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1 Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; arbo@math.rs

2 Isaac Newton Institute of Chile, Yugoslavia Branch
3 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia

Received 2011 September 29; accepted 2011 November 22; published 2012 January 25

ABSTRACT

Determination of the magnetic field strength in the interstellar medium is one of the more complex tasks of
contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a
few very limited methods. Besides the Zeeman effect and Faraday rotation, the equipartition or minimum-energy
calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic
field and cosmic-ray particles by using only the radio synchrotron emission. Despite its approximate character, it
remains a useful tool, especially when there are no other data about the magnetic field in a source. In this paper, we
give a modified calculation that we think is more appropriate for estimating magnetic field strengths and energetics
in supernova remnants (SNRs). We present calculated estimates of the magnetic field strengths for all Galactic
SNRs for which the necessary observational data are available. The Web application for calculation of the magnetic
field strengths of SNRs is available at http://poincare.matf.bg.ac.rs/∼arbo/eqp/.

Key words: ISM: magnetic fields – ISM: supernova remnants – radio continuum: general

1. INTRODUCTION

The basic constituents of the interstellar medium (ISM) are
normal (thermalized) particles, cosmic rays (CRs), radiation,
and the magnetic field. Each of these four forms of ISM con-
tains similar energy density of about 1 eV cm−3. If we com-
pare the quantity of information available for each of them, we
can immediately conclude that the magnetic field is absolutely
the most intriguing and hidden form of ISM. Recent simula-
tions of supernova remnant (SNR) shocks commonly include
the magnetic field because it plays an important part in vari-
ous related phenomena (particle acceleration, radiation, shock
compression and formation, etc.). The magnetic field strength
and its direction can only be approximately estimated by using
a few methods that are very limited in their applicabilities (for
recent review of magnetic fields in SNRs see Reynolds et al.
2011). One of these is the Zeeman effect, which is an appropri-
ate method for generally stronger fields and can be used for the
determination of strong ISM magnetic fields in high-density H i
or molecular clouds rich in OH and CN. The global magnetic
field of the Galaxy, a few μG, is too small to be measured in this
way. The second method for determination of the component of
ISM magnetic field parallel to the line of sight is the so-called
Faraday rotation or rotation measure method. The rotation mea-
sure (RM) is calculated directly from the radio astronomical
polarization observations at multiple frequencies. This quantity
depends upon the plasma density and the strength of the field
component along the line of sight. Under necessary simplistic
assumptions, the RM can yield an order of magnitude estimate
of the magnetic field strength between the source and observer.
If several distinct rotating regions located along the line of sight
generate a spectrum of various RM components, multi-channel
spectropolarimetric radio data that can be Fourier-transformed
into Faraday space, called RM synthesis (see Heald 2009; Beck
2011 and references therein), are needed. If we would like to es-
timate the magnetic field strength directly connected to a source
embedded in the relatively low-density region, the only way is
by using the so-called equipartition calculation.

The equipartition or minimum-energy calculation is a
widespread method for estimating magnetic field strength and
energy contained in the magnetic field and CR particles using
only the radio synchrotron emission of a source. Despite its ap-
proximate character, it remains a useful tool in situations when
no other data about the source are available. Details of equipar-
tition and revised equipartition calculations for radio sources
in general are available in Pacholczyk (1970, hereafter P70),
Govoni & Feretti (2004), and Beck & Krause (2005, hereafter
BK05), respectively. A discussion on whether equipartition of
energy is fulfilled in real sources, and how reliable magnetic
field estimates from equipartition calculation are, can be found
in Duric (1990).

In his famous book, Pacholczyk gave the fundamental con-
cepts of the equipartition or minimum-energy calculation. The
first ingredient of the equipartition calculation is an expression
for the total energy of relativistic particles, which can be ob-
tained by an integration of power-law energy distribution of
CRs. The total energy of relativistic particles was found by in-
tegration over all frequencies in the radio domain. Pacholczyk
assumed a homogenous magnetic field for the calculation of en-
ergy contained in the magnetic field, and a coefficient K which
represents the ratio between energies of relativistic protons and
electrons. The last ingredient in the P70 equipartition formula
is the radio luminosity of an object.

BK05 presented a revised equipartition calculation.
The basic improvement in comparison to the classical P70
equipartition is the integration of the power-law energy distribu-
tion over energies instead of over frequencies. They integrated
over two energy ranges with a break at E = mc2, where m is the
rest mass of the accelerated particles, i.e., two power-law distri-
butions with different slopes, both dependent on energy spectral
index γ . Instead of luminosity as used in the classical approach,
BK05 used radio intensity—their intention was to determine the
magnetic field strength of a small part of a very extended object
such as the whole Galaxy or an extragalactic system. The mag-
netic field small-scale structures of very extended objects are
very far from being homogenous. The model of magnetic field
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distribution used in the revised equipartition formula accommo-
dates such extended objects. Finally, BK05 used a coefficient
K0, which represents the ratio of the number densities of CR
protons to electrons, instead of the ratio between energies of
protons and electrons used in the classical equipartition.

In this paper, we use the energy ratio, as in the classical
calculation, but it includes all heavier particles that can be found
in CRs. Also, we use the radio flux density instead of the radio
luminosity used in P70 equipartition or the specific intensity
from the revised calculation of BK05. Since our intention is
to derive equipartition formulas for the determination of the
magnetic fields and the minimal energies in SNRs, we use
a model of the magnetic field distribution defined in Longair
(1994). Finally, since the distribution of CRs is a power law
in momentum (which, for sufficiently high energies, can be
transformed to the same power law in energy), we have chosen
to integrate over momentum and not over energies as BK05 did,
so there is no need to introduce the break in the differential
energy spectrum.

We emphasize that the final formulas in the P70 equipartition
do not depend on the energy spectral index (or radio spectral
index, α = (γ − 1)/2), while in the BK05 and our equiparti-
tion these formulas depend on the energy spectral index (see
Equations (12) and (13)).

In the following section, by relying on Bell’s theory of
diffusive shock acceleration (DSA; Bell 1978a, 1978b) and his
assumption concerning injection of particles into the accelera-
tion process, we will first derive a modified equipartition, i.e., a
minimum-energy calculation (Arbutina et al. 2011) applicable
to “mature” SNRs (vs � 6000–7000 km s−1) with radio spec-
tral index 0.5 < α < 1 (energy spectral index 2 < γ < 3).
Then we will incorporate the dependence ε = ε(Einj) which
will make the formula applicable to younger, i.e., all, SNRs.

2. ANALYSIS AND RESULTS

2.1. A Simple Approach

Following Bell (1978b) we will assume that a certain number
of particles have been injected into the acceleration process, all
with the same injection energy Einj ≈ 4 1

2mpv2
s .4 If we assume

that the shock velocity is low enough so that Einj � mec
2

(and pe
inj � mec), for the energy density of a CR species (e.g.,

electrons, protons, α-particles, heavier ions), assuming a power-
law momentum distribution, we have

ε =
∫ p∞

pinj

4πkp−γ
(√

p2c2 + m2c4 − mc2
)
dp

≈
∫ ∞

0
4πkp−γ

(√
p2c2 + m2c4 − mc2

)
dp

= 4πkc(mc)2−γ
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0
x−γ

(√
x2 + 1 − 1

)
dx, x = p
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Γ
( 3−γ

2

)
Γ
(
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2

)
2
√

π (γ − 1)
, K = 4πkcγ−1, 2 < γ < 3,

(1)

where k is the constant in the distribution function f (p) =
kp−(γ +2). The function under the integral in Equation (1) is
approximately a power law with spectral index of 2 − γ for
thermal (non-relativistic) particles and a power law with spectral

4 We assume a fully ionized, globally electro-neutral plasma.

index of 1 − γ for highly relativistic particles. In this paper, the
sharp break in BK05 is replaced by a smooth one.

The total CR energy density is then
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where

κ =
(mp

me

)(3−γ )/2
∑

i A
(3−γ )/2
i νi∑
i Ziνi

, (3)

κ represents the energy ratio between ions and electrons,
ne = ∑

i Zini , νi = ni/n are ion abundances, and Ai and Zi are
mass and charge numbers of elements. We assumed that at high
energies Kp/Ke ≈ (np/ne)(mp/me)(γ−1)/2 (see Equation (26)),
where Kp and Ke are the constants in the power-law energy
distributions for protons and electrons, respectively. Note that
we have neglected energy losses.

The emission coefficient for synchrotron radiation is

εν = c5Ke(B sin Θ)(γ +1)/2
( ν

2c1

)(1−γ )/2
, (4)

where c1, c3, and c5 = c3Γ( 3γ−1
12 )Γ( 3γ +19

12 )/(γ + 1) are defined
in P70.5 We will use the flux density defined as

Sν = Lν

4πd2
= EνV

4πd2
=

4π
3 R3f Eν

4πd2
= 4π

3
ενf θ3d, (5)

where Lν is the radio luminosity, Eν is the volume emissivity,
V is the volume, f is the volume filling factor of radio emission,
R is the radius, d is the distance, and θ = R/d is the angular
radius.

If we assume an isotropic distribution for the orientation
of pitch angles (Longair 1994), we can take for the average
〈(sin Θ)(γ +1)/2〉

1

2
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√
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) . (6)

For the total energy, we have

E = 4π

3
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8π
B2, (7)
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(8)

5 Namely, c1 = 6.264 × 1018 and c3 = 1.866 × 10−23 in cgs units.
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Looking for the minimum energy with respect to B, dE/dB = 0
gives
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where (by using Equations (4), (5), and (6))
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i.e., the magnetic field for the minimum energy is
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where mec
2 ≈ 8.187 × 10−7 erg. We also have

EB = γ + 1

4
ECR, Emin = γ + 5

γ + 1
EB. (13)

This result is the same as in BK05.

2.2. A More General Formula for κ

Let us start again with Equation (1):
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∫ ∞
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The integral I (x) can be expressed through the Gauss hyperge-
ometric function 2F1 (for γ > 2),
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but we will try to find a simpler approximation. First, note that
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We can therefore try an approximation (2 < γ < 3)
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which has correct limits when x → 0 and x → ∞. We shall find
F (γ ) by matching the condition I (1) = I (1)approx as follows:
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Since the last expression also involves the hypergeometric
function, we found by trial and error an approximation

F (γ )approx = 17

1250
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. (20)

From now on we will assume I (x) = I (x)approx and F (γ ) =
F (γ )approx (the relative error is less than 3.5%).

The total CR energy density is then
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Finally,
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In the above derivation, we use the fact that (Bell 1978b)

Ki/Kp = ni

np

(
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p
p
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)γ−1

≈ (ni/np)(mi/mp)(γ−1)/2 (25)

and

Kp/Ke = (np/ne)

(
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)(γ−1)/2

≈ (np/ne)

(
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E2
inj + 2mec2Einj

)(γ−1)/2

. (26)

Equation (24) has the correct limit (3) when Einj � mec
2 �

mpc2. From Figure 1 it can be seen that for low Einj, the
CR energy density is almost constant (independent of Einj)
and use of Equation (3) is justified. When the shock velocity
can be estimated, one should calculate the injection energy as
Einj ≈ 4 1

2mpv2
s and use Equation (24). Formulas (12) and (13)

for magnetic field and minimum energy remain the same.6 In
Figure 2, we give the proton-to-electron energy density ratio as
a function of injection energy in our approximation compared to
the same data from Bell (1978b). The agreement is quite good
despite the approximate character of our formulas.

6 Note that κ is no longer the ions-to-electrons energy ratio but rather a
suitable parameter introduced to make the new formulas the same as the old
ones.

We have implemented our modified equipartition calculation
by developing a PHP code.7 The code uses some “typical”
starting values for the radio spectral index, frequency, flux
density, distance, angular radius, filling factor, shock velocity,
and abundances, all of which can be changed or left as such. For
example, if the shell thickness relative to the SNR radius δ can
be measured, the volume filling factor is f = 1 − (1 − δ)3.
Otherwise a typical value f = 0.25 can be used (shell
thickness of about 10%). If the shock velocity is unknown,
one should leave 0 (and a simpler equipartition calculation can
be performed by using Equation (3)). Simple ISM abundances
are assumed initially (H:He ratio 10:1). In the implementation
of our calculation, we used an approximation for the Gamma
function (Nemes 2010):

Γ(z) =
√

2π

z

(
1

e

(
z +

1

12z − 1
10z

))z

. (27)

3. DISCUSSION

From the mathematical point of view, the equipartition cal-
culation is the problem of solving a system of two indepen-
dent equations (the synchrotron emissivity equation (4) and the
equation for the total energy in a source (7)) for the three un-
known variables (the total energy E, energy contained in the
CRs ECR (or Ke), and energy contained in the magnetic field EB
(or B)). This problem is, of course, impossible to solve with-
out additional assumptions. The primary assumption is to seek
the minimum of the total energy of the synchrotron source.
Differentiation of Equation (8) ensures that the total energy dis-
appears as an unknown variable, and the two starting equations
(Equations (4) and (9)) can now give us solutions for both re-
maining unknown variables (Ke and B). As a result of differen-
tiation of Equation (8), the exact equipartition between energies
contained in the magnetic field and CRs is only approximately
fulfilled (Equation (13)). The alternative assumption, commonly
adopted, is the equipartition between energy contained in the
CRs and in the magnetic field (εCR = εB). By assuming this
we directly link Ke and B (see Equations (2) and (7)). In the
literature, these two calculations are commonly referred to as
either equipartition or the minimum-energy calculation. Here,
we would like to emphasize that strict equipartition does not
have to be assumed to perform the calculation—if εB/εCR =
β = constant is somehow known (independent information
about CR electrons can come from X-ray data (inverse Comp-
ton effect) or about CRs from gamma rays (bremsstrahlung or
pion decay)), the system can be solved. This means that the
magnetic field energy density can be any constant fraction of
the CR energy density, and the “equipartition” procedure will
give appropriate formulas for the estimation of the amount of
the total energy in a source and magnetic field strength, namely

B ′ =
( 4β

γ + 1

)2/(γ +5)
B, (28)

where B ′ is the recalculated field for β = constant, while B
is the field corresponding to the minimum energy. The total
energy calculated in this way is always higher than the minimal
energy obtained from the equipartition, i.e., the minimum-
energy calculation. However, the magnetic field can be either
larger or smaller.

7 The calculator is available at http://poincare.matf.bg.ac.rs/∼arbo/eqp/
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Figure 1. CR energy density of ions (H:He = 10:1, solid line), electrons (dashed line), and total (thick solid line) in our approximation as a function of injection
energy.

Given the above, the equipartition calculation is not a precise
method for determination of the magnetic field strength, but we
can surely estimate its order of magnitude (Duric 1990). The
main question is whether there is a physical relation between Ke
and B. From Bell’s (1978b) theory, Ke depends on the CR energy
density εCR, injection energy Einj, and the energy spectral index
of CR particles γ . Thus, implicitly, it must depend on the shock
velocity, which itself depends on time t or radius R = R(t) of an
SNR. If there is evolution of the magnetic field B = B(t), Ke and
B must be related. Additionally, in the advanced model of DSA,
a significant fraction of shock energy is transferred to CRs so the
CR pressure has to be included in the equations (Drury 1983).
From this, the so-called nonlinear DSA theory, strong magnetic
field amplification (approximately two order of magnitudes) is
expected especially in the early free-expansion phase of SNR
evolution, when very strong shock waves exist (Bell 2004). The

nonlinear effects thus produce efficient CR acceleration and, at
the same time, significant amplification of the magnetic field
strength. This increasing trend for both energy constituents of
the synchrotron emission again leads to some form of non-strict
equipartition.

The derivation procedure presented in Section 2.1, where
integration limits for momenta are from 0 to ∞, leads to
Equation (12). Using this equation and Equation (3), the
calculated values of the magnetic field strength are slightly
overestimated (by a few percent or more, depending on Einj).
On the other hand, we neglect all kinds of energy losses in
this paper. The main processes responsible for energy loss by
the relativistic electrons are synchrotron radiation and inverse
Compton scattering. These energy losses become significant
for electrons especially at very high energies (the radiation
power for both processes depends on the square of the electron
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Figure 2. Proton-to-electron energy density ratio as a function of injection
energy in our approximation (dashed line) and exact ratio (solid line) for
γ = 2.5. Data points are from Bell (1978b).

kinetic energy). The energy losses of electrons result in an
underestimation of the equipartition magnetic field strength.
Thus, in our “simple approach” (Section 2.1), the effects of
extending integration limits and energy losses work in opposite
directions and may roughly cancel each other. If the integration
limits are from pinj to ∞ (Section 2.2), the equipartition
calculation is derived correctly (without the assumption about
the low shock velocity), but the problem of the energy losses
remains and the equipartition estimates fail for electrons at the
highest energies (BK05). This discussion is concentrated only
on the energy losses of CR electrons. The energy pool of CRs
is mainly filled with protons and heavier particles that do not
lose energy heavily by synchrotron radiation and by inverse
Compton scattering. Following Bell’s (1978b) theory, the energy
ratio between CR protons and electrons for the energy spectral
index γ = 2 is approximately 40. If we take γ = 2.5, which
is assumed for the curves presented in Figure 2, this ratio is
≈7. Due to this, the total CR energy losses can be neglected
to a first approximation, especially for objects with harder
spectra (SNRs) where the energy indices are lower.8 However,
the injection theory has been developed for protons and heavy
particles, but not for electrons, which may or may not follow
the protons. Hence, Bell’s formula may give only lower limits
for the proton-to-electron ratio at high energies and for the field
strength.

In Table 1, we present values of the magnetic field strength
and the minimal energy for the sample of 30 Galactic SNRs for
which all data9 necessary for the calculation can be found in
the literature. The calculated magnetic field strengths are close
to those calculated using revised equipartition (BK05) and are
higher than those calculated using classical equipartition (P70)
for all 30 SNRs (see Figures 3 and 4). For the P70 calculation
we use K = (mp/me)(3−γ )/2, f = 0.25, and a frequency
interval 107 Hz < ν < 1011 Hz. For the BK05 calculation,
in order to convert from specific intensity to flux density we

8 The average energy index for SNRs is γ ≈ 2 (the radio spectral index
α ≈ 0.5).
9 Including the distances to SNRs independent of the Σ–D relation (see
Urošević et al. 2010 and references therein), and spectral indices 0.5 < α < 1.

Figure 3. Comparison between different calculations for the minimum-energy
magnetic field strength (B). “B ratio” represents the ratio between BK05 or this
paper’s calculations and the classical equipartition results (P70). Aeaa—this
paper, simple approach for p+:e− = 1:1; Aeab—this paper, simple approach
for H:He = 10:1. Data are from Table 1 (25 SNRs).

Figure 4. Comparison between different calculations for the minimum-
energy magnetic field strength (B) for five young SNRs with avail-
able forward shock velocities. “B ratio” represents the ratio between
BK05 or this paper’s calculations and classical equipartition results (P70).
Aeaa—this paper, simple approach for p+:e− = 1:1; Aeab—this paper,
simple approach for H:He = 10:1; Aeac—this paper, general approach for
H:He = 10:1. Data are from Table 1 (five SNRs).

use Iν/ l = Lν/4πV (Lν = 4πd2Sν),10 K0 = (mp/me)α ,
and f = 0.25. For five younger Galactic SNRs, for which the
forward shock velocities are known, we use a general equation
for κ (Equation (24)). The differences between the calculated
values, obtained using the general and simple approaches, are
generally not so high. If we define the fractional error

ϕ = |B − Bvs=0|
B

, (29)

10 At the end of p. 415 of their paper, BK05 suggested replacing Iν/ l with
Lν/V . This is incorrect; 4π is missing in the denominator of the latter
expression.
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Table 1
Calculated Magnetic Field Strengths and Total Energies for a Sample of 30 Galactic SNRs

Namea Other Names Pacholczyk (1970) Beck & Krause (2005) This Paperb This Paperc This Paperd

B Emin B Emin B Emin B Emin B Emin

G4.5+6.8e Kepler, SN1604, 3C358 2.44E−04 8.38E+47 4.18E−04 2.34E+48 4.14E−04 2.30E+48 4.11E−04 2.26E+48 4.00E−04 2.14E+48
G21.80.6 Kes 69 7.71E−05 1.10E+50 1.62E−04 4.82E+50 1.63E−04 4.86E+50 1.63E−04 4.86E+50 – –
G23.30.3 W41 6.75E−05 5.86E+49 1.42E−04 2.57E+50 1.43E−04 2.59E+50 1.42E−04 2.59E+50 – –
G27.4+0.0 4C04.71 1.02E−04 3.75E+48 1.99E−04 1.32E+49 1.99E−04 1.33E+49 1.97E−04 1.30E+49 – –
G33.6+0.1 Kes 79, 4C00.70, HC13 9.52E−05 3.79E+49 2.00E−04 1.66E+50 2.01E−04 1.68E+50 2.01E−04 1.67E+50 – –
G46.80.3 HC30 5.96E−05 4.88E+49 1.25E−04 2.14E+50 1.26E−04 2.16E+50 1.26E−04 2.16E+50 – –
G53.62.2 3C400.2, NRAO 611 2.42E−05 3.18E+48 6.14E−05 1.88E+49 6.38E−05 2.02E+49 6.30E−05 1.98E+49 – –
G65.1+0.6 · · · 9.90E−06 1.90E+50 1.78E−05 5.87E+50 1.76E−05 5.73E+50 1.74E−05 5.66E+50 – –
G93.70.2 CTB 104A, DA 551 2.68E−05 1.09E+49 5.13E−05 3.80E+49 5.09E−05 3.74E+49 5.05E−05 3.68E+49 – –
G96.0+2.0 · · · 1.49E−05 2.20E+48 3.15E−05 9.74E+48 3.16E−05 9.82E+48 3.16E−05 9.81E+48 – –
G108.20.6 · · · 1.94E−05 2.52E+49 4.09E−05 1.12E+50 4.11E−05 1.13E+50 4.11E−05 1.12E+50 – –
G109.11.0 CTB 109 5.18E−05 1.40E+49 1.09E−04 6.16E+49 1.09E−04 6.21E+49 1.09E−04 6.20E+49 – –
G111.72.1f Cassiopeia A, 3C461 5.53E−04 1.32E+49 1.19E−03 5.56E+49 1.25E−03 6.19E+49 1.24E−03 6.05E+49 1.10E−03 4.76E+49
G114.3+0.3 · · · 2.40E−05 6.05E+47 5.05E−05 2.67E+48 5.07E−05 2.69E+48 5.07E−05 2.69E+48 – –
G116.5+1.1 · · · 2.27E−05 6.21E+48 4.80E−05 2.75E+49 4.82E−05 2.77E+49 4.81E−05 2.76E+49 – –
G116.9+0.2 CTB 1 3.23E−05 1.48E+48 5.60E−05 4.26E+48 5.53E−05 4.16E+48 5.49E−05 4.10E+48 – –
G120.1+1.4g Tycho, 3C10, SN1572 1.62E−04 1.63E+48 2.88E−04 4.88E+48 2.85E−04 4.80E+48 2.83E−04 4.73E+48 2.63E−04 4.09E+48
G132.7+1.3 HB3 2.36E−05 2.69E+49 4.05E−05 7.58E+49 4.00E−05 7.39E+49 3.98E−05 7.31E+49 – –
G160.9+2.6 HB9 1.58E−05 3.08E+50 3.02E−05 1.06E+51 2.99E−05 1.04E+51 2.97E−05 1.03E+51 – –
G205.5+0.5 Monoceros Nebula 2.03E−05 6.65E+49 4.27E−05 2.94E+50 4.29E−05 2.97E+50 4.29E−05 2.96E+50 – –
G260.43.4 Puppis A, MSH 0844 5.29E−05 4.31E+49 1.11E−04 1.90E+50 1.12E−04 1.91E+50 1.12E−04 1.91E+50 – –
G292.20.5 · · · 4.20E−05 4.78E+49 8.84E−05 2.11E+50 8.87E−05 2.12E+50 8.87E−05 2.12E+50 – –
G296.80.3 115662 3.75E−05 6.50E+49 6.34E−05 1.41E+50 6.26E−05 1.38E+50 6.22E−05 1.36E+50 – –
G304.6+0.1 Kes 17 9.52E−05 3.73E+49 2.00E−04 1.64E+50 2.01E−04 1.65E+50 2.01E−04 1.65E+50 – –
G315.42.3 RCW 86, MSH 1463 4.16E−05 1.37E+49 7.01E−05 3.75E+49 6.92E−05 3.66E+49 6.88E−05 3.62E+49 – –
G327.6+14.6h SN1006, PKS 145941 4.28E−05 4.65E+48 7.22E−05 1.27E+49 7.13E−05 1.24E+49 7.09E−05 1.22E+49 6.89E−05 1.16E+49
G332.40.4 RCW 103 1.33E−04 4.63E+48 2.79E−04 2.03E+49 2.80E−04 2.04E+49 2.80E−04 2.04E+49 – –
G337.80.1 Kes 41 8.92E−05 6.80E+49 1.87E−04 2.99E+50 1.88E−04 3.01E+50 1.88E−04 3.00E+50 – –
G349.7+0.2 · · · 2.49E−04 6.49E+49 5.21E−04 2.83E+50 5.23E−04 2.85E+50 5.23E−04 2.85E+50 – –
G1.9+03i · · · 1.41E−04 3.65E+47 2.30E−04 9.33E+47 2.28E−04 9.11E+47 2.26E−04 9.00E+47 1.74E−04 5.31E+47

Notes. All units are in the cgs system. B is the magnetic field strength calculated for the minimum-energy assumption.
a According to Green’s (2009) catalog, from which data for SNRs, except shock velocities, have been taken.
b Simple approach for p+:e− = 1:1.
c Simple approach for H:He = 10:1.
d General approach for H:He = 10:1, for young SNRs with available forward shock velocities (υs).
e υs = 1660 km s−1 (Sankrit et al. 2005).
f υs = 4900 km s−1 (Patnaude & Fesen 2009).
g υs = 4700 km s−1 (Hayato et al. 2010).
h υs = 2890 km s−1 (Ghavamian et al. 2002).
i υs = 14000 km s−1 (Carlton et al. 2011).
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ϕ̄ = 11% for the five SNRs with estimated shock velocities. For
the youngest Galactic SNR G1.9+0.3, the fractional error is the
largest, ϕmax = 30% (see Figure 4). Further inspection of Table 1
and Figures 3 and 4 leads to the conclusion that the variation in
abundances of CR species does not significantly alter the final
equipartition results.

4. CONCLUSIONS

In this paper we derived modified equipartition, i.e., the
minimum-energy formula for estimating magnetic fields in
SNRs. Our approach is similar to that of BK05 in the sense
that we do not integrate over frequencies as P70 does; however,
the following applies to our paper.

1. We assume power-law spectra n(p) ∝ p−γ and integrate
over momentum to obtain energy densities of particles.

2. We take into account different ion species and not only an
equal number of protons and electrons at injection (e.g., for
an H to He ratio of 10:1 there is more energy in α-particles
than in electrons).

3. We use flux density at a given frequency and also assume
an isotropic distribution of the pitch angles for the remnant
as a whole.

4. By incorporating the dependence ε = ε(Einj) we make the
formula applicable to younger remnants as well.

5. We calculate the magnetic field strengths for a sample of
30 Galactic SNRs and obtain values that are close to those
calculated by using revised equipartition (BK05) and higher
than those calculated by using classical equipartition (P70).

We thank the anonymous referee for very useful comments
and suggestions. During the work on this paper, the authors were

financially supported by the Ministry of Education and Science
of the Republic of Serbia through the projects 176004 “Stellar
physics,” 176005 “Emission nebulae: structure and evolution,”
and 176021 “Visible and invisible matter in nearby galaxies:
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