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ABSTRACT

The equipartition or minimum energy calculation is a well-known procedure for estimating the magnetic field
strength and the total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron
emission. In one of our previous papers, we have offered a modified equipartition calculation for supernova remnants
(SNRs) with spectral indices 0.5 < α < 1. Here we extend the analysis to SNRs with α = 0.5 and α = 1.
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1. INTRODUCTION

The equipartition or minimum energy calculation is a well-
known procedure for estimating the magnetic field strength and
the total energy in the magnetic field and cosmic ray (CR)
particles from the radio synchrotron emission of a source.
It is often used when no other methods are available. De-
tails of classical equipartition and revised equipartition calcu-
lations for radio sources in general are available in Pacholczyk
(1970) and Beck & Krause (2005), respectively. Lacki & Beck
(2013) derived an equipartition formula for starburst galaxies.
In one of our previous papers (Arbutina et al. 2012, hereafter
Paper I), we have offered a modified equipartition calculation
for supernova remnants (SNRs) with spectral indices
0.5 < α < 1. Spectral index is defined via the equation Sν ∝ ν−α ,
where Sν is the flux density. Our approach was similar to that
of Beck & Krause (2005). However, rather than introducing a
break in the power-law energy distribution, we assumed power-
law spectra and integrated over momentum to obtain energy
densities of particles. We further took into account different ion
species (not just protons and electrons), used flux density at a
given frequency, assumed an isotropic distribution of the pitch
angles for the remnant as a whole, and incorporated the depen-
dence on shock velocity vs via injection energy Einj ∼ mpv2

s .
For simplicity, in Paper I we assumed that CRs’

momentum/energy spectrum extends to infinity. This introduces
only a small error in the final result due to the power-law depen-
dence of the momentum distribution function f (p) = kp−(γ +2).
However, if γ is exactly 2, the integral for CR energy density
diverges and one must set an upper limit for particle energy. This
is unfortunate since α = 0.5 (γ = 2α + 1) is considered to be a
typical spectral index for SNRs. Out of the 40 SNRs for which
we can estimate the magnetic field from equipartition calcula-
tions, 22 have spectral indices α = 0.5 (Pavlović et al. 2013).
This value comes directly from the theory of diffusive shock
acceleration (DSA) in the case of strong shocks with a com-
pression ratio r = 4; γ = (r + 2)/(r −1) (Bell 1978a). Urošević
et al. (2012) tried to overcome the problem by setting a fixed
upper limit (1015 eV for protons and 1012 eV for electrons). In
reality, however, the maximum energy of CRs will also depend
on the magnetic field (and vs), which makes the equipartition,
i.e., minimum-energy calculation, more complicated.

A similar situation arises in the case α = 1—the integral
for CR energy density diverges unless a lower limit for particle
energy, i.e., Einj, is set. SNRs generally have spectral indices

lower than one. Still, SN 1987A remnant, for example, had
α = 1 and higher between days ∼2000 and 3000 since explosion
(Zanardo et al. 2010). In the next section, we will consider
special cases corresponding to α = 0.5 and α = 1.

2. ANALYSIS AND RESULTS

All designations in this section are taken from Paper I.

2.1. Case α = 0.5

Let us start with energy density of a CR species with γ = 2
(α = 0.5):

ε =
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= K

∫ x∞

xinj

x−2
(√

x2 + 1 − 1
)
dx, x = p

mc
, K = 4πkc,

= K I2(x)|x∞
xinj

= K

(
1

x
−

√
x2 + 1

x
+ arcsinh x

) ∣∣∣∣∣
x∞

xinj

,

where k and K are the constants in the momentum and energy
distribution functions, respectively. When x → 0, I2(x) ≈ x/2,
while for x → ∞, I2(x) ≈ ln x. The total CR energy density
εCR = εe + εion is then

εCR = Ke

(
I2

(
pe∞
mec

) − I2
(

pe
inj

mec

))
+

∑
i

Ki

(
I2

(
pi∞
mi c

) − I2
(

pi
inj

mi c

))

≈ Ke

{
ln

(
Ee

∞
mec2

)
− I2

(√
E2

inj+2mec2Einj

mec2

)
+

1∑
i Ziνi

·
√

2mpc2Einj

E2
inj+2mec2Einj

(∑
i

√
Aiνi ln

(
E

p
∞

mpc2

)
−

√
Einj

2mpc2

+
∑

i

√
Ai ln

(
Zi
Ai

)
νi

)}
, (2)

where we followed Bell’s (1978a, 1978b) DSA theory and
his assumptions concerning the injection of particles into
the acceleration process, used Equations (25) and (26) from
Paper I, and assumed Einj 	 mpc2, p∞ ≈ E∞/c for all CRs
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species. Ai and Zi are mass and charge numbers, respectively,
and νi represents ion abundances (for further details, see
Paper I). Assuming Bohm diffusion and synchrotron losses for
electrons, for the maximum electron energy we use Ee

∞ =
(3/8)(m2

ec
3vs/

√
(2/3)e3B) (Zirakashvili & Aharonian 2007)

and for ions Ei
∞ = (3/8)(vs/c)ZieBR (see Bell et al. 2013 and

references therein), where R is SNR radius. Both formulae are
in cgs units. In reality, of course, we do not expect a sharp break
in the energy spectra, but rather some steepening, especially in
the case of electrons (Blasi 2010).

For the total energy, we have E = (4π/3)R3f (εCR + εB),
εB = (1/8π )B2. Determining the minimum energy with respect
to B, (dE/dB) = 0 gives
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where (using Equations (4)–(6) from Paper I)
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In order to find magnetic field, Equation (3) must be solved
numerically. When one finds B, minimum energy can be
obtained from

Emin =
(

1 +
4

3

{. . .}
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)
EB, EB = 4π

3
R3f εB, (5)

where {. . .} and [. . .] are expressions in the corresponding
brackets in Equations (2) and (3), respectively.

2.2. Case α = 1

In the situations when γ = 3 (α = 1), the energy density of
a CR species is

ε =
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When x → 0, I3(x) ≈ (1/2) ln x while for x → ∞, I3(x) ≈
−(1/2x). Total CR energy density is then
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where we have used the same assumptions as in the derivation
of Equation (2).

Derivative of the total energy with respect to B gives
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where (see Equations (4)–(6) from Paper I)
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To find the magnetic field more precisely, Equation (8) must
be solved numerically. Nevertheless, unlike the case α = 0.5,
the solution will only weakly depend on the upper limits for
energy, so the terms containing Ee

∞ and E
p
∞ could, in principle,

be neglected. When one finds B, the minimum energy can be
obtained from

Emin =
(

1 +
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)
EB, EB = 4π

3
R3f εB, (10)

where now {. . .} and [. . .] are expressions in the corresponding
brackets in Equations (7) and (8), respectively.

3. CONCLUSIONS

In Paper I, we offered a modified equipartition calculation
for SNRs with spectral indices 0.5 < α < 1. In this paper,
we extend the analysis to SNRs with α = 0.5 and α = 1.
Spectral indices higher than α = 1 are rarely observed in SNRs
and are more typical for some extended radio galaxies and active
galactic nuclei (Kellermann & Owen 1988). Lower spectral
indices α < 0.5 can be expected in SNRs expanding in a low-β
plasma (i.e., the dominant magnetic field, where β is the ratio
of thermal to magnetic pressures; Schlickeiser & Fürst 1989).
There are other possible explanations for SNRs with α < 0.5,
such as non-negligible thermal emission (Onić 2013). However,
the assumption of “equipartition” is likely to no longer be valid
in these cases. Case α = 0.5 is particularly important since
this value comes directly from the test-particle DSA theory
in the case of strong shocks. Of course, the non-linear DSA
theory does not provide simple power-law spectra, thus we are
concerned about average spectral indices. In Table 1 we have
calculated the magnetic field strengths for 22 SNRs by applying
four different methods. Flux densities at 1 GHz, angular sizes,
and distances are taken from Green (2009) and Pavlović et al.
(2013). Our values for SNRs with α = 0.5 are approximately
40% higher than those derived by using the classical approach
of Pacholczyk (1970) and similar to those obtained by applying
the Beck & Krause (2005) revised equipartition formula and
the Urošević et al. (2012) approximation. Nevertheless, the
derivation presented in this paper is more accurate than the
latter two—in particular, the upper limit for particle energy, i.e.,
momentum, depends on the magnetic field itself and the upper
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Table 1
Calculated Magnetic Field Strengths for SNRs with α = 0.5

Catalog Name Other Name Pacholczyk (1970) Beck & Krause (2005) Urošević et al. (2012) This Papera

(μGa) (μGa) (μGa) (μGa)

G21.8−0.6 Kes 69 83.5 116.4 113.6 116.9
G23.3−0.3 W41 68.9 96.0 93.8 96.3
G33.6+0.1 Kes 79 100.3 139.7 136.4 139.7
G46.8−0.3 HC30 60.8 84.7 82.7 84.8
G54.4−0.3 HC40 41.0 57.1 55.8 56.2
G84.2−0.8 56.7 79.0 77.1 78.3
G96.0+2.0 15.2 21.2 20.7 20.5
G108.2−0.6 19.8 27.6 26.9 27.3
G109.1−1.0 CTB 109 51.9 72.3 70.6 71.7
G114.3+0.3 24.5 34.1 33.3 32.8
G116.5+1.1 23.2 32.4 31.6 31.7
G156.2+5.7 14.7 20.4 19.9 19.8
G205.5+0.5 Monoceros Nebula 20.7 28.8 28.1 28.7
G260.4−3.4 Puppis A 54.0 75.2 73.4 75.1
G292.2−0.5 42.9 59.7 58.3 59.6
G296.5+10.0 PKS 1209-51/52 30.9 43.1 42.0 42.8
G309.8+0.0 57.8 80.5 78.6 79.7
G332.4−0.4 RCW 103 135.6 188.9 184.4 186.8
G337.8−0.1 Kes 41 108.4 151.0 147.4 151.8
G344.7−0.1 55.5 77.3 75.5 76.2
G346.6−0.2 79.9 111.3 108.7 111.4
G349.7+0.2 274.7 382.7 373.7 375.2

Note. a For υs ∼ 1000 km s−1.

and lower limits depend on shock velocity and by varying this
last parameter one can obtain different magnetic field estimates.

The Web application for calculation of the magnetic field
strength of SNRs is available at http://poincare.matf.bg.ac.rs/∼
arbo/eqp/.
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