ∈ U instead of z1, z2 ∈ T. On the other hand the results of
Nirenberg, Finn, Serrin and Simon state that f is Holder continuous in every compact
set of the unit disk. It remains an interesting and important open question, does every
(K, K′) quasiconformal mapping f between the unit disk and a Jordan domain with
smooth boundary enjoy Hölder continuity.

3 Smirnov Theorem for (K, K′) q.c. Harmonic Mappings

In this section we extend the Smirnov theorem on the theory of conformal mappings
to the class of (K, K′) quasiconformal harmonic mappings. Let h1 = h1(U) and H1 =
H1(U) be Hardy spaces of harmonic respectively analytic functions defined on the
unit disk.
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Proposition 3.1 Let w be a (K, K′) quasiconformal harmonic mapping of the unit disk
U onto a Jordan domain D. Then ∇w ∈ h1 if and only if ∂ D is a rectif iable Jordan
curve. Moreover, ∇w ∈ h1 implies that w is absolutely continuous on T.

Proof Assume that γ = ∂ D is a rectifiable Jordan curve. Consider the function

lr =
∫ 2π

0

∣∣∣∣∂w(reiϕ)

∂ϕ

∣∣∣∣ dϕ, 0 ≤ r < 1.

Then, according to Rado’s lemma [36] r �→ lr is increasing and is equal to the length
of the smooth curve w(S(r)), where S(r) = rS1. On the other hand the length of the
curve w(S(r)) is equal to the limit of the following sequence when n → ∞

sn
r (z) = ∣∣w(z) − w

(
ze2π i/n)∣∣ + ∣∣w (

ze2π i/n) − w
(
ze4π i/n)∣∣ +

· · · + ∣∣w (
ze2(n−1)π i/n) − w(z)

∣∣ ,
for every z ∈ S(r). From Proposition 2.2 the mapping w is continuous up to the
boundary. Since the sum of subharmonic functions is a subharmonic function and the
mapping w is continuous up to the boundary, it follows from the maximum principle
of subharmonic functions that

sn
r (z) ≤ max

ϕ∈[0,2π]
[∣∣w (

eiϕ) − w
(
eiϕe2π i/n)∣∣ + ∣∣w (

eiϕe2π i/n) − w
(
eiϕe4π i/n)∣∣ + . . .

+ ∣∣w (
eiϕe2(n−1)π i/n) − w

(
eiϕ)∣∣] .

Letting n → ∞ (because w(S1) is a rectifiable curve) we infer that lr < l(w(S1)) < ∞,
where l(w(S1)) denotes the length of l(w(S1)).
Next we have

w(z) = g(z) + h(z)

where g and h are analytic functions. From Eq. 1.6 we obtain

|∇w|2 ≤ K|∇w|l(∇w) + K′.

This implies that

|∇w| ≤ Kl(∇w) + √
K2l(∇w)2 + 4K′

2

and consequently

|∇w| ≤ Kl(∇w) + √
K′. (3.1)

For z = reiϕ we have

∂w

∂ϕ
= rwy cos ϕ − rwx sin ϕ. (3.2)

Thus

rl(∇w) ≤
∣∣∣∣∂w

∂ϕ

∣∣∣∣ ≤ r|∇w|. (3.3)
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From Eqs. 1.5, 1.6, 3.1 and 3.3, we deduce that

1
r2

∣∣∣∣∂w

∂ϕ

∣∣∣∣
2

≤ KJw + K′ (
z = reiϕ)

, (3.4)

and

|∇w| ≤ K
r

∣∣∣∣∂w

∂ϕ

∣∣∣∣ + √
K′. (3.5)

According to Eq. 3.5

|g′| + |h′| = |∇w| ≤ K
r

∣∣∣∣∂w

∂ϕ

∣∣∣∣ + √
K′. (3.6)

Since

∫ 2π

0

∣∣∣∣∣
∂w

(
reiϕ

)
∂ϕ

∣∣∣∣∣ dϕ ≤ l (γ ) < ∞

we infer that

∂w

∂ϕ
∈ h1(U).

Therefore we have

zg′(z), zh′(z) ∈ H1(U)

and consequently

g′(z), h′(z) ∈ H1(U).

Now, it is known from Hardy space theory, that there exist absolutely continuous
functions g̃ and h̃ on T, such that

g(z) = P[g̃(eiθ )](z)

and

h(z) = P[h̃(eiθ )](z).

Therefore

w = P[ f ](z),

where

f (eiθ ) = g̃(eiθ ) + h̃(eiθ )

is an absolutely continuous function.
To show the converse observe first that the hypothesis ∇w ∈ h1(U) implies that

g′(z), h′(z) ∈ H1(U).
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Next, it is known from Hardy space theory, that w has continuous extension on U.
Denote by f the restriction of this extension on T. Then f is absolutely continuous
and therefore f ′ ∈ L1(0, 2π), where f ′(t) = df (eit)/dt. Hence as the above,

∂w

∂ϕ
(z) = P[ f ′](z) .

Since F is injective and absolutely continuous we find (see e.g. [6, Chapter X]) that

|γ | =
∫ 2π

0
| f ′(ϕ)|dϕ < ∞

and therefore γ is a rectifiable Jordan curve. ��

4 Lipschitz Continuity of (K, K′)-q.c. Harmonic Mappings

In this section we prove Theorem 1.1 which is the main result of the paper. The proof
is based on a result of Heinz and Berenstein (Lemma 4.5) and on the estimate Eq. 4.7
which follows from auxiliary results (Lemmas 4.1–4.4):

Lemma 4.1 [19] Let � be a Jordan C2 domain, f : T → ∂� injective continuous pa-
rameterization of ∂� and w = P[ f ]. Suppose that w = P[ f ] is a Lipschitz continuous
harmonic function between the unit disk U and �. Then for almost every eiϕ ∈ T
we have

lim sup
r→1−0

Jw(reiϕ) ≤ κ0

2
| f ′(ϕ)|

∫ π

−π

dγ ( f (ei(ϕ+x)), f (eiϕ))2

x2 dx, (4.1)

where Jw(z) denotes the Jacobian of w at z, f ′(ϕ) := d
dϕ

f (eiϕ) and

κ0 = sup
s

|κs|, (4.2)

and κs is the curvature of γ at the point g(s).

Let d be the distance function with respect to the boundary of the domain �:
d(w) = dist(w, ∂�). Let �μ := {z ∈ � : d(z) ≤ μ}. For basic properties of distance
function we refer to [5]. For example ∇d(w) is a unit vector for w ∈ �μ, and d ∈
C2(�μ), provided that ∂� ∈ C2 and μ ≤ 1/ sup{|κz| : z ∈ ∂�}. We now have.

Lemma 4.2 Let � be a C2 Jordan domain, w : �1 �→ � be a C1, (K, K′) q.c., χ =
−d(w(z)) and μ > 0 such that 1/μ > κ0 = ess sup{|κz| : z ∈ ∂�}.

Then:

|∇χ | ≤ |∇w| ≤ K|∇χ | + √
K′ (4.3)

in w−1(�μ).

Proof Observe first that ∇d is a unit vector. From ∇χ = −∇d · ∇w it follows that

|∇χ | ≤ |∇d||∇w| = |∇w|.
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For a non-singular matrix A we have

inf
|x|=1

|Ax|2 = inf
|x|=1

〈Ax, Ax〉 = inf
|x|=1

〈
AT Ax, x

〉

= inf{λ : ∃x �= 0, AT Ax = λx}
= inf{λ : ∃x �= 0, AAT Ax = λAx}
= inf{λ : ∃y �= 0, AAT y = λy} = inf

|x|=1
|AT x|2.

(4.4)

Since w is (K, K′)-q.c., it follows that

|∇w|2 ≤ K|∇w|l(∇w) + K′.

This implies that

|∇w| ≤ Kl(∇w) + √
K′ .

Next we have that (∇χ)T = −(∇w)T · (∇d)T and therefore for x ∈ w−1(�μ), we
obtain

|∇χ | ≥ inf
|e|=1

|(∇w)T e| = inf
|e|=1

|∇w e| = l(w) ≥ |∇w|
K

−
√

K′

K
.

The proof of Eq. 4.3 is completed. ��

Lemma 4.3 [18] Let {e1, e2} be the natural basis in the space R2 and �, �1 be two C2

domains. Let w : �1 �→ � be a harmonic mapping and let χ = −d(w(z)) and μ > 0
such that 1/μ > κ0 = ess sup{|κz| : z ∈ ∂�}. Then

�χ(z0) = κω0

1 − κω0 d(w(z0))

∣∣(Oz0∇w(z0))
Te1

∣∣2
, (4.5)

where e1 ∈ Tz0 and Tz0 denotes the tangent space at z0, z0 ∈ w−1(�μ), ω0 ∈ ∂� with
|w(z0) − ω0| = dist(w(z0), ∂�), and Oz0 is an orthogonal transformation.

Since an orthogonal matrix acts as an isometry of Euclidean space, we have
|(Oz0∇w(z0))

Te1| ≤ |∇w(z0)|. Hence

|�χ(z0)| ≤ κw0

1 − κw0 d(w(z0)
|∇w(z0)|2 . (4.6)

Thus, for a fixed number μ such that 1/μ > κ0, we have for z near ∂�1 the following
estimate:

Lemma 4.4 Under the above notation, there is c > 0, such that

|�χ(z)| ≤ c|∇w(z)|2 for z ∈ w−1(�μ) .

Lemma 4.5 (Heinz-Berenstein) [7] Let χ : U �→ R be a continuous function between
the unit disc U and the real line satisfying the conditions:

(1) χ is C2 on U,
(2) χ(θ) = χ(eiθ ) is C2 and
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(3) |�χ | ≤ a|∇χ |2 + b on U for some constant c0 (natural growth condition).

Then the function |∇χ | = |grad χ | is bounded on U.

4.1 Proof of Theorem 1.1

Note first that the statement (c1) of theorem is a special case of Proposition 2.2. Let
us now prove (c2): w is Lipschitz continuous. Suppose that μ is a fixed number such
that 1/μ > κ0 and note that w−1(�μ) ⊂ U. From Lemmas 4.4 and 4.2, it follows that
there exist constants a1 and b 1 such that

|�χ | ≤ a1|∇χ |2 + b 1 for z ∈ w−1(�μ). (4.7)

On the other hand, by Proposition 2.2, w has a continuous extension to the boundary.
Therefore for every t ∈ T, lims→t χ(s) = χ(t) = 0. Let χ̃ be an C2 extension of the
function χ |w−1(�μ) in U (by Whitney theorem it exists [41]). Let b 0 = max{|�χ̃(z)| :
z ∈ U \ w−1(�μ/2)}. Then

|�χ̃ | ≤ a1|∇χ̃ |2 + b 1 + b 0.

Thus the conditions of Lemma 4.5 are satisfied. We conclude that ∇χ̃ is bounded.
According to Eq. 4.3, ∇w is bounded in w−1(�μ) and hence in U as well. Hence, it
follows from Lemma 4.2 that w is Lipschitz continuous.

Proof of (c3). Since w = P[ f ] is Lipschitz, it follows that f is Lipschitz and

ess sup
0≤ϕ≤2π

| f ′(ϕ)| < ∞.

In particular f is absolutely continuous and therefore if we use notation z = reiϕ ,
we find

∂w

∂ϕ
(z) = P[ f ′](z) , z ∈ U. (4.8)

According to Eq. 4.8 and Lemma 4.1, there exists a set E ⊂ [0, 2π ] with zero measure
such that wϕ(reiϕ) → f ′(ϕ) as r → 1 and inequality (Eq. 4.1) holds for ϕ ∈ [0, 2π ] \ E.
Therefore, for ε > 0 there exists a t ∈ [0, 2π ] \ E such that

ess sup
0≤ϕ≤2π

| f ′(ϕ)| =: L ≤ | f ′(t)| + ε. (4.9)

Since |wϕ(reit)| → | f ′(t)| as r → 1, by Eqs. 3.4 and 4.1, we obtain

| f ′(t)|2 ≤ κ0

2
K| f ′(t)|

∫ π

−π

dγ ( f (ei(t+x)), f (eit))2

x2 dx + K′.

Now, we use an elementary result: if a, b ≥ 0, y2 ≤ ay + b , then y ≤ a + √
b .

Hence if C2 = Kκ0/2, then for β satisfying 0 < β < 1, we have

L − ε ≤ C2

∫ π

−π

dγ ( f (ei(t+x)), f (eit))2

x2 dx + √
K′

≤ C2

∫ π

−π

dγ ( f (ei(t+x)), f (eit))2−β

|x|2−β
(b γ L)βdx + √

K′.

(4.10)
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Thus

(L − ε)/Lβ ≤ b γ C2

∫ π

−π

dγ ( f (ei(t+x)), f (eit))2−β

|x|2−β
dx + √

K′. (4.11)

For α = 1
K(1+2b γ )2 , choose β, 0 < β < 1, sufficiently close to 1, so that σ = (α − 1)

(2 − β) > −1. For example, we can choose

β = 1 − α

2 − α
,

and consequently,

σ = α

2 − α
− 1.

Since f is a normalized mapping, from Lemma 2.4 and Eq. 2.6, we find

dγ ( f (ei(t+x)), f (eit)) ≤ b γ | f (ei(t+x)) − f (eit)| ≤ b γ Lγ (K, K′)|x|α .

Putting this in Eq. 4.11 and then letting ε → 0, we get

L1−β ≤ C2 · b γ (Lγ (K, K′))2−β

∫ π

−π

|x|σ dx + √
K′ = C3,

and hence

L ≤ C1/(1−β)

3 = C
2−α
α

3 . (4.12)

Further, we use that w = g + h, where g and h are two analytic functions in U. Since
w is Lipschitz continuous, we see that g′ ∈ H∞ and h′ ∈ H∞, where H∞ denotes the
Hardy space of bounded analytic functions on U. Hence for a.e. z = eiϕ ∈ T

(|h′(z)| + |g′(z)|)2 ≤ K(|g′(z)| − |h′(z)|)(|g′(z)| + |h′(z)|) + K′

≤ K| f ′(ϕ)|(|g′(z)| + |h′(z)|) + K′.

Let � = |h′(z)| + |g′(z)|. Then

�2 ≤ �LK + K′.

Thus for every z ∈ U

|∇w(z)| ≤ ess sup|z|=1{|g′(z)| + |h′(z)|} ≤ KL + √
K′. (4.13)

This implies Eq. 1.8.

Remark 4.6

a) The previous proof yields the following estimate of a Lipschitz constant L for
a normalized (K, K′)−quasiconformal harmonic mapping between the unit disk
and a Jordan domain � bounded by a Jordan curve γ ∈ C2 satisfying a b−chord-
arc condition.

L ≤
(

Kλκ0b (Lγ (K, K′))1+1/λπ1/λ + √
K′

)λ

, (4.14)
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where

α = 1
K(1 + 2b)2 , λ = 2 − α

α
,

κ0 is defined by Eq. 4.2 and Lγ (K, K′) in Eq. 2.7. Thus L depends only on
K, K′, κ0 and b−chord-arc condition.
See [22, 34, 35] and [13] for estimates, in the special case where γ is the unit
circle, and w is K−q.c. (K′ = 0).

b) Notice that, the previous proof did not depend on Kellogg’s and Warschawski
theorem (that implies that a conformal mapping of the unit disk onto a Jordan
domain � with C1,α boundary is bi-Lipschitz) nor on Lindelöf theorem in the
theory of conformal mappings (see [6] for this topic). For a generalization of
Kellogg’s theorem we refer to the paper of Lesley and Warschawski [25], where
they gave an example of C1 Jordan domain D, such that the Riemann conformal
mapping of the unit disk U onto D is not Lipschitz. We expect that, the conclu-
sion of Theorem 1.1 remains true, assuming only that the boundary of � is C1,α .
This problem has been overcome for the class of (K, 0)-q.c. mappings in [20]
by composing by conformal mappings and by using “approximation argument”.
However, the composition of a (K, K′) q.c. mapping and a conformal mapping is
not necessarily a (K1, K′

1) q.c. mapping, and it causes further difficulties because
the method used in [20] does not work for (K, K′) q.c. mappings in general.
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27. Manojlović, V.: Bi-lipshicity of quasiconformal harmonic mappings in the plane. Filomat 23(1),
85–89 (2009)

28. Markovic, V.: Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces. J.
Lond. Math. Soc. (2) 65(1), 103–114 (2002)

29. Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. A I 425, 3–10 (1968)
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