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A. I n t r o d u c t i o n  and  s t a t e m e n t  o f  m a i n  resul ts  

A1. In this paper, we state a new version of  an inequality of  Reich and Strebel, 

namely their so-called Main Inequality, and use it to study the uniqueness property 

of  harmonic mappings. To state the main inequality we need the following notation. 

Let D and G be domains in C and let f : D ~ G be a mapping. We use the 

notation 

df = pdz + qa'2, w h e r e p = 0 f  and q =-Of. 

We denote the complex (Beltrami) dilatation by 

#y = Belt If] = q 
P 

and the dilatation by 
Ipl-4-1qt  D / =  
I p l - l q l "  

It is convenient to suppose that our mappings are sense-preserving. 

We say that a homeomorphism f : D ~ G is K quasiconformal if  f is ACL 

(absolutely continuous on lines) on D and DS(z ) < K a.e. on D. 

Let A denote the unit disk and 

Tu~(z) = 1 - I # ( z ) p  

We refer to the following result as the Reich--Strebel inequality or the Main 

Inequality (see IReS 1]). 

Theorem R S  (Reich and Strebel). Suppose that f is a quasiconformal 
homeomorphism of  A onto itself which is the identity on OA. Then, with # = #s, 

(AI) ff I I dxdy <_ ff I ~(z) ] Tu~(z)dxdy 
A A 
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for  every analytic integrable function ~ on A. 

Various forms of this result play a major role in the theory of quasiconformal 

mappings and have many applications. For applications to extremal and uniquely 

extremal quasiconformal mappings, we refer the interested reader to the book by 

Gardiner ([G]), and for some recent results to [MM1], [BMM], [BLMM] and 

[Re3]. 

It is convenient to explain our results first in the setting of  the unit disk. Suppose 

that 

(a) f is a homeomorphism of  A onto itself, 

(b) f has first partial derivatives on A, and 

(c) f is the identity on 0A. 

T h e o r e m  1. With the hypotheses and notation above, the inequality (A1) 

holds for  every integrable analytic function ~ on A. 

This theorem gives a new version of the Main Inequality, which is applicable 

to mappings which are not quasiconformal mappings. 

A2. Let M and N be two Riemann surfaces with local conformal metrics 

a I dz 12 and p [ dw 12 and let f : M ~ N .  

It is convenient to use the notation df = p dz + q dz in local coordinates, where 

p = Of and q = 0 f .  

The energy integral of  f is 

E(y, p) = f p o/(I  P 12 + I q 12) dxdy. 
M 

A critical point of  the energy functional is called a harmonic mapping. The Euler-  

Lagrange equation for the energy functional is 

(A2) fz-e + c3(log p) o f pq = O. 

It seems that the classical theory of elliptic equations does not suffice for a study 
of  the Euler-Lagrange equation without the use of  additional tools. In [MM2] (see 

also [MM3]), the current authors initiated the study of  the uniqueness of solutions 

of equation (A2) with the help of  the Main Inequality. With ordinary harmonic 

functions in mind, it was natural to consider the question of uniqueness of harmonic 
mappings, without the assumption that the mappings are of  bounded dilatation, and 

to try to extend the range of applications of the Main Inequality. This led us to 
Theorem 1 and its applications. 
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For basic properties of  harmonic mappings and for further information on the 

literature, we refer to Jost [J], Schoen--Yau [SY] and Schoen [Sc]. 

This general notion of  harmonic mappings (see Section E1 below) allows for 

the following: 

A3. If f is a harmonic mapping, then ~o = p o f p ~ d z  ~ is a holomorphic 

quadratic differential, which is called the Hopf differential of  f and which is 

denoted by Hopf ( f ) .  

For example, if  M and N are subsets of  the complex plane C, this simply 

means that the function p o f p ~  is a holomorphic function. 

A4. The following is an application of  Theorem 1. 

T h e o r e m  2. (The uniqueness property of  the identity). Under the hypothesis 

o f  Theorem 1, i f ( in  addition) we suppose that f is harmonic and that the H o p f  

differential o f  f is nonzero and integrable on A, then f is the identity on A. 

To state our next result, we need the notion of locally-quasiconformal mappings. 

Let M and N be two Riemann surfaces and f : M ~ N. We say that f is locally 

quasiconformal if  for every point p E M there is a neighbourhood V such that the 

restriction of f to V is a quasiconformal mapping. 

T h e o r e m  3. (First uniqueness property). Suppose that f and g are har- 

monic homeomorphisms from the closed unit disk onto itself which are locally 

quasiconformal on A and suppose that f = g on the boundary o f  the unit disk. If, 

in addition, the Hop f  differentials o f  f and g are integrable on A, then f and g 

are identical. 

Moreover, we shall prove a uniqueness result for homotopic mappings between 

compact Riemann surface (see Theorem 4, the second uniqueness property, and 

part E4 of the section E). The idea of the proof of Theorem 3 (and Theorem 4) 

is to apply Theorem 1, the Main Inequality, to the functions ~o = p o f p~ and 

~b = p o g AB, where A = Og and B = -Og. For further generalizations of  Theorem 

3 and Theorem 4, see part F5 of Section F. 

Note that when we work with mappings which have first generalized derivatives 

(without the assumption of  quasiconformality), we have new features (see below 

B3, and sections C, El ,  E3, F4 and F5 for more details). 

We start now with a short review of  some previously obtained results, which 

are related to Theorem 3 and Theorem 4. 

AS. After we had completed an earlier version of the present paper, E. Reich 

pointed out to us that H. Wei [We] studied the uniqueness property of  harmonic 
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mappings with the help of the Main Inequality. Also, we became aware of  the 

paper [CH] of  Coron and Helein. 

By using the formula for the energy of variation of a mapping (see IRES2]) 

and the Reich--Strebel inequality, H. Wei proved a weaker version of  Theorem 3 

concerning quasiconformal mapping under additional hypotheses that 

(c) f and g are quasiconformal mappings from the unit disk A onto itself, 

(d) the metric density p is an integrable function on A. 

Note that the hypotheses (c) and (d) provide that the energy integral of  f and 

g are finite. 

In [CH], Coron--Helein used an approach, which is completely different from 

H. Wei in [We], to study minimizing harmonic mappings. Their approach was 

based on the decomposition of  a given metric g on A as the sum of two metrics 

c and h, where c is a conformal metric with respect to the euclidean metric e, h 

has non-positive Gaussian curvature and the identity mapping, Id, is a harmonic 

mapping between ( A, e ) and ( A, h). 

T h e o r e m  C H  (Coron-Helein). Let (M,  h) and (N ,  g) be two Riemannian 
compact surfaces of class C 0% possibly with boundary. Then any smooth harmonic 
diffeomorphism between ( M,  h) and ( N,  g) is minimizing in its homotopy class. 
Moreover, i f  O M is non-empty, or if  the genus of M is strictly larger than one, 
then such a diffeomorphism is the unique minimizing map in its homotopy class. 

An inspection of the proofs of  Theorem 2, [We], Theorem 3 and Theorem 3', 

[CH], shows that the assumption that harmonic maps are of  finite energy is essential 

for both proofs. 

Note that the assumption that f and g have finite energy integrals insures 
that Hopf differentials of  f and g are integrable functions on A. Thus we prove 

our Theorem 3 under weaker conditions. Namely, we require only that the Hopf 

differentials of  corresponding mappings are integrable. 

We refer the interested reader to [J] for the global uniqueness theorem of  

Al'ber and Hartman and for the result of  J/iger and Kaul and to the Schoen---Yau 

book ([SY]) for uniqueness theorems concerning harmonic maps into non-positive 
curved metric spaces. 

A6. The structure of this paper is as follows. In Section B, we prove a version 

of  Gr6tzsch's principle concerning mappings with Ll-derivatives. In Section C, 

we give proofs of  Lemma 1 and Lemma 2, which we use in the proof of  Theorem 

1. In Section D, the proof of  a new version of the Main Inequality (Theorem 1) is 

given. In Section E, we use Theorem 1 to prove the uniqueness results (Theorems 
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2-4). In Section F, we give further results, comments and some applications of  

Theorem 2 to the case in which the energy integrals are infinite. 

B. The p r o b l e m  of  Gr6tzseh 

B1. In order to motivate the statement and proof of  our version of  the Main 

Inequality, we shall emphasize the main points in the proof of  Gr6tzsch's principle. 

We follow [MM2], where we announced the results of  this section. 

If  Q is a square and R is a rectangle, not a square, there is no conformal 

mapping of  Q on R which maps vertices on vertices. Instead, Gr6tzsch asked for 

the most nearly conformal mapping of this kind and took the first step toward the 

creation of  a theory of  quasiconformal mappings. 

Let w = f(z) be a mapping from one region to another. Recall that 

df = pdz + qd"~, w h e r e p = 0 f  and q =Of. 

The complex (Beltrami) dilatation is 

# :  = Belt [f] = -q 
P 

and the dilatation of  f is 
Ipl+lql 

O: - IP l_ lq  I" 
We pass to the Gr6tzsch problem and give it a precise meaning by saying that 

f is most nearly conformal if sup D / i s  as small as possible. 

Let R, R ~ be two rectangles with sides a, b and a', b'. We may assume that 

K = U/d  : b/a > 1. The mapping f is supposed to be Cl-homeomorphism from 

R onto R', which takes a-sides into a-sides and b-sides into b-sides. 

Next, let F~ be the vertical segment which is the intersection of  the line Re z = x 

with R and 7x the curve which is image of  F~ under f .  The starting point of  

Gr6tzsch's approach is the obvious geometric inequality 

b 

(B1) b' < length('~) = / I P - q [ dy. 
0 

Using 

(B2) f JI dxdy = a'b I, 
R 

where J /deno tes  the Jacobian of f ,  and the Cauchy--Schwarz inequality, one gets 

(B3) K _< sup D:.  



320 V. MARKOVIC AND M. MATELJEVIC 

The minimum is attained for the affine mapping. 

The restriction to Cl-mapping is not essential. The inequality (B3) holds for 

quasiconformal mapping (see, for example, [Ah]). 

In order to give a version of  Gr6tzsch's principle concerning mappings with 

Ll-derivatives, we need the following definition. 

B2. Definition of  LP-derivatives. Let D be a domain in C. We say that 

a function f : D ~ C has LP-derivatives, p > 1, if  it satisfies the following two 

conditions: 

(a) f is absolutely continuous on lines in D, and 

(b) the partial derivatives fx and fy belong to L p on every compact subset 

of  D. 

When we say that f has generalized first derivatives in D, this means that 

f has Ll-derivatives in D. For various characterizations of  functions with L p- 

derivatives and their important role in the theory of  quasiconformal mappings, we 

refer to Chapters III to VI of  the book by Lehto--Virtanen ([LV]). 

B3.  A vers ion  o f  G r 6 t z s c h ' s  pr inc ip le .  Before we give a further extension 

of  Gr6tzsch's principle, it is useful to consider the following example, in which 

(B1) and (B3) do not hold. 

Example  1. Let a : I ~ I, where I = [0, 1], be the Cantor function and let 

/ ( z )  = z + i (y  + 

Note that this function does not satisfy the ACL property and that the known 

formula for the length of  curve by means of  first partial derivatives does not hold. 

Suppose that 

(a) f is a homeomorphism of  the closed rectangle R onto the closed rectangle 

R ~ which maps a-sides onto a~-sides and b-sides onto U-sides, and 

(b) f has generalized first derivatives on R. 

In order to obtain our conclusion, we can follow the outline of  the proof of  

GrStzsch's principle from part B 1 of  this section. 

We need the following definition. 

At a point z where # (z) is defined and I # (z) I r 1 we define T~, (z) by 

T~ (z) - 11 - ~(z)12 
1-- I~(Z)I  s 

Also, at point z where I p(z) I = I q(z) I we define T~, (z) to be zero if p(z) = q(z) 
and + ~  if p(z) ~ q(z). 



NEW VERSION OF THE MAIN INEQUALITY 321 

Now, we can give the precise meaning of T, ~ by means of  T x, where 

x = <p 1 �9 

Since f satisfies the ACL-property, inequality (B1) holds for a.a. x E [13, a]. 

In order to prove inequality (B4) (see below), we can suppose that T,  is defined 

and finite a.e. on R, because otherwise the right-hand side of (B4) is infinite. Next, 

we integrate with regard to dx over [0, a] and use the fact that the Jacobian 

J s = t P l  2 ( 1 - 1 / z l  2 ) a.e. on R. 

Instead of (B2), we have 

f J.f dxdy < area(R') = a'b'. 
R 

Now, an application of  the Cauchy-Schwarz inequality gives 

(B4) area(R) ub < T, 

Further development of the ideas outlined above leads us to Lemma 1 (see 

below), which will be used in the proof of  the new version of  the main inequality. 

C. Proofs  o f  L e m m a  1 and L e m m a  2 

Let D be a vertically convex domain of  finite area in the complex plane C and 

let F be a mapping from the domain D onto the domain G. 

Suppose that we have metric ds = p(w) I dw [ on G. 
Let F~ be the interval which is the intersection of D with the straight line 

Re z = x, and let % be the curve which is the image of  Fx under F. Let p(x, y) = x 
be the projection and let (a, ~3) = p(D). 

L e m m a  1. With the notation and hypothesis just stated, suppose (in addition) 
that the mapping F is homeomorphism which has generalized first derivatives and 
that 

(C1) length(Fx) < f p(w) [ dw [ a.e. in 
7x 
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Then 

(c2) 

where 

area(D) <_ [ f /  p2(w)dudv] l/2 [ : /  Tvd~d~] 1/2, 

v = Belt[F]. 

P r o o f .  We use the notation dF = P d( + Q d(, where P = OF and Q = -OF. 
We can suppose that T~ is defined and finite a.e. on D ,  because otherwise the 

right-hand side of  (C2) is infinite. With the definition of  T, in mind, this means 

that P = Q a.e. on A, where A is the set on which Jacobian JR equals zero. 

Since F is absolutely countinuous on Fx for a.e. x E (a, ~), we find 

p - l e n g t h ( % )  = : (poF)( f ) IP [1 1 -  v [ &7. 

r~ 

By Fubini's theorem and assumption (C 1), 

area(D) < : : ( p  o F)(()  ] P [[ 1 - u [ aea,~. 
D 

Since 

JR =[ P [2 (1--1v [2) a.e. onD,  

the term on the right can be written in the form 

r = ::(p o F)(()J~/2T~/2 aed ~. 
D 

Next, using the Cauchy-Schwarz inequality we conclude that 

r < A 1/2 �9 B 112, 

where 

Let 

C = f f  p2(w) dudv. 
G 

We need the following lemma to finish the proof. 

L e m m a  2. A _< C. 
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and 

Proof.  Let the measure # be defined by 

#(E) = f JF(z) dxdy 
E 

#F(E) = m(F(E)), 

for every Lebesgue measurable set E. 

Since F is a homeomorphism which possesses finite partial derivatives a.e. in 

D, by Lemma 3.3 ([LV], p. 131) 

#(E) < #F(E); 

and therefore we have the desired result. 

D. P r o o f  o f  a n e w  vers ion  o f  the  M a i n  I n e q u a l i t y  

There are a number of  papers of Reich and Strebel which concern various forms 

of  the Main Inequality. Our proof is based on their ideas. 

Here, we give a complete proof of  Theorem 1, because we need to be careful 

when we work with mappings whose dilatation is not bounded. For the reader's 

convenience, let us recall the statement of  Theorem 1. 

Theorem 1. Suppose that 
(a) f is a homeomorphism of A onto itself, 
(b) f has generalized first derivatives on A, and 
(c) f is the identity on OA. 

Then the inequality 

ff I ~(z) I dxdy <_ f f  I~(z) lT.~(z)dzdy 
A & 

holds for every integrable analytic function ~o on A. 

D1. First, observe that Theorem 1 can be reduced to the case in which qa is 

also analytic on 0A. Indeed, for 0 < r < 1 let ~, be the function defined by 

~ ( z )  = ~a(rz), z E A. If  Theorem 1 holds for every ~o~ then, letting r approach 1, 

we conclude that the theorem holds for ~a, by Lebesgue's dominated convergence 

theorem. 
Suppose now that ~o is an analytic function in A. The following decomposition 

is possible (see [S] and [S 1]). Up to a set of  Lebesgue 2-dimensional measure zero, 
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m ---- U 2 = l  }-]~k, where {Ek} are disjoint simple connected "strip" domains. Each 
P'k is swept out by a family of  vertical trajectories of  the holomorphic quadratic 
differential ~o(z)dz 2, and in each P~k there exists a single-valued schlicht branch 
( = ffk(z) of  f x / - ~ d z .  Each region Dk = ffk(Ek) is vertically convex. 

In [S], it is merely assumed that ~ is analytic on A, instead of  0A, so that 
countably many, instead of merely finitely many ~ k  can occur. Actually, in our use 
of  the strip domains, the advantage of  limiting ourselves to finitely many is purely 
didactic. For the local and global behaviour of  the trajectories of  holomorphic 

quadratic differentials we refer the reader to Strebel's book ([$2]). 
The following fact is important in the proof of Theorem 1. 

D2. The vertical trajectories ofa  holomorphic quadratic differential are globally 

geodesics in Teichmfiller's metric 

ds2 =1 qo(z)I I dz t 2 . 

Note that ( = r is a single-valued branch of  f v/-~dz in Zk, that Dk = 
q'k(Ek) and 1"~ = F~ is the interval which is the intersection of  Dk with the 

straight line Re z = x. 
Let 0, = ffk 1 (P~) and Gk = f(Ek). Thus 0~ is the trajectory of the holomorphic 

quadratic differential ~0(z) dz 2. Let -y~ = f(O~). 
Since 0x is a global geodesic in the Teichmfiller metric, 

ds2 =l ~(z)I I dz 12, 

length(l"=) = f I ~o(z)11/21 dz I_< ~ ,  I ~o(w)11/2 I dw I. 
0| 

Thus we can apply Lemma 1 to the functions Fk = f O tI); 1 

and p(w) =1 ~(w)11/2. Hence, by Lemma 1, 

[ [ I  qa(z) I dxdy = area(Dk) _ AkBk, (D1) 

E,  

where 

and 

B k  = 

Ak = I~(w) l dudv 

T,, d(drl , u = uk = Belt(Fk). 
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Using the change of  variables z = (I)kl (~), we get 

f f  
B k =  / /  [ ~(z) l T ~ ( z )  dxdy. 

E~ 

Further application of  the Cauchy-Schwarz lemma and (D 1) give 

E (qo- area(Ek)) < AkBk < A .  B, 
k=l  k= l  

where 
n n 

A = ( ~ A ~ )  1/2 and B = ( ~ B ~ )  t/2 
k = l  k = l  

Now, Theorem 1 follows from the fact that 

a = [ f f  i (z) l dxdy and B = I~plT~,~dredy , 
A 

where # = Belt[f]. 

E .  T h e  u n i q u e n e s s  r e s u l t s  

E l .  The following example may serve to explain the definition of  harmonic 

mappings (see below). 

E x a m p l e  2. Let 0 < e < 1 and let d be an open set in (0, 1) of  measure e, 

which is dense in (0, 1). Define the function v by 

/: v(y) = Ka(t) dt, y > O, 

where G = IJn~=0(J + n) and Ka is the characteristic function of  G. 

Put f(z) = re + iv(y) and F = [0, c~) \ G. We leave to the reader to check the 

following facts: 

(a) f is a homeomorphism of the upper half plane H onto itself; 

(b) f is a conformal mapping on R x G; and 
(c) the set R x F has infinite Lebesgue 2-dimensional measure, and its image 

under f has measure zero. 

Let M and N be two Riemann surfaces and let p be a measurable function on 

N which satisfies p > 0 a.e. on N .  A function f : M ~ N is called harmonic, 
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with respect to p (metric density) if the expression ~(z) dz 2, where ~(z) = r o f p ~, 

is equal a.e. to a holomorphic quadratic differential on M, where r = p a.e. on N. 

For a similar definition, see [Rel], [Re2] and [ReS2]. 

Note that we do not require that p be integrable over N .  Also, observe that the 

definition does not require any smoothness of  the metric density p on the image 

surface N, while this is required in order to write the Euler-Lagrange equation 

(see (A2)). From now on, when we say harmonic, we mean harmonic with respect 

to some metric density p in the sense of  this last definition. 

Let r be an arbitrary Borel measurable function on H which is positive a.e. on 

H, let ~o be the conformal mapping of  A onto H and let r be the inverse function 

of  ~o. Define the metric density p on A by p(w) = r(~(w)) [ ~'(w) [ and let 

g = r o f o ~o. It is easy to verify that g is a harmonic homeomorphism of A onto 

itself, with respect to the metric density p, which is the identity on 0A but is not 

the identity on A. 

This example shows why we need the Hopf differential of  f to be nonzero in 

condition (e) of  Theorem 2 (see below). 

In order to give motivation for the proofs of  Theorem 2 and Theorem 3, the 

following consideration is useful. 

E2.  T h e  c a s e  w h e n  f = Id o n  0A. Suppose that f is a harmonic 

diffeomorphism of  & onto itself and that the Hopf  differential of  f is integrable 

on A. Then the Beltrami dilatation # of  f has the form 

#(z) 8(z) I ~(z) 1' 

where s is a non-negative measurable function and ~ = p o f p~ is an analytic 

integrable function on A. Thus, we see that the expression /~o/ [ ~ [, which 

appears in the main inequality, is equal to [ # [; and an application of  the Main 

Inequality to the analytic function ~ gives 

f f 1 - [ # ]  dxdy. [~o[ dxdy ~ [qo I 

A A 

This inequality implies that if  ~o is not identically 0, that # = 0 a.e. in A. Hence 

we conclude that f is a conformal mapping and, since f = Id on 0A, that f = Id 
on A. 

E3.  P r o o f  o f  T h e o r e m  2. For the convenience of  the reader, let us recall the 

statement of  Theorem 2 and a few facts concerning harmonic mappings. 

Suppose that ] has Ll-derivatives in a domain D and that f is a harmonic 

mapping with respect to the metric p on D. Let ~ be the Beltrami dilatation and 

the Hopf  differential of  f .  Then 
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(a) Jf = 0 i f f l ~ l p  = ~Pq, 

(b) # = I # II So I / ~ .  

Note that this expression for the Beltrami dilatation # is the key for applying 

the Main Inequality to harmonic mappings. 

T h e o r e m  2. Suppose that 
(a) f is a homeomorphism o f  A onto itself, 

(b) f has generalized first derivatives on A, 
(c) f is the identity on OA, 
(d) f is harmonic with respect to the metric density p, and 

(e) the Hopf  differential o f  f is nonzero and integrable on A. 

Then f is the identity on A. 

R e m a r k .  I f  Hopf(f)  = 0 on A,  Theorem 2 is also true under the additional 

hypothesis that f maps sets of  measure zero onto sets o f  measure zero. 

P r o o f  o f  R e m a r k .  The assumption that f has the generalized first derivatives 

implies that f has finite partial derivatives a.e. in A. Since f is a homeomorphism, 

it is differentiable a.e. in A by the Gehring-Lehto lemma. Hence, we conclude 

that Jf > 0 a.e. in A, because f is a sense preserving mapping. 

Let A be the set on which q is defined and is equal to zero. The assumption 

= 0 on A implies that p = 0 a.e. on A c = A \ A. Since [ p I_>1 q I a.e. in 

A, we conclude that q = 0 a.e. in A, Next, the assumption that f has generalized 

first derivatives and Weyl's lemma imply that f is equal to an analytic function 

a.e. in A. Using the boundary condition and continuity o f  f ,  it is easy to verify 

that f is the identity on A. 

P r o o f  o f  T h e o r e m  2. Let B denote the set on which Jf is defined and equals 

zero. The expression T~, ~ which appears in the statement o f  Theorem 1 must be 

defined appropriately on the set B. 

Since f is harmonic, # ~ / I  ~ I equals I # I a.e. on A. Using this as motivation 

(see the definition o f  T~, ~) ,  we can define T u ~ to be zero on B. Hence, Tu~ is 

defined a.e. on A and 
1-1~1 

T , ~  = 1+ I ~-------~" 

Now, an application o f  Theorem 1 to the analytic function ~ gives 

1 - ! u l .  d f i l l  azdy< f l~l i--~-~Lax y. 
A A 

As in E2, one can conclude that # = 0 a.e. on A ,  and hence that f is the identity 

on A. 
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E4. Corollaries of  the Main Inequality. In order to prove Theorem 3, we 

need a few lemmas. 

First, let us recall the hypotheses of Theorem 3: 

(a) f and g are homeomorphisms of A onto itself, and f = g on 0A; 

(b) f and g are locally quasiconformal on A; 

(c) f and g are harmonic mappings with respect to some metric density p on 
A; and 

(d) the Hopfdifferentials of  f and g are integrable on A. 

We use the notation # = Belt[f], /~ = Belt[f -1] and :~ = Belt[g-i]. 

Also, for convenience we write ~ = f(z), k = k(~) =l #(z) ]= I /~(~) I and 

= ~(r =1 ~(~:)I. 
The following result is a corollary of Theorem 1. 

L e m m a  1. With the notation above and the hypotheses stated for Theorem 3, 

f f 1 - I  p(z) I 1 + s(~) dxdy, 
(El) [~l  dxdy < I qal 1+ I p(z) I 1 - s(C) 

A A 

where ~ = p o f p~. 

Proof .  By hypothesis, g-1 o f is the identity on 0A and g-1 o f is locally 

quasiconformal on A and hence has L2-derivatives. An application of  the new 

version of  the Main Inequality to g-10 f and ~ gives 

(E2) fl l_<fl  
A A 

T,~I 1 -~(ff)0~/I  ~ II 2 
�9 1 - I ~ ( r  dxdy, 

where 

/9 = P-(1 - #~ / [  ~ 1)(1 - #~ / [  ~ I) -1 and p = Of. 
P 

Recall that #~ / I  ~ I=1 # I, and therefore t9 = p/p. By the triangle inequality 

(E3) 11 - ~0~/  I ~ I1<-- 1 +  I 2((:) I; 

hence we obtain (E 1). 

For our purpose, it is convenient to use the change of  variables ff = f(z)  in (El)  

and express the inequality (E I) in terms of the metric density p instead of  ~. Using 

this change of  variables, we obtain 

[ qo I dxdy =[ r o f -1  1t J~-x(r I d~drl. 
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Let ~5(() =1 qo(z) I / Jy(z) .  Since I ~(z) I= p(() I P II q I, we have 

k(r 
~(~) = P(r 1 --- -~(~)" 

This gives the following result. 

L e m m a  2. With the above notation and the hypotheses stated in Theorem 3, 

f k f k l - k l + S d ,  dn ' 
(E4) P l ----S--~ d~drl <- PT -- k 2 1 + k 1 - s 

/x A 

where p, k and s are the]unctions o f  ~ defined at the beginning o f  item E4. 

Note that Lemma 1 and Lemma 2 are valid without the assumption that g is a 

harmonic mapping. 

E5.  P r o o f  o f  T h e o r e m  3 a n d  T h e o r e m  4. Note that the inequality (E4) 

holds i f  k and s change roles. I f  we sum the corresponding inequalities, we obtain 

(E5) f =p <_ f zp, 
A A 

where 

k s k l + s  s l + k  
a = 1 - k 2 + 1 - s 2' ~ = (1 + k) 2 1 - s (1 --~ 8)  2 1 --  k 

We need the following lemma to finish the proof. 

L e m m a  3.  a >/5 .  

The proof  o f  this lemma is elementary and follows from the fact that 

a - / 5  = 2(k - s ) ( f ( k )  - f(s))[(1 - k)(1 - s)] -1, 

where f ( z )  = x(1 + x) -2 is an increasing function o f x  E [0, 1). 

Lemma 3 with (E5) actually show that a =/5, i.e., k = s. 

Thus we have equality in (E 1) and therefore equality in (E3). This means that 

2 0 ~ / I  ~o I is non-positive a.e. in A. Since 

�9 p = 

we conclude that 2//5 is positive a.e. in A, i.e., 2 =/~ a.e. in A. This, finally, gives 

f = g i n A .  
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Since the Reich-Strebel inequality holds on Riemann surfaces of  finite analytic 

type, we can use the same method as in the proof of  Theorem 3 to obtain the 

following result. 

T h e o r e m  4. (Second uniqueness property). Let M and N be two compact 

Riemann surfaces o f  the same genus g >_ 2. Suppose that f and g are harmonic 

quasiconformal mappings from M onto N, which are homotopic to one other If, 

in addition, the Hopf  differentials o f  f and g are integrable on A, then f - g. 

Proof .  Using the same procedure and notation as in the proof of  Theorem 3, 

we conclude that/~ = 9~ a.e. on R'. Hence, h = f - 1  o 9 is a conformal mapping of  

R onto itself, which is homotopic to the identity. If  genus g > 2, then by Theorems 

A and B (see below) h must be the identity! 
We would like to call attention to the difference between this proof and that of  

Theorem 1 at this point. 

To finish the proof, we require the following results. 

T h e o r e m  A. (Theorem 5.2 [L], p. 157). The covering group G o f  the upper 

half-plane over a compact Riemann surface is finitely generated and o f  the first 

kind. 

This means that the limit set L of  G is the whole real axis and, in particular, that 

the covering group G is non-elementary, i.e., the limit set L contains more than 

two points. 

T h e o r e m  B. (Theorem 1.3 [L], p. 179). Let R be a Riemann surface with a 

non-elementary covering group, l f  f : R ~-~ R is a conformal mapping homotopic 

to the identity, then f is the identity mapping. 

Combining these theorems, we conclude that h is the identity and therefore f --- 9 

on R. 

F. F u r t h e r  results  and  c o m m e n t s  

We give an application of  Theorem 3 in a case in which the energy integral is 

infinite. 

F1. Suppose that 

(a) f and g are harmonic diffeomorphisms from the A onto itself with respect 

to the Poincar6 metric, 
(b) the Hopfdifferentials ~o -- H o p f ( f )  and ~b -- Hopf(.q) are integrable on A. 

Since ~o and @ belong to the Bers space (see, for example, [Ah], [W] and 

[AMM] for the definition and properties of  the Bers space), a result o f  Wan [W] 
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shows that f and g are quasiconformal mappings of A onto itself. If, in addition, 

we suppose that f = g on the boundary of  the unit disk, an application of Theorem 

3 shows that f and g are identical. 

Note that every harmonic diffeomorphism of  A onto itself with respect to the 

Poincar6 metric has infinite energy integral. 

The following example shows that, without the assumption that the Hopf 

differentials are integrable, Theorem 2 is not valid. 

F2. Let qo be a conformal mapping of  the unit disk A onto the upper half-plane 

H and let p(w) =[ ~o' (w) 1. Next, let 9 = ~b o h o % where r is the inverse function 

of  ~ and h is given by h(z) = x + iky, k > 0. We leave the reader to verify that 9 

is a quasiconformal harmonic mapping (with respect to p) of  the unit disk A onto 

itself and that 9 = Id on the boundary of  A. 

Although the metric defined by the density p is flat on the complex plane C 

except at one point, Theorem 2 is not valid. 

F3. In connection with parts (F 1) and (F2) of  this section, there is an interesting 

conjecture which is due to Schoen (see also [Sc]). 

Conjecture. The quasiconformal harmonic homeomorphisms from the unit 

disk A onto itself, with respect to the Poincar6 metric, are parametrized by the 

boundary values of  quasieonformal maps of the disk. 

This is a question which involves proving both an existence and a uniqueness 

theorem. The existence result for this ideal boundary value problem has been 
shown by Li and Tam ([LT 1 ]) under the additional hypothesis that the boundary 

map is sufficiently differentiable. They have also obtained counterexamples to 

uniqueness without the quasiconformal hypothesis (but with continuity) and then 

proved the uniqueness part of  Schoen's conjecture (see [LT2]). 

A result of  Wan ([W]) gives a parametrization of the quasiconformal harmonic 

homeomorphisms of A in terms of bounded holomorphic quadratic differentials 

on A. Wan has shown that if f is a quasiconformal mapping, then the Hopf 

differential of  f is bounded with respect to the Poincar6 metric on A. Conversely, 

for any bounded holomorphic quadratic differential r on A, there is a unique 

quasiconformal harmonic homeomorphism f : A ~ A such that Hopf (f)  = (I,. 

F4. In this section, we give an example of a harmonic homeomorphism whose 

Jacobian is zero on a set of  positive measure. 

Let ~ > 0 be arbitrary and let G be an open set in R of  measure ~ which 

contains all rational numbers. Let h be the characteristic function of  G and let v 
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be the function defined by 

f v ( x ) =  h(t)dt, x e R. 

Put f(z) = 2x + iv(y) and let p be the metric density defined by p(f(z)) = 4 for 

y E G and p(f(z)) = 3 for y E K, where K is the complement of G. 

We leave the reader to check the following facts. 

(a) f is a homeomorphism of  C onto R x (0, e), which has L~-derivatives, 

(b) f is a harmonic mapping with respect to metric density p on C, 

(c) the Jacobian J j  is equal zero a.e. on R x K. 

Finally, we are going to state some results communicated by the second author 

at the Symposium Contemporary Mathematics (see [M]). 

FS. Theorem 3 remains valid if condition (b) (in the hypothesis of  Theorem 3, 

item E3) is replaced by the following. 

(e) f ,  g and their inverse mapping have L~-derivatives. 

The idea of  the proof is as follows. If the condition (e) holas, then one can 

conclude that f o g-1 and g o f -1  have Ll-derivatives and these partial derivatives 

satisfy the chain rule (for details see Lemma 6.4 [LV], p. 151). Hence, we can 

apply Theorem 1 to these functions as in the proof of  Lemma 1 of item E4. 

It is well-known that condition (b) implies condition (e) (see, for example, 

[LV]). 
Also, Theorem 4 is valid under weaker conditions. Instead of  the assumption 

that f and g are quasiconformal mappings from M onto N, it is sufficient 

to suppose that f and g are homeomorphisms from M onto N, which satisfy 

condition (e). 
For a development of  the theory of  harmonic mappings by means of  Sobolev 

spaces, we refer to [SY]. 

F6. Harmonic maps and extremal QC mapping. Before we state the 

results, we require some notation. 
Suppose that f is a quasiconformal mapping of  the unit disk A onto itself. Let 

k[ f ]  = esssup{ I/~f(z) 1: z C A} 

and let Q (f) denote the collection of  all quasiconformal mappings of  A whose 

point-wise boundary values on cgA agree with those of  f .  We call f extremal (in 

its Teichmfiller class) if k[f]  <_ k[g] for every g E Q ( f ) .  An extremal quasi- 

conformal mapping f is uniquely extremal (in its Teichmfiller class) if  k [ f ] < 

k [g] for every other g in Q ( f ) .  
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Theorem 5. (First removable singularity theorem). Suppose that 

(a) f is a quasiconformal mapping from A onto A; 

(b) f is a harmonic function with respect to the metric density p on A \ K ,  

where K is compact subset o f  A; 

(c) f is extremal in its Teichmiiller class; and 

(d) there are two positive constants m and M,  such that m <[ ~(z) [< M for  

each z E A \K ,  where ~ is the Hopf  differential o f  f .  
Then ~ has an analytic extension (g from A \ K to A; and 

#(z) = k I ~(z) ] /~(z) a.e. in A, 

where k is a constant. 

Theo rem 6. (Second removable singularity theorem). Suppose that 

(a) f is a uniquely extremal quasiconformal mapping in its class, from A onto 

A; and 
(b) f is a harmonic function with respect to the metric density p on A \ K ,  

where K is compact subset o f  A. 
Then we have the same conclusion as in the previous theorem. 

During our work with Bo'2in on the problems related to uniquely extremal 
quasiconformal mappings (see [BMM]), we also obtained some results of this 

type. 
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